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Biological processes at the cellular level are stochastic in nature, and the immune

response system is no different. Therefore, models that attempt to explain this sys-

tem need to also incorporate noise or fluctuations that can account for the observed

variability. In this work, a stochastic model of the immune response system is pre-

sented in terms of the dynamics of the T cells and the virus particles. Making use

of the Green’s function and the Wilemski-Fixman approximation, this model is then

solved to obtain the analytical expression for the joint probability density function

of these variables in the early and late stages of infection. This is then also used

to calculate the average level of virus particles in the system. Upon comparing the

theoretically predicted average virus levels to those of COVID-19 patients, it is hy-

pothesized that the long lived dynamics that are characteristic of such viral infections

are due to the long range correlations in the temporal fluctuations of the virions.

This model therefore provides an insight into the effects of noise on viral dynamics.

I. INTRODUCTION

The immune system of an organism provides the protection that it needs against for-

eign bodies such as microbes, viruses, parasites and more. The appearance of these foreign

entities inside the body triggers the immune response, which is an agglomeration of cells,

tissues and biochemical processes that function in conjunction with each other to protect

the body [1]. To stop the proliferation of such antigens, the immune system proliferates

its own cells and shields the body from foreign attack, thereby enabling it to carry out its

regular functions [2].

The immune response in humans can be understood as a system with two levels of increas-
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ing complexity. These are the innate and the adaptive immunity. Innate immunity is the

first line of defense and is non-specific. It has no immunologic memory as it cannot dis-

tinguish self from non-self [3]. Therefore, after the pathogens manage to evade the innate

immune system, the second line of defense, i.e., the adaptive immune response gets activated.

The adaptive/acquired immunity releases antigen-specific response and therefore provides

a targeted defense against foreign particles. It works by retaining the copies of antibodies

produced in the previous attack, therefore encoding the new memory for future use. This

helps the immune system in launching a faster and targeted attack on foreign bodies in the

future. The adaptive immunity is provided by a combined effort of two types of lympho-

cytes, which are, antigen-specific T cells (matured in thymus) and B cells (matured in the

bone marrow) which divide into plasma to produce antibodies. T cells have surface specific

antibody-like receptors that can recognize antigens inside the target cell of the host’s body

carrying the virus and directly destroys them [4].

Since T cells are responsible for the directed attack on virus particles, a study of the dynam-

ics between these two is pertinent. Theoretical studies of such systems are helpful in giving

an insight into the complex dynamical phenomena involving their interaction. Therefore,

several groups in the past have developed theoretical models to analyze and predict the virus

and T cell dynamics in the system. These include models developed to look at the inte-

grated immunological response to different viral infections such as Human Immunodeficiency

Virus (HIV), Influenza virus, Zika virus and the virus that caused the ongoing pandemic,

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [5–8], among others. These

theoretical studies generally use one of the two modelling approaches, viz. models without

and with the immune response. The models without immune response generally incorporate

kinetic interactions between healthy, susceptible and infected cells with the virus particles.

Various standard versions of models using this approach, such as, “Target Cell Limited

model” [7] and “Target Cell Eclipse Phase model” [9, 10] have been studied. On the other

hand, the models that include the immune response deal with interactions between immune

cells (T cells) and viral particles [8, 11]. The immune response model was also developed for

the Influenza A virus, where, the dynamics of cytotoxic T cells and virus population were

coupled through a set of coupled ODEs [6].

All of these models discussed above are deterministic. However, biological processes at the

cellular level, including the immune response systems are stochastic in nature [12]. Therefore,

one must take care to incorporate fluctuations/noise in these systems. In fact, an analysis

of experimental data has shown that the presence of random noise in gene expression leads

to increased variability in viral (HIV) gene products such as RNA, which contributes to the

replication of viral material and the latency period [13]. Stochasticity has also been reported

in the division and death time of lymphocytes [14].
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Taking this variability and population heterogeneity into consideration, a few stochastic

immune response models have been developed in the recent past [15–17]. Dalal et al. in

their work introduced stochasticity in the deterministic model of immune response in HIV

infection by parameter perturbation [15]. Wang et al. showed that the stability of the

stochastic dynamical system of HIV infection is different when fluctuations are introduced

in terms of the Gaussian colored noise in contrast to the Gaussian white noise [16]. Another

recent stochastic model of T cell dynamics was used to explain the bistability and crossover

dynamics of the immune response [18]. These stochastic studies indicate that modeling fluc-

tuations into the system can give a more accurate picture of the immune response dynamics.

In this work, we aim to look at the stochastic nature of the immune response with special

focus on the SARS-CoV-2 virus for the ongoing global COVID-19 pandemic. To do this, we

model the immune response dynamics in viral infections by incorporating stochastic fluc-

tuations in terms of the Gaussian white noise and the fractional Gaussian noise to the set

of coupled ODEs of T cells and virus particles. Our stochastic immune response model

provides a near analytic solution for the time dependent joint probability distribution of T

cells and virus, which we then use to determine the average number of virus particles in the

system. Considering the ongoing pandemic, we then also compare our results to the experi-

mental SARS-CoV-2 viral infection data from Germany [19, 20]. The long mean incubation

period, which is approximated to be 5-6 days [21, 22] makes it important to analyse the

viral dynamics of SARS-CoV-2 using the stochastic immune response model. Although, in

this work, we carry out the numerical analysis for this particular virus, similar analysis can

also be applied to other viral dynamics.

This paper is organized as follows: In Section II, we formulate the stochastic immune re-

sponse model using a set of coupled stochastic differential equations (SDEs). Section III pro-

vides the derivation of the temporal evolution of the joint probability distribution (Fokker-

Planck equation) of T cells and virus particles from the set of coupled SDEs. Part A of

the results section includes a near analytic solution of Fokker-Planck equation in different

time regimes. The analysis carried out here is generic and is applicable to viral infections

in general. Part B has two subsections to show the numerical analysis of the stochastic

quantities of immune response in SARS-CoV-2 infection. We finally summarize our results

in Section V.

II. STOCHASTIC IMMUNE RESPONSE MODEL

The simplest model of immune response dynamics needs to account for interactions be-

tween the immune cells and the virus. The immune response itself is activated when cells

are under attack by foreign bodies such as viruses. This activation is manifested through
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an increased proliferation of the immune cells. Therefore, there needs to be a coupled inter-

action between the immune cells and the virus. Since the proliferation and death rates of

both these entities are intrinsically stochastic [14, 23], any realistic model needs to account

for this inherent variability as well. The inherent intrinsic variability can be accounted for

in the model via the Gaussian white noise (GWN), which is delta correlated. The GWN is a

fast decaying noise, where successive fluctuations are not correlated. We model the inherent

noise in T cells as a GWN. Viruses though are known to show population level fluctuations

between active and latent states [13]. This is a manifestation of fluctuations in the gene

expression, which in turn leads to variability in the gene products. We therefore model the

viral dynamics to evolve under the action of the fractional Gaussian noise (fGn), which is a

type of colored noise. Specifically, the dynamical interaction between T cells and the virus

particles can then be written as a set of coupled stochastic differential equations (SDEs),

given by

ẋ(t) = β
(
v(t)

)
x(t)− γx(t) + θ(t) (1)∫ t

0

dt′K(t− t′)v̇(t′) = pv(t)− cv(t) + ξ(t) (2)

Here, x(t) and v(t) represent the concentration levels of T cells and virus particles in

the body which are cleared at rates γ and c respectively. p is the replication rate of virus

particles. β
(
v(t)

)
is a function of virions concentration, which incorporates the effect of virus

levels in T cell dynamics. β
(
v(t)

)
is a positive odd integer power law function that accounts

for the dependency between T cells and virus levels. This term therefore couples the viral

dynamics to T-cell dynamics. In general, one can consider β
(
v(t)

)
= rvm to account for

the fact that higher the value of m, faster is the rate of increase of β
(
v(t)

)
. Earlier immune

response models [6] also indicate the same, i.e., increase in virus levels lead to proliferation

of T cells with a rate r. In our study, we have set the value of m to be 1. A schematic

representation of the stochastic immune response model is shown in Fig. 1.

The terms θ(t) and ξ(t) represent GWN and fGn with noise strengths a and λ respectively.

These account for the variability in the system and have the following statistical properties.

〈θ(t)〉 = 0

〈ξ(t)〉 = 0

〈θ(t)θ(t′)〉 = aδ(t− t′)

〈ξ(t)ξ(t′)〉 = λK(|t− t′|)

(3)

Here, the angular brackets represent an average over all realizations of the noise. As

specified in Eq(3), both the noise terms, θ(t) and ξ(t), have zero mean. θ(t) represents
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Figure 1. Schematic representation of stochastic immune response model: r is the prolif-

eration rate of T cells, p is the replication rate of virus particles, x0 is the production rate of basal

level T cells, c and γ are clearance rates of the virus particles and the T cells respectively. [These

are representative images, not to scale]

fluctuations of a Markov process which is delta correlated, i.e., the fluctuation at any time

t is uncorrelated with the previous time t′, while ξ(t) represents correlated fluctuations

characteristic of fractional Gaussian noise (fGn). fGn is a Non-Markovian process, which is

temporally correlated by a memory kernel K(|t− t′|), which has the following form [24–28]

K(|t− t′|) = 2H(2H − 1)|t− t′|2H−2 (4)

Here H is the Hurst index such that 1/2 ≤ H < 1. The value H = 1/2 represents the

delta correlated limit of the memory kernel, whereas away from this value, the fluctuations

become more correlated. The strength of noise for GWN and fGn i.e. a and λ respectively,

specifies the deviation of noise from its mean.

III. TRANSFORMATION TO THE FOKKER-PLANCK EQUATION

The advantage of representing a system through a stochastic model is the possibility of

obtaining a multivariate probability distribution function from the set of SDEs, Eqs. (1)

and (2). This distribution function can then be used to obtain the average values of the

relevant variables, in this case, the number of virions inside the host’s body at a given time.

To begin with, we first define the distribution function P (x, v, t) as the probability density

of finding x T cells and v virions at a particular time t. This can be written as

P (x, v, t) = 〈δ(x− x(t))δ(v − v(t))〉 (5)
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where x(t) and v(t) are functionals of the noise θ(t) and ξ(t) respectively and the angular

brackets represent an average over all realizations of the noise. Now, substituting the solu-

tions of the differential equations, Eqs(1) and (2) into Eq (5) and making use of the noise

properties (Eq(3)), one can obtain the time evolution of the probability density function

P (x, v, t). This equation, known as the Fokker-Planck equation, is given by

∂

∂t
P (x, v, t) = −β

(
v(t)

)
P (x, v, t)− LP (x, v, t) (6)

where the operator L is defined as

L = β
(
v(t)

)
x
∂

∂x
− γ ∂

∂x
x− 1

2
a
∂2

∂x2
− η(t)

∂

∂v
v − λ

|(c− p)|
η(t)

∂2

∂v2
(7)

Here, η(t) is a time-dependent function defined as η(t) ≡ −Ẋ (t)/X (t), where X (t) =

E2−2H(−(t/τ)2−2H) and τ =
(

Γ(2H+1)
|(c−p)|

)1/(2−2H)

. Eα,β(z) is a Mittag-Leffler function of the

form
∑∞

n=0 z
n/Γ(αn+ β), where Γ(αn+ β) is a gamma function.

The details of this transformation (from Eqs(1) and (2) to Eq(6)) are shown in Appendix

A. The exact joint probability distribution function, P (x, v, t), can be obtained from the

time dependent solution of the Fokker-Planck Equation (Eq(6)), which will then be useful

in studying the various statistics of T cells and virus particles.

IV. RESULTS

A. Solution of the Fokker-Planck Equation: Obtaining P(x,v, t)

The Fokker-Planck Equation, Eq(6) can be represented through an equivalent form by

making use of the Green’s function. The system evolves with time from its equilibrium state

and therefore the formal solution of Eq(6) is given by [29]

P (x, v, t) = Peq(x, v)−
∫ ∞

0

dx′
∫ ∞

0

dv′
∫ t

0

dt′G(x, v, t− t′|x′, v′)β(v′)P (x′, v′, t′) (8)

Here the Green’s function, G(x, v, t−t′|x0, v0), is the time dependent conditional probability

of finding the system in the state (x, v) at time t given that it was in the state (x0, v0) at

time t = 0. The detailed derivation of the Green’s function using the operator L is provided



7

in Appendix B. After some lengthy algebra, the Green’s function (propagator) is given by

G(x, v, t|x0, v0, 0) =
1

2π

1√
a
2γ

λ
|(c−p)|(1− e−2γt)(1−X 2(t))

exp

(
−1

2

(
1
a
2γ

(x− x0e
−γt)2

(1− e−2γt)

+
1
λ

|(c−p)|

(v − v0X (t))2

(1−X 2(t))

)) (9)

This propagator satisfies the condition that when t→∞, the time dependent conditional

probability density , G(x, v, t− t′|x′, v′) = Peq(x, v). Therefore,

Peq(x, v) =
1

2π

1√
a
2γ

λ
|(c−p)|

exp

(
−1

2

(
x2

( a
2γ

)
+

v2

λ
|(c−p)|

))
(10)

Eq(8) can provide the implicit solution for P (x, v, t), but to determine the analytic expression

for the time dependent joint probability distribution function, we use the closure scheme

introduced by Wilemski and Fixman [30, 31]. The Wilemski-Fixman (WF) approximation

was originally developed to estimate the rate of the reaction between reactive groups at

either ends of a polymer chain [31]. This was later extended to the systems of catalytic

bimolecular reactions [32], non-exponential DNA escape kinetics [33], dynamic disorder in

chain unfolding [34] and chain closure in entangled polymer systems [35], among others.

In the original work by Wilemski and Fixman [30], a sink term was introduced to provide

a valid “closure approximation” for the diffusion equation in the many-particle system of

polymer reactions. Using this approximation, the solution of Eq(8) can be replaced by

an approximate expression which involves the product of two terms - (i) the equilibrium

probability density Peq(x, v), that is time independent and corresponds to the situation

when T cells and virus levels in the system are independent of each other and (ii) a self-

consistently determined time-dependent term which evolves with time from the equilibrium

distribution (Peq(x, v)) as a consequence of the sink term, i.e., β
(
v(t)

)
in the case of our

stochastic immune response model.

Therefore using this approximation, the probability distribution function P (x, v, t) can

be defined by the introduction of two functions w(t) and w̄ such that,

P (x, v, t) = Peq(x, v)
w(t)

w̄
(11)

where,

w(t) =

∫ ∞
0

∫ ∞
0

dxdvβ(v)P (x, v, t) and w̄ =

∫ ∞
0

∫ ∞
0

dxdvβ(v)Peq(x, v) (12)

Multiplying Eq(8) by β(v), integrating over x and v and then substituting Eq(11) into it

provides the expression for w(t) such that

w(t) = w̄ −
∫ t

0

dt′C(t− t′)w(t′)/w̄ (13)
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where

C(t− t′) =

∫ ∞
0

dx′
∫ ∞

0

dx

∫ ∞
0

dv′
∫ ∞

0

dvβ(v)G(x, v, t− t′|x′, v′)β(v′)Peq(x
′, v′) (14)

Following the above steps, one can see that w(t) is required in the calculation of the proba-

bility distribution for the immune response model, which in turn requires the evaluation of

C(t). Computation of C(t) is carried out by substituting Eq(9), Eq(10) and the expression

for β(v) into Eq [14] and then carrying out the integration. This gives

C(t) =
(π

4

)2

r2 λ

|(c− p)|

(
2
√

1−X 2(t) + X (t)

(
π + 2ArcTan

(
X (t)√

1−X 2(t)

)))
(
π + 2ArcTan

(
e−γt√

1− e−2γt

)) (15)

w(t) can simply be obtained by using the method of Laplace transforms. This requires the

Laplace transform of C(t) as well. Determining the simple algebraic form of the Laplace

transform of Eq(15) is non-trivial due to the presence of X (t) i.e. the Mittag-Leffler function.

However, viral dynamics are particularly interesting during the early and late stages of

infection. Viral populations reach their peaks in the early stage of infection and are especially

long lived and decay gradually during the late stages of infection [20]. Therefore, here, we

are primarily interested in viral dynamics, and in turn, X (t) in two different time regimes

i.e. at short and long times.

1. Short time regime

In the case of short times (t/τ << 1 and γt << 1), the Mittag-Leffler function is

approximated to X (t) = 1 − a1t
b + O(t2b), where b = 2 − 2H, a1 = 1/τ bΓ(3 − 2H). The

functions ArcTan

(
X (t)√

1−X 2(t)

)
≈ π

2
−
(
1− a1t

b
)√

2a1tb and ArcTan
(

e−γt√
1−e−2γt

)
≈ π

2
− (1−

γt)
√

2γt, for small value of γ this approximates to π
2
. Ignoring higher order terms of t, the

expression obtained for C(t) in the short time regime is,

C(t) =

(
π2

2

)2

r2ϑ
(
1− a1t

b
)

(16)

where ϑ = λ/|(c− p)|
Substituting the Laplace transform of Eq(16) into the Laplace Transform of Eq(13), i.e.,

into w(s) = w̄/
(
s
(

1 + C(s)
w̄

))
, one can obtain the complete expression for w(s). This is

given by

w(s) =
4w̄sb

(r2π4ϑsb/w̄) + 4s1+b − (r2π4λ/(w̄Γ(3− b)))
(17)
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The series expansion of the above expression gives

w(s) = w̄
∑∞

k=0
(−1)k

(
r2ϑπ4

4w̄

)k
sb(k+1)

(s1+b − A)k+1
(18)

where A = (rπ2)2

4w̄
λ

Γ(3−b) . The inverse Laplace transform of Eq(18) provides the expression for

w(t) in the short time regime. This is given by

w(t) = w̄
∑∞

k=0

(−1)k

k!

(
r2ϑπ4

4w̄

)k
tkE

(k)
1+b,1−bk

(
At1+b

)
(19)

where Ek
α,β(z) =

dkEα,β(z)

dzk
is the kth derivative of the Mittag-Leffler function with respect to

its argument. The series expansion of the Mittag-Leffler function [36] is given by Eα,β(z) =∑∞
n=0

zn

Γ(αn+β)
whose kth derivative turns out to be

E
(k)
1+b,1−bk

(
At1+b

)
=
∑∞

n=0

(n+ k)!

n!

(At1+b)n

Γ(n(1 + b) + k + 1)
(20)

Substitution of Eq(20) in Eq(19) results in the expression for w(t). For short times (i.e.,

taking into account only the k = 0 term as in [36]), the final expression is

w(t) = w̄E1+b,1

(
At1+b

)
(21)

where w̄ = 1
2
√

2π
r
√
ϑ. Substituting the above expression into Eq(11) gives the joint proba-

bility density expression, P (x, v, t), in the short time regime, which is

P (x, v, t) =
1

2π
√
=ϑ

exp

(
−1

2

(
x2

=
+
v2

ϑ

))
E1+b,1

(
π9/2

√
2

r

Γ(3− b)
√
λ
√
|(c− p)|t1+b

)
(22)

where = = a/2γ and ϑ = λ/|(c− p)|. The consequences of the dynamics in the short time

regime will be discussed in Part B of this section.

2. Long time regime

Another regime of interest is the viral dynamics in the long time regime. Therefore,

for large values of t, the Mittag-Leffler function is approximated to X (t) ≈ a2t
−b, where

a2 = τ b/Γ(2H − 1) and b = 2 − 2H [33]. Further, ignoring higher order terms and using

the property that ArcTan(f(t)) ≈ f(t) when f(t) << 1, we can approximate the functions

ArcTan

(
X (t)√

1−X 2(t)

)
≈ a2t

−b and ArcTan
(

e−γt√
1−e−2γt

)
≈ 0. After applying these approxima-

tions, the closed form expression for C(t) in the long time regime is given by

C(t) =
(π

4

)2

r2ϑ
(
2π + π2a2t

−b) (23)
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where ϑ = λ/|(c− p)|
Substituting the Laplace transform of Eq(23) into the Laplace Transform of Eq(13), i.e.,

into w(s) = w̄/
(
s
(

1 + C(s)
w̄

))
, we get

w(s) =
16w̄2

2r2ϑπ3
(

1 + 16w̄s
2π3r2ϑ

+ π
2

Γ(3−b)
|(c−p)|s

b
) (24)

The series expansion of Eq(24) is

w(s) = w̄
∑∞

k=0

(−1)k

k!

(
2π3r2ϑ

16w̄

)k
k!

s−b(k+1)

(s(1−b) + A2)
k+1

(25)

where A2 =
(
rπ2

4

)2
Γ(3−b)
w̄

λ
|(c−p)|2 . The inverse Laplace transform of Eq(25) provides

w(t) = w̄
∑∞

k=0

(−1)k

k!

(
2π3r2ϑ

16w̄

)k
tkEk

1−b,1+bk

(
−A2t

1−b) (26)

Making use of the asymptotic form of the Mittag-Leffler function for larger values of its

argument i.e. Eα,β(z) = 1
zΓ(β−α)

, the kth derivative turns out to be

Ek
1−b,1+bk(−A2t

1−b) =
k!

Γ(b(1 + k))

(
A2t

1−b)−(k+1)
(27)

Upon substituting the above expression into Eq(24), the final expression for w(t) in the

long time regime is given by

w(t) =
16w̄2

a2r2ϑπ4Γ(1− b)t1−b
Eb,b

(
−2tb

π

|(c− p)|
Γ(3− b)

)
(28)

where w̄ = 1
2
√

2π
r
√
ϑ and Eb,b is the Mittag-Leffler function. The joint probability distribu-

tion function, P (x, v, t) in the long time regime is then given by

P (x, v, t) =
8

π4

1

(2π)3/2ra2

√
=ϑΓ(1− b)

tb−1 exp

(
−1

2

(
x2

=
+
v2

ϑ

))
Eb,b

(
−2tb

π

|(c− p)|
Γ(3− b)

) (29)

where = = a/2γ and ϑ = λ/|(c− p)|. The consequences of the dynamics in the long time

regime will be discussed in Part B of this section. Equations [22] and [29] are the main

results of this work, which we further explore in the next section.
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B. Numerical implementations of stochastic immune response model

The analytical results presented in the previous section, i.e., Eqs(22) and (29), provide

the joint probability density function P (x, v, t) for T cells and virus particles in different time

regimes, namely, the early (short times) and late (long times) stages of infection. Following

this calculation, we carry out its numerical analysis to study the temporal evolution of the

time dependent joint probability distribution function. Our analysis applies in general to

typical virus and immune response interactions, but, because the ongoing pandemic due to

COVID-19 demands special attention, we analyze our results in the context of the immune

response system for T cells and the SARS-CoV-2 virus, a pathogenic RNA virus with a lipid

envelope. SARS-CoV-2 has long mean incubation period, which is approximated to be 5-6

days [21]. The latency period i.e. the time lag between the time of infection and the onset

of the initial symptoms, makes it pertinent to analyse the viral dynamics of SARS-CoV-2

using the stochastic immune response model. To gain an insight into the applicability of

our model to the real world data, we have carried out a quantitative analysis by comparing

our results to those obtained from the clinical data of COVID patients [19, 20].

1. Temporal evolution of the joint probability distribution function

The time dependent joint probability distribution expression for T cells and virus par-

ticles in the short and the long time regimes are given by Eqs(22) and (29) respectively.

In this work, we have studied the evolution of probability distribution function in two dif-

ferent time regimes: (a) from the time when SARS-CoV-2 enters the host’s body to start

the infection and (b) during the extinction of SARS-CoV-2 from a patients’ body. The

parameters required for this study have been determined from the earlier research studies

[8, 10] which have looked at the effect of SARS-CoV-2 on the basis of experimental data

of viral load within the patients’ bodies. The strength of the noise parameters, i.e., GWN

in T cells and fGn in virus particles are a = 0.3 and λ = 0.1 respectively. These are fit

parameters that are variable. The clearance rate of T cells, γ has been estimated on the

basis of the half life of T cells, which is approximated to be 4 - 34 days [37], therefore in

these calculations we set γ to 0.1 day−1. Clearance rate of virus particles (c), proliferation

rate of T cells (r), and replication rate of virus particles (p) are set to the mean values of

these parameters for different patients’ in different time regimes. These are listed in Table

I. Fig. 2 shows the temporal evolution of the distribution function in the initial period of

infection, approximately up to 2 days. Fig. 3, on the other hand provides an insight into

the decrease in the joint probability distribution of T cells and virus particles at larger times
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t= 1.00c)

P
(x

,v,t)

P
(x

,v,t)

P
(x

,v,t)

P
(x

,v,t)

t= 0.80b)t= 0.10a)

t= 1.40c)

Figure 2. Temporal evolution of joint probability distribution of T cells and virions

during the early infection period, (short time regime) for H = 0.55: a) P (x, v) at 0.1

days. b) P (x, v) at 0.8 days. c) P (x, v) at 1 day. d) P (x, v) at 1.4 days from the start of infection.

i.e. during virus extinction and when T cell levels drop to basal values. These results show

that the joint probability of T cells and virus particles increases with time at the start of

infection and shows the decrease in probability distribution when virus levels attain a very

low value (virus extinction period) within the host’s body.

2. Average level of virus particles

The next step in the analysis of the stochastic immune response model is to compute the

average level of virus particles in the system. The analytic expressions for this in different

time regimes are obtained using Eq(22) and Eq(29). For short times, the average level of

virus particles is given by,

〈v(t)〉 =

√
ϑ

2
√

2π
E1+b,1

(
π9/2

√
2

r

Γ(3− b)
√
λ
√
|(c− p)|t1+b

)
(30)
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P
(x

,v,t)

P
(x

,v,t)
P

(x
,v,t)

t= 10a) t= 12b)

t= 15c) t= 20c)

P
(x

,v,t)

Figure 3. Temporal evolution of joint probability distribution of T cells and virions

during the late stage of infection, (the long time regime) for H = 0.55: a) P (x, v) after

10 days. b) P (x, v) after 12 days. c) P (x, v) after 15 days. d) P (x, v) after 20 days of infection.

where ϑ = λ/|(c− p)|
For long times, this is given by

〈v(t)〉 =
2tb−1

ra2π5Γ(1− b)
Eb,b

(
−2tb

π

|(c− p)|
Γ(3− b)

)
; (31)

After having obtained the expression for mean levels of virus particles, the next step would

be to compare it to experimental data. Fig. 4 illustrates the comparison between the

numerically evaluated average number of virions with that determined clinically in COVID

patients from Germany [20]. The rate parameters used in the analysis of each patient are

listed in Table I. The parameter values used have been selected on the basis of fits to data

available for experimental viral load in COVID patients in published papers [8, 10]. Other

parameters have been set to the same values as used in the analysis of the temporal evolution

of the joint probability distribution for T cells and virus particles, i.e. in Figs. 2 and 3. In

short time regime, the initial value v0 is considered to be 100 copies/ml (which is the lower

limit of detection in experiments [20]). In the long time regime, the initial value v0 is in
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Patients Regime c (day−1) p (day−1) r (ml/cells/day)

A Short time 6.89 7.87 0.30

Long time 7.50 4.20 0.33

B Short time 5.32 6.81 0.33

Long time 7.87 4.37 0.40

C Short time 7.13 8.53 0.31

Long time 7.67 5.19 0.39

D Short time 4.93 5.54 0.34

Long time 6.92 5.49 0.26

E Short time 4.98 5.33 0.31

Long time 6.92 5.31 0.26

F Short time 5.27 7.90 0.11

Long time 7.04 4.22 0.20

G Short time 6.74 7.62 0.26

Long time 11.71 6.23 0.27

H Short time 6.22 9.73 0.35

Long time 15.07 9.12 0.39

Short time [4.93-7.13] [5.33-9.73] [0.11-0.35]

Median 5.77 7.74 0.31

Long time [6.92-15.07] [4.20-9.12] [0.20-0.40]

Median 7.58 5.25 0.30

Table I. Numerical values of rate parameters used in the quantitative analysis of the stochastic

immune response model for SARS-CoV-2 virus. c and p are respectively the clearance rate and

the replication rate of virus particles. r is the proliferation rate of T cells.

range of 106 − 109 copies/ml (assuming the peak viral load in patients). Eqs. (30) and (31)

are then used to obtain the average virus levels at the early (short time regime) and late

stages (long time regime during virus extinction i.e. after the viral peak inside the patient’s

body) of infection. Fig. 4 also shows that change in the value of Hurst index, determines

the best fit to the experimental data of SARS-CoV-2 load in patients.

The models for H values 0.55, 0.60 and 0.75 have been compared to the SARS-CoV-2

viral load data [10] from patients. As listed in Table[II], the model with the best fit has

been determined by comparison of the mean square error (MSE) and the Akaike information

criterion (AIC) for individual models. The AIC values for the individual models have been
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Figure 4. Average level of SARS-CoV-2 virus using stochastic immune response model:

The average number of virions at different times is compared for H values 0.55, 0.65, 0.75. Numer-

ical results from stochastic immune response model (solid lines) are compared to the experimental

data (points) of viral load from German patients. Parameters are listed in Table I.
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Patients H = 0.55 H = 0.65 H = 0.75

A AIC -8.51 4.72 12.93

MSE 0.48 1.17 2.03

B AIC -13.98 0.04 7.45

MSE 0.28 0.83 1.47

C AIC 6.36 7.44 13.15

MSE 1.36 1.48 2.30

D AIC -3.72 -3.57 -2.70

MSE 0.49 0.50 0.55

E AIC -7.37 -5.78 -2.52

MSE 0.33 0.39 0.56

F AIC -8.91 0.49 4.76

MSE 0.28 0.79 1.27

G AIC 24.06 19.52 18.37

MSE 5.305 3.74 3.42

H AIC 20.17 16.95 16.50

MSE 4.40 3.36 3.24

Table II. Comparison of AIC and MSE of three numerically different stochastic immune response

models to the experimental data.

calculated using

AIC = n log

(
RSS

n

)
+

2mn

n−m− 1
(32)

where n is the number of data points, m is the number of unknown parameters and RSS

is the residual sum of squares obtained from the fitting routine [38, 39]. Lower the value

of MSE and AIC, better is the model fit to the experimental data of viral load in patients.

Fig. 4 shows that the maximum viral load or viral peak lies between the predicted results

for short time and long time regimes.

V. SUMMARY AND CONCLUSION

Understanding the functioning and dynamics of the immune system becomes important

given the role that it plays in fighting off infection and disease. However, this becomes

non-trivial because just like all the other biological processes at the cellular level, this too

shows a lot of variability. Therefore, stochastic models of the immune response, most of

which primarily focused on the HIV virus, have been more successful in explaining some
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of the heterogeneity and variability associated with the system [14, 15, 17, 18, 40]. Earlier

theoretical studies that have attempted to explain different aspects of the immune response

have been based on deterministic models [5–8, 38], which illustrate the mean dynamics but

fail to account for the inherent stochasticity and variability of the process. In light of this,

in this article, we have developed and analyzed a stochastic version of the immune response

model.

Our stochastic immune response model is composed of coupled Langevin equations for the

T cells and virus particles with two kinds of noise, GWN and fGN, respectively. This

allowed us to account for stochasticity within the model itself and obtain the temporal

probability distributions of the main variables. In this work, we first derived the Fokker-

Planck Equation, which we then used to compute the joint probability distribution of T cells

and virus particles by making use of the Wilemski-Fixman approximation. This approach

allowed us to obtain analytical solutions of the probability distribution functions and the

average virus particles in the limit of short and long times, showing how the infection begins

and ends (see Figs. 2 and 3).

A further advantage of an analytical expression is that a direct comparison can be made

between the predicted theoretical dynamics and the experimental results. We have carried

out such a comparison with the available SARS-CoV-2 virus data from patients in Germany.

At short times, i.e., during the early period of infection, the model predicts that there is

a steep rise in the virus levels with time, whereas, at long times, the virus levels drop

gradually, in accordance with the model’s prediction. As shown in Fig. 4, our Stochastic

Immune Response model gives a good fit to the experimental data at both short and long

times.

One of the parameters that is crucial in obtaining good fits is the Hurst index, H, which

in the case of fGn takes values between 1/2 and 1. H value between 0.5 and 1 corresponds

to a system with long-ranged correlated fluctuations and values between 0 and 0.5 stand

for anti-correlated time series [12]. The H value in the case of fGn, that represents the

Non-Markovian viral dynamics, indicates the long-ranged time correlation of the noise ξ(t).

Higher the H value, greater is the correlation between noises at any time t and the previous

time t′. The H = 1/2 case on the other hand, is the GWN limit of fGN, where the noise ξ(t)

is completely uncorrelated to previous times t′ and therefore the two successive times are

delta correlated. In addition to the expression of the average level of virions at arbitrary H,

we have also calculated its expression in the limit of H = 1/2. In this limit, the expression

simplifies to simple exponentials. In the short time regime

〈v(t)〉 =

√
ϑ

2
√

2π
cosh

((
π9/2ra1

√
ϑ√

2

)1/2

t

)
(33)
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and in the long time regime it is given by

〈v(t)〉 =
2

rπ5

|(c− p)|
Γ(3− b)

exp

(
−2t|(c− p)|

π

)
(34)

In the long time regime, for H = 1/2, as evident from Eq(34), there is fast exponential

decrease in the virus levels. However, as seen from Fig. 4, the long time regime shows slow

temporal decay. This cannot be explained by the GWN limit (Eq(34)) of the average virus

levels. Therefore, our model, which includes long ranged noise correlations through fGn

provides a more accurate picture of the viral dynamics. For most of the plots in Fig. 4,

H = 0.55 gives a better fit in comparison to other values.

We have also looked at the effect of the strength of the noise on T cell dynamics. The average

level of T cells in two different time regimes can be derived using Eq(22) and Eq(29). In the

short time regime, this is given by

〈x(t)〉 =
1

4
√
π

√
a

γ
E1+b,1

(
π9/2

√
2

r

Γ(3− b)
f(λ)

√
|(c− p)|t1+b

)
(35)

where f(λ) =
√
λ. At long times, the average level of T cells is given by

〈x(t)〉 =

√
2

rπ5

|(c− p)|
Γ(3− b)

√
a

γ
tb−1Eb,b

(
−2tb

π

|(c− p)|
Γ(3− b)

)
; (36)

From Eq(35), it is clear that the terms
√
a/γ and f(λ) account for the strength of the

noise in T cell and viral dynamics respectively. The presence of f(λ) in the argument of

the Mittag-Leffler function leads to a faster increase in the T cells level with increased λ

(as clearance rate γ of T cells has been fixed). Thus in the short time regime, increase in

the strength of the noise will cause an increase in the rate of production of T cells. This

phenomenon may affect the system in a way where T cells attain its peak value before the

maximum viral load and thus might not be optimized to clear all the virus.

In the long time regime, the expression for the average levels of T cells is a product of

a slowly increasing function (power law in time) and a decreasing Mittag-Leffler function.

From the expression in Eq(36), it is clear that it is only the pre-factor
√
a/γ that accounts

for the effect of the strength of noise. Thus, an increase in the value of a will affect the

increasing function, but the net effect on T cell levels will not be significant. The T cells

dynamics will show long lived dynamics in the long time regime and will have similar values

for different strengths of the noise. Thus, our model predicts that the noise in the system

may have a major effect at the start of the infection time. The time at which the population

of T cells reaches the maximum value within patients is an important factor. The analysis

of these levels may then help in determining when the immune response modifiers should be

administered to the patients.
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The present formulation can also be extended to incorporate increasing complexity by con-

sidering the effects of susceptible and infected cells on the immune response system. This

model can provide useful insights into the dynamics of various other viral diseases as well,

such as measles, influenza, Zika virus, which also have long incubation period as found in

SARS-CoV-2 [41, 42]. The colored noise incorporated in the model accounts for the long

lived dynamics of the virus and can therefore provide more accurate predictions. These

stochastic models can therefore help in a better understanding of the immune response

system.
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Appendix A: Derivation of the Fokker-Planck Equation

We have carried out the derivation of the Fokker-Planck equation by using the methods

described in [43]

The multivariate probability density distribution of x and v at time t is given by

P (x, v, t) = 〈δ(x− x(t))δ(v − v(t))〉 (A1)

where x(t) and v(t) are functionals of θ(t) and ξ(t) respectively. Differentiation of Eq(A1)

with respect to time t gives

∂

∂t
P (x, v, t) = − ∂

∂x

〈
δ(x− x(t))δ(v − v(t))ẋ(t)

〉
− ∂

∂v

〈
δ(x− x(t))δ(v − v(t))v̇(t)

〉
(A2)

Solution of Eq(A2) is obtained as follows. Laplace transform of Eq(2) provides v̇(t) such

that

v(t) = v(0)X (t) +
1

|(c− p)|

∫ t

0

dt′ξ(t′)φ(t− t′) (A3)

where X (t) and φ(t) are inverse Laplace transforms of

X̃ (s) =
K̃(s)

|(c− p)|+ sK̃(s)
and Φ̃(s) = 1− sX̃ (s) (A4)
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respectively. By making use of the definition X (0) = 1 and eliminating v(0) in Eq(A3), we

get,

v̇(t) =
Ẋ (t)

X (t)
v(t) +

1

|(c− p)|
X (t)

d

dt

(∫ t

0

dt′
φ(t− t′)ξ(t′)
X (t)

)
(A5)

Substituting ẋ(t) from Eq(1)into Eq(A2) and taking an average over all realizations of the

noise, we obtain,

∂

∂t
P (x, v, t) =

(
−β
(
v(t)

) ∂
∂x
x+ γ

∂

∂x
x+

1

2
a
∂2

∂x2

)
P (x, v, t)− ∂

∂v
〈δ(x− x(t))δ(v − v(t))v̇(t)〉

(A6)

Substitution of Eq(A5) into Eq(A6) gives

∂

∂t
P (x, v, t) =

(
−β
(
v(t)

) ∂
∂x
x+ γ

∂

∂x
x+

1

2
a
∂2

∂x2

)
P (x, v, t) + η(t)

∂

∂v
vP (x, v, t)

− 1

|(c− p)|
∂

∂v

〈
δ(x− x(t))δ(v − v(t))ξ(t)

〉 (A7)

where,

η(t) ≡ −Ẋ (t)

X (t)
and ξ(t) ≡ X (t)

d

dt

(∫ t

0

dt′
φ(t− t′)ξ(t′)
X (t)

)
(A8)

ξ(t) is linearly related to ξ(t), which is a Gaussian random function. Therefore, by Novikov’s

theorem [44], we get,

〈
δ(x− x(t))δ(v − v(t))ξ(t)

〉
=

∫ t

0

dt′
〈
ξ(t)ξ(t′)

〉
〈

δ

δξ(t′)
δ (x− x(t)) δ (v − v(t))

〉
= − ∂

∂v

∫ t

0

dt′
〈
ξ(t)ξ(t′)

〉
×
〈
δ(x− x(t))δ(v − v(t))

δv(t)

δξ(t′)

〉 (A9)

To find the functional derivative in Eq(A9), Eq(A5) is solved by using the integrating factor,

such that

v(t) = exp

(
−
∫ t

0

dt′η(t′)

)[
v0 +

1

|(c− p)|

∫ t

0

dt′ exp

(∫ t′

0

dt′′η(t′′)

)
ξ(t′)

]
(A10)

Here the term v0 exp
(
−
∫ t

0
dt′η(t′)

)
is a complementary function which is obtained by satis-

fying the initial conditions, and the other term is the particular integral. Thus the functional

derivative is given by

δv(t)

δξ(t′)
=

1

|(c− p)|
exp

(
−
∫ t

t′
dt1η(t1)

)
(A11)
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Therefore, 〈
δ(x− x(t))δ(v − v(t))ξ(t)

〉
= − ∂

∂v

1

|(c− p)|
P (x, v, t)D(t) (A12)

where

D(t) =

∫ t

0

dt′ξ(t)ξ(t′) exp

(
−
∫ t

t′
dt1η(t1)

)
(A13)

Substitution of Eq(A12) and Eq(A13) in Eq(A7), gives the expression,

∂

∂t
P (x, v, t) = −β

(
v(t)

) ∂
∂x
xP (x, v, t) + γ

∂

∂x
xP (x, v, t) +

1

2
a
∂2

∂x2
P (x, v, t)

+η(t)
∂

∂v
vP (x, v, t) +

1

|(c− p)|2
∂2

∂v2
P (x, v, t)D(t)

(A14)

Substituting ξ(t) from Eq(A8) into Eq(A13), we get

D(t) =
1

2
X (t)X (t′)

d

dt

1

X (t)X (t′)

∫ t′

0

dt2

∫ t

0

dt1φ(t− t1)φ(t− t2)ξ(t1)ξ(t2) (A15)

Solution of Eq [A15] is obtained by making use of double Laplace transforms and performing

a lengthy algebra as mentioned in [45], which gives

D(t) =
1

2
λ |(c− p)| X 2(t)

d

dt

1

X 2(t)

(
1−

(
X (t)

)2
)

(A16)

Differentiation of Eq(A16) and substitution of Eq(A8) in Eq(A14) gives us the desired

Fokker-Planck equation.

∂

∂t
P (x, v, t) =

(
− β

(
v(t)

)
− β

(
v(t)

)
x
∂

∂x
+ γ

∂

∂x
x+

1

2
a
∂2

∂x2
+ η(t)

∂

∂v
v

+
λ

|(c− p)|
η(t)

∂2

∂v2

)
P (x, v, t)

(A17)

Appendix B: Derivation of the propagator, G(x, v, t|x0, v0, 0)

The Green’s function follows the equation

∂

∂t
G(x, v, t|x0, v0, 0) = −LG(x, v, t|x0, v0, 0) (B1)

with the initial condition given by

G(x, v, 0|x0, v0) = δ(x− x0)δ(v − v0) (B2)

Hee, the operator L (from Eq(7)) is given by

−L = −β(v)x
∂

∂x
+ γ

∂

∂x
x+

1

2
a
∂2

∂x2
+ η(t)

∂

∂v
v +

λ

|(c− p)|
η(t)

∂2

∂v2
(B3)
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where β(v) = rvm ; m = 1. Green’s function can be found explicitly by using the method

of Fourier transforms, where,

Ĝ(k1, k2, t|x0, v0, 0) =
1

2π

∫ ∞
−∞

dk2

∫ ∞
−∞

dk1 exp(ιk1x) exp(ιk2v)G(x, v, t|x0, v0, 0) (B4)

Carrying out the Fourier transform of Eq [B1], we get,

∂

∂t
Ĝ(k1, k2, t|x0, v0, 0) =

(
− r

(
ι
∂

∂k2

)(
ι
∂

∂k1

)
(ιk1) + γ + γ

(
ι
∂

∂k1

)
(ιk1) +

1

2
a(ιk1)2+

η(t) + η(t)

(
ι
∂

∂k2

)
(ιk2) +

λ

|(c− p)|
η(t)(ιk2)2

)
Ĝ(k1, k2, t|x0, v0, 0)

(B5)

Dividing the above equation throughout by Ĝ(k1, k2, t|x0, v0, 0) gives

∂

∂t
ln Ĝ(k1, k2, t|x0, v0, 0) = ιrk1

∂

∂k1

∂

∂k2

ln Ĝ(k1, k2, t|x0, v0) + γ − γk1
∂

∂k1

ln Ĝ(k1, k2, t|x0, v0, 0)

−1

2
ak2

1 + η(t)− η(t)k2
∂

∂k2

ln Ĝ(k1, k2, t|x0, v0, 0)− λ

|(c− p)|
η(t)k2

2

(B6)

Following the Gaussian ansatz,

ln Ĝ(k1, k2, t|x0, v0, 0) = ιk1m(t) + ιk2b(t)−
1

2
k1

2s(t)− 1

2
k2

2y(t)− 1

2
k1k2z(t) (B7)

Differentiating Eq(B7) with time and equating terms of corresponding powers of k1, k2, k1
2,

k2
2 and k1k2 with those of Eq(B6), we get,

d

dt
m(t) = −γm(t)− 1

2
rz(t)

d

dt
b(t) = −η(t)b(t)

d

dt
s(t) = −2γs(t) + a

d

dt
y(t) = −2η(t)

(
y(t)− λ

|(c− p)|

)
d

dt
z(t) = −γz(t) + η(t)z(t)

(B8)

Using the conditions m(0) = x0, b(0) = v0, s(0) = 0, y(0) = 0 and z(0) = 0, the solution of

differential equations in Eq(B8) turns out to be

m(t) = x0e
−γt; b(t) = X (t)v0; s(t) =

a

2γ
(1− e−2γt);

y(t) =
λ

|(c− p)|

(
1−X 2(t)

)
; z(t) = 0

(B9)
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The double inverse Fourier transform of Eq(B7) gives the expression for G(x, v, t|x0, v0, 0)

G(x, v, t|x0, v0, 0) =
1

2π

2√
4y(t)s(t)− z(t)2

exp

(
−1

2
(

1− z(t)2

4s(t)y(t)

)
[

(x−m(t))2

s(t)
+

(v − b(t))2

y(t)
− z(t)(x−m(t))(v − b(t))

s(t)y(t)

]) (B10)

Eq(B10) is in the form of a bi-variate Gaussian distribution for two random variables. Sub-

stitution of Eq(B9) in Eq(B10), provides the expression for the Green’s function mentioned

in Eq(9), which is,

G(x, v, t|x0, v0, 0) =
1

2π

1√
a
2γ

λ
|(c−p)|(1− e−2γt)(1−X 2(t))

exp

(
−1

2

(
1
a
2γ

(x− x0e
−γt)2

(1− e−2γt)

+
1
λ

|(c−p)|

(v − v0X (t))2

(1−X 2(t))

)) (B11)
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