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Abstract 
Background: Since the outbreak of the COVID-19 pandemic, research efforts around the world 
have begun to focus on the identification or categorization of COVID-19 positive patients using 
artificial intelligence (AI) technologies on various medical data. Some developed AI models have 
shown very high accuracy for diagnosis and prognosis of COVID-19 positive patients. However, 
concerns have been raised over the generalizability of these models, given the heterogeneous 
factors in training datasets such as patient demographics and pre-existing clinical conditions. The 
goal of this study is to examine the severity of this problem by evaluating the generalizability of 
deep learning (DL) classification models trained to identify COVID-19–positive patients on 3D 
computed tomography (CT) datasets from different countries. 

Methods: We collected one internal dataset at UT Southwestern (UTSW) (337 patients), and 
three external datasets from three different countries: 1) CC-CCII Dataset (China), 2) COVID-
CTset (Iran), and 3) MosMedData (Russia). We divided all the data into 2 classes: 1) COVID-19–
positive and 2) COVID-19–negative patients. The total number of patients/scans we used for each 
data set was 101/101 (UTSW), 929/1544 (CC-CCII), 95/281 (COVID-CTset), and 856/856 
(MOSMedData) for the positive labels, and 236/236 (UTSW), 1813/2634 (CC-CCII), 282/1068 
(COVID-CTset), and 0/0 (MOSMedData) for the negative labels. We randomly divided the data, 
by patients, into 72% training, 8% validation, and 20% testing. We trained nine identical DL-based 
classification models by using various combinations of the datasets: 1) UTSW, 2) CC-CCII, 3) 
COVID-CTset, 4) UTSW + CC-CCII, 5) UTSW + COVID-CTset, 6) CC-CCII + COVID-CTset, 7) 
UTSW + CC-CCII + COVID-CTset, 8) CC-CCII + COVID-CTset + MosMedData, 9) UTSW + CC-
CCII + COVID-CTset + MosMedData. 

Results: The models trained on a single dataset achieved accuracy/area under the receiver 
operating characteristics curve (AUC) values of 0.87/0.826 (UTSW), 0.97/0.988 (CC-CCCI), and 
0.86/0.873 (COVID-CTset) when evaluated on their own dataset. The models trained on multiple 
datasets and evaluated on a test set from one of the datasets used for training performed better. 
However, the performance dropped close to an AUC of 0.5 for all models when evaluated on a 
different dataset. For example, the model trained on the UTSW and COVID-CTset together 
achieved accuracies/AUCs to 0.91/0.937 and 0.94/0.926 when evaluated on the UTSW and 
COVID-CT-set datasets, respectively, but evaluating the model on the CC-CCII dataset yielded  
accuracy/AUC values of only 0.57/0.475. Including the MosMedData, which only contained 
positive labels, into the training did not necessarily help the performance on the other datasets. 



Conclusion: The models could identify COVID-19–positive patients if the testing data were in the 
same dataset as the training data, and they performed better when trained on multiple datasets. 
However, we observed poor performance, close to random guessing, when evaluating the model 
on a dataset that it had never seen. Multiple factors likely contribute to these results, including but 
not limited to patient demographics, pre-existing clinical conditions, and differences in image 
acquisition or reconstruction, causing a data shift among different study cohorts.  

 

I. Introduction 
Since the outbreak of the 2019 coronavirus disease (COVID-19) in December 2019, the total 
worldwide death count due to COVID-19 has exceeded a million deaths1. While COVID-19 can 
affect many organ systems and cause fever, flu-like symptoms, cardiovascular damage, and 
pulmonary injury. Since many of those who contract COVID-19 develop pneumonia, the most 
common presentation of COVID-19 is pneumonia. While some patients are asymptomatic or have 
mild symptoms, a small percentage of patients may develop severe acute respiratory distress 
syndrome (ARDS) that requires intubation in intensive care and is associated with poor prognosis. 
There is over 60% mortality once they progressed to a severe illness stage2. Since many chest 
CTs are performed for reasons other than pulmonary symptoms, an automated tool that can 
opportunistically screen chest CTs for the disease can potentially be used to identify patients with 
COVID-19. Firstly, it has been suggested that patients with COVID-19 when identified early 
stages can be treated to prevent progression to the later stage of the disease3-5. Secondly, 
identification of asymptomatic patients in early stages provide a time window when they can 
isolate themselves to prevent the spread to others. 

Several efforts around the world have focused on the identification or categorization of COVID-
19–positive patients according to their various types of medical data.  As part of the effort to 
understand and control this disease, large COVID-19 datasets of different formats have been 
curated and publicly released around the world. One group of studies focuses on using artificial 
intelligence (AI) technologies, in particular deep learning (DL)–based models, to detect COVID-
19 from chest radiography and computed tomography (CT). These studies found high accuracy 
rates ranging from 82% to 98%6-16. The high accuracy rates are promising and encourage the use 
of this technology in the clinical setting.  

However, the generalizability of these models to other clinical settings around the world is not 
clear. The data usually found in clinical practice are often incomplete and noisy, and there may 
have high intra- and inter-study variability among different environments. This scenario often 
makes it difficulty from a research perspective to develop for algorithms and implement them in 
the clinic. Due to many restrictions on sharing patient data, many algorithms are developed with 
limited data that are specific to a clinic or a region.  However, differences in several demographic 
factors, such as a populations distribution of race, ethnicity, and geography, can greatly impact 
the overall accuracy and performance of an algorithm in a different clinical setting17. In addition, 
different methods of data collection by hospitals around the world may also impact an algorithm’s 
performance. Because the boom of AI technologies has only happened within the last several 
years, the number of studies testing the robustness and performance of AI algorithms across 
various clinical settings is extremely limited17. Therefore, there is very little knowledge about how 
well a model will perform in a realistic clinical environment over time. 



For example, Barish et al.18 demonstrated that a particular public model developed by Yan et al.19 
that predicted mortality from COVID-19–positive patients—which performed well on an internal 
dataset with an accuracy 0.878—failed to accurately predict mortality on an external dataset, with 
an accuracy of only around 0.5. Another similar negative study applied Yan et al.’s model on an 
external dataset and drew similar conclusions about the accuracy of its mortality prediction20. A 
systematic review of 107 studies with 145 prediction models was conducted, and they found that 
all models had high bias, due to non-representative control dataset and overly optimistic reported 
performance21, which can additionally lead to unrealistic expectations among clinicians, policy 
makers, and patients22. An article by Bachtiger et al. had concluded that this boom of AI models 
for covid-19 focused far too much on developing novel prediction models without a 
comprehensive understanding of its practical application and biases from the dataset23. Others 
have similarly concluded that AI has yet to have any impact on the pandemic at hand, and that 
extensive and comprehensive gathering of diagnostic COVID-19–related data will be essential do 
develop useful AI models24. 

As part of the efforts to collect data, large datasets of 3D computed tomography (CT) scans with 
COVID-19–related labels have been publicly released. This provides us with an opportunity to 
study the generalizability of DL algorithms developed using these volumetric datasets. In this 
study, we collected and studied one internal dataset collected at UT Southwestern and three large 
external datasets from around the world: 1) China Consortium of Chest CT Image Investigation 
(CC-CCII) Dataset (China)25, 2) COVID-CTset (Iran)26, and 3) MosMedData (Russia)27. We 
trained a DL-based classification model on various combinations of the datasets and evaluated 
the model performance on held-out test data from each of the datasets. 

II. Methods 
II.1. Data 

We collected one internal dataset at UT Southwestern (UTSW) and three large datasets from 
around the world that are publicly available—1) China Consortium of Chest CT Image 
Investigation (CC-CCII) Dataset (China), 2) COVID-CTset (Iran), and 3) MosMedDat (Rusia)—
which is summarized in Table 1. The UTSW dataset is composed of three subsets of anonymized 
imaging data obtained retrospectively. The study protocol was approved by the institutional review 
board and the requirement for informed consent was waived. The first subset includes patients 
who tested positive for Severe Acute Respiratory Syndrome Coronavirus-2 on real-time 
polymerase chain reaction between March and November 2020 and who had a chest CT scan 
performed within the first seven days of the diagnosis. All chest CT scans were obtained according 
to standard clinical care – common clinical indications were to assess worsening respiratory 
status and to rule out pulmonary thromboembolism. Chest CT is not obtained as a first line 
modality to diagnose or screen for COVID-19 at UTSW. The second and third subsets include 
patients who had a chest CT scan obtained as part of standard clinical care between March and 
May 2019, i.e., pre-COVID-19 pandemic phase. The radiologic reports of these studies were 
screened by a cardiothoracic radiologist with 12 year of clinical experience. The reports were 
labeled as having radiologic findings suggestive of infection or not. The adjudication was based 
on the presence of radiologic patterns usually associated with infection, including ground-glass 
opacities, consolidation, and nodular pattern, if such findings were described as fitting a 
differential diagnosis of infectious process based on the impression by the primary interpreting 
radiologists. These studies were consecutively selected to match the sex and age distribution of 
the COVID-19 positive subset and to represent two control groups with a balanced representation 
of chest CT showing findings suggestive of infection (118) and findings not related to infection 



(118).The CC-CCII dataset was obtained from six different hospitals: 1) Sun Yat-sen Memorial 
Hospital and Third Affiliated Hospital of Sun Yat-sen University, 2) The first Affiliated Hospital of 
Anhui Medical University, 3) West China Hospital, 4) Nanjing Renmin Hospital, 5) Yichang Central 
People’s Hospital, 6) Renmin Hospital of Wuhan University. The COVID-CTset dataset was from 
the Negin Medical Center, and the MOSMedData dataset was from municipal hospitals in Moscow, 
Russia. 

For consistency in training and testing the models in our study, we divided all the data into two 
classes: 1) COVID-19–positive and 2) COVID-19–negative patients. Note that the MosMedData 
does not have conclusive negative–label patients, as CT-0 might contain both positive and 
negative patients. Accordingly, we omitted the CT-0 category from this study. Most scans in this 
study had a matrix size of 512 x 512 x n, where n was a variable number of slices. The small 
number of scans that had a reduced matrix size, images were linearly interpolated to match the 
512 x 512 x n resolution. 

Some data were available in Hounsfield Units (HU), while other data were available in relative 
intensity values (e.g., 0 to 255). Because the data formatting varied across datasets, we 
performed clipping and normalization operations. First, if the data were displayed in HU, we 
clipped the minimum number to be -1000 HU. For evaluation, the data were normalized from 0 to 
1 prior to evaluation by the DL model. For training, multiple normalization methods were used as 
part of a data augmentation technique. The complete data augmentation is further described in 
section in Section II.3. Figure 1 shows example CTs of COVID-19 positive patients from each 
dataset. 

 
Figure 1: Slice view of example CTs from each dataset. Red arrows show patchy ground-
glass opacities with round morphology, which are typical findings in COVID-19 pneumonia. 

For training, validating, and testing the model, the positive labels of the UTSW dataset was 
randomly split into 73 train, 8 validation, and 20 test patients and scans (one 3D scan per patient). 
The positive labels of the CC-CCII dataset were randomly split into 669 train, 74 validation, and 
186 test patients, or 1110 train,122 validation, 312 test scans. The positive labels of the COVID-
CTset were randomly split into 68 train, 8 validation, and 19 test patients, or 201 train, 23 
validation, and 57 test patients. The positive labels of the MosMedData were randomly split into 
616 train, 69 validation, and 171 test patients and scans (one 3D scan per patient. CT-0 category 
was omitted). 

For the negative labels, the UTSW dataset was randomly split into 170 training, 18 validation, and 
48 testing patients and scans (one 3D scan per patient). The CC-CCII dataset was randomly split 
1305 train,145 validation, and 363 test patients, or 1891 train, 203 validation, and 540 test scans. 



The COVID-CTset was randomly split into 259 train, 29 validation, and 72 test patients, or 770 
train, 84 validation, and 214 test scans.  
 

Table 1: Summary of data used in the study. These datasets include full volumetric CT 
scans of the patients 

Dataset Origin 
Description Available 

at: # 
patients 

# 3D 
scans label 

UTSW o UT Southwestern Medical 
Center 

101 101 COVID-19 
positive 

*See 
footnote1 

118 118 Infection 
(negative) 

118 118 

Findings 
Unrelated 
to Infection 
(negative) 

China 
Consortium of 
Chest CT 
Image 
Investigation 
(CC-CCII) 
Dataset 

o Sun Yat-sen Memorial 
Hospital and Third Affiliated 
Hospital of Sun Yat-sen 
University, Guangzhou, 
China 

o The first Affiliated Hospital 
of Anhui Medical University, 
Anhui, China 

o West China Hospital, 
Sichuan, China 

o Nanjing Renmin Hospital, 
Nanjing, China 

o Yichang Central People’s 
Hospital, Hubei, China 

o Renmin Hospital of Wuhan 
University, Wuhan, China 

929 1544 COVID-19 
positive 

http://ncov-
ai.big.ac.cn
/download 

964 1556 
Common 
Pneumonia 
(negative) 

849 1078 
Normal 
Lung 
(negative) 

COVID-CTset o Negin Medical Center, Sari, 
Iran 

95 281 COVID-19 
positive https://githu

b.com/mr7
495/COVID
-CTset 282 1068 

Normal 
lung 
(negative) 

MosMedData o Municipal hospitals in 
Moscow, Russia 254 254 

CT-0 – not 
consistent 
with 
pneumonia 
(can 
include 
both 
COVID-19 
positive 

https://mos
med.ai/ 

 
1 UTSW dataset is non-public. In accordance with HIPAA policy, access to the dataset will be granted on a case by 
case basis upon submission of a request to the corresponding authors and the institution. 



and 
negative) 

684 684 
CT-1 – Mild 
(COVID-19 
positive) 

125 125 

CT-2 – 
Moderate 
(COVID-19 
positive) 

45 45 

CT-3 – 
Severe 
(COVID-19 
positive) 

2 2 

CT-4 – 
Critical 
(COVID-19 
positive) 

 

 

II.2. Model Architecture 

 
Figure 2: Schematic of deep learning architecture used in the study. Black numbers 
represent the feature shape of each layer prior to the flattening operation. Red numbers 
represent the number of features at each layer. 

The model used in this study was a classification style convolutional neural network (CNN) 
model28-31, with specifics shown in Figure 2. The input shape was set to 512 x 512 x 128. In total, 
there are 5 resolution levels of convolutions and 4 downsampling operations prior to the flattening 
operation. The downsampling size also varied each time, and was set as (4,4,4), (4,4,2), (4,4,2), 
and (2,2,2), respectively. In total, this converts the data shape from 512 x 512 x 128 to 4 x 4 x 4. 
At each resolution level, a series of operations consisting of Convolution, Rectified Linear Unit 
activation (ReLU), Group Normalization32, and DropBlock33 is applied twice, consecutively.  The 
convolution kernel size varied at each resolution level: (3,3,3), (5,5,5), (5,5,3), (5,5,3), and (3,3,3), 
respectively. The number of filters, indicated by the red numbers in Figure 2, at each convolution 
started at eight, and doubled after each downsampling operation. After these operations, the 
feature data are flattened into a single vector of length 8192. Then, a series of operations 
consisting of fully connected calculations, ReLU, Group Normalization, and Dropout34 follows. 
This is performed at total of four times, calculating 1024 features each time. Then, one more full 
connection is applied to reduce the data into two outputs, and a softmax operation is applied. 

 



III.3. Training and Data Augmentation 

In total, nine models were trained in this study using the training and validation data outlined in 
Section III.1. and were split into two categories: 1) single dataset training and 2) multiple dataset 
training. We trained three models on a single dataset, one each on the UTSW, CC-CCII, and the 
COVID-CTset datasets. No model was trained on the MosMedData by itself, since this dataset 
does not have any negative labels. For multiple-dataset training, we trained 6 models with 
different combinations of datasets: 1) UTSW + CC-CCII, 2) UTSW + COVID-CTset, 3) CC-CCII 
+ COVID-CTset, 4) UTSW + CC-CCII + COVID-CTset, 5) CC-CCII + COVID-CTset + 
MosMedData, and 6) UTSW + CC-CCII + COVID-CTset + MosMedData. 

Some additional operations were applied to format and augment the CT data for model training. 
For CT data with less than 128 slices, slices of zeros were padded onto the CT slices until the 
total data volume had 128 slices. The number of slices superior and inferior to the CT data was 
uniformly and randomly decided at each iteration. For data with more than 128 slices, a random 
continuous volume of 128 slices was selected. The data were then normalized in one of two ways: 
1) from 0 to 1, or 2) from 0 to 𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

2𝑛𝑛
, where 𝑛𝑛 is the smallest integer possible while keeping 2𝑛𝑛 

larger than the maximum value in the CT volume. The normalization method was randomly 
chosen with a 50% chance during each training iteration. An additional step was applied to decide, 
at a 50% chance, whether this data would be fed into the model for training, or if additional data 
augmentation would be applied. If yes to additional data augmentation, then the function randomly 
flipped, transposed, rotated, or scaled the data. For the flip augmentation, there was a 50% 
chance it would individually apply a flip to each axis (row, column, slice). For the transpose 
augmentation, there was a 50% chance it would transpose the row and column of the data (no 
transpose operation was ever applied using the slice dimension). For the rotate augmentation, a 
random integer, {0,1,2,3}, was generated and multiplied against 90° to determine the rotation 
angle, then applied only on the row and column dimensions. For the scale augmentation, there 
was a 50% chance that a scaling factor was applied, and the scale was a uniform random number 
from 0 to 1. 

Each model trained for a total of 250000 iterations, using the Adam optimizer35 with a learning 
rate of 1 × 10−5. To prevent overfitting on the training data, the accuracy was evaluated on the 
validation data every 500 iterations, and the instance of the model with the highest validation 
accuracy was saved as the final model for evaluation. The models were trained using NVIDIA 
V100 GPUs with 24 GB of memory. 

 

III.4. Evaluation 

All nine of the trained models were evaluated on the test data of each dataset. For volumes with 
less than 128 slices, zero padding on the slices was evenly applied in the superior and inferior 
directions, to keep the data centered. For volumes greater than 128 slices, a sliding window 
technique was applied across the volume and the model made multiple predictions. The number 
of slices in a patch was 128 and the stride size was 32 slices. The prediction with the highest 
COVID-19 probability was taken as the model’s final prediction. 

A threshold was selected based on maximizing the prediction accuracy on the validation data and 
applied to the testing set. In the cases where the “optimal” threshold was a trivial value (e.g., 
threshold = 0 for the MosMedData, which only has positive labels), we took the argmax of the 
output as the prediction instead. The true positives (𝑇𝑇𝑇𝑇), true negatives (𝑇𝑇𝑇𝑇), false positives (𝐹𝐹𝐹𝐹), 



and false negatives (𝐹𝐹𝐹𝐹) were counted, and a normalized confusion matrix is generated for each 
dataset. Averaged confusion matrices were calculated with and without the MosMedData. An 
evenly weighted average was chosen. 

Receiver operating characteristic (ROC) curves were calculated on the test data by varying the 
positive predictive threshold from 0 to 1, at 0.01 intervals. The area under the curve (AUC) was 
calculated to determine the overall performance of each model on each dataset. The 
MosMedData was excluded from the ROC and AUC analysis, since it is missing negative labels. 

 

III. Results 
Each model took about five days on average to train on a GPU. In total, for nine models, this is 
equivalent to 45 GPU-days of training. Each model prediction takes an average of 0.53 seconds, 
which makes it very useful for near real-time application. 

 
Figure 3: Confusion matrices on the test data for each of the models trained on a single 
dataset. Each row represents the datasets that the model was trained on, and each column 
represents the datasets that the model was evaluated on. Note that MosMedData does not 
have any negative label data. The labeling threshold used for each model is indicated on 
the lower left of each confusion matrix (𝒕𝒕 = #); this threshold was fine-tuned from the 
validation data to maximize the trace of the confusion matrix for each respective category. 
𝒕𝒕 =  𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 indicates that the argmax of the model output was used to determine whether 
the prediction was positive or negative. 

The single dataset models’ predictive accuracy � 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

� on the test dataset is displayed in 
Figure 3. Overall, each model performed best on the dataset that it trained on, with an accuracy 
as high as 0.97 for the CC-CCII model evaluated on the CC-CCII data. The model that performed 
the worst on its own dataset was COVID-CTset, with an accuracy of 0.86. The UTSW model had 
an accuracy of 0.87 on its own dataset. Since the test data were held out of the training and 
validation phase, it is a strong indicator that the model did not overfit to its specific training data. 
However, the models performed much more poorly when evaluated on a dataset they had not 



seen before, which signifies that the model did not generalize well to the new dataset type. The 
worst performance was the CC-CCII model evaluated on the UTSW dataset, which had an 
accuracy of 0.47. All three models had poor performance on the MosMedData dataset and 
classified the majority of the patient cases as negative.  

 
Figure 4: Confusion matrices on the test data for each of the models trained on multiple 
datasets. Each row represents the datasets that the model was trained on, and each 
column represents the datasets that the model was evaluated on. The labeling threshold 
used for each model is indicated on the lower left of each confusion matrix (𝒕𝒕 = #). 𝒕𝒕 =
 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 indicates that the argmax of the model output was used to determine whether the 
prediction was positive or negative. 

Figure 4 shows the confusion matrices of the performance of models trained on multiple datasets 
against the test data. The multiple dataset model that had the best accuracy when evaluated on 
the UTSW test set was the UTSW + CC-CCII model, with 0.93 accuracy. When evaluating on the 
CC-CCII test set, there was a tie for best accuracy 0.96 between the UTSW + CC-CCII + COVID-
CTset and the UTSW + CC-CCII models. When evaluating on the COVID-CTset, the UTSW + 
COVID-CTset performed best, with a 0.94 accuracy. The best multiple-dataset models 
outperformed their single-dataset counterparts with regards to accuracy. However, these models 



still had poor accuracy when evaluated on a test dataset they have not seen before. For example, 
the model trained with the UTSW and COVID-CTset together had improved accuracies to 0.91 
and 0.94 when evaluated on the test sets of the UTSW and COVID-CTset datasets, respectively. 
However, when evaluated on the CC-CCII dataset, the accuracy was 0.57. Including the 
MosMedData in the model training improved the total average performance but did not improve 
the performance when evaluating models on the individual UTSW, CC-CCII, and COVID-CTset 
datasets.  

 

Figure 5: ROC curves on the test data for the models trained on single datasets. Each row 
represents the datasets that the model was trained on, and each column represents the 
datasets that the model was evaluated on. 

Figure 5 shows the ROC curves of the single-dataset models. The models, when evaluated on 
the same dataset that they trained on, showed good AUCs of 0.826 (UTSW), 0.988 (CC-CCII), 
and 0.873 (COVID-CTset). The models performed considerably worse when evaluated on 
different datasets, with AUCs ranging from 0.405 to 0.570, which is close to just random guessing 
(i.e., AUC=0.5). The ROC curves of the multiple-dataset models are shown in Figure 6. For each 
dataset—UTSW, CC-CCII, and COVID-CTset—the best performing models were the UTSW + 
COVID-CTset (AUC = 0.937), the UTSW + CC-CCII + COVID-CTset (AUC = 0.989), and the 
UTSW + COVID-CTset (AUC = 0.926) models, respectively. Since the test data were held entirely 
separate from the model development process, and used only for evaluation, this shows once 
again that the models did not overfit to their own training data. Similar to the single-dataset models, 



the multiple-dataset models also performed poorly when predicting on datasets they had never 
seen before, with AUCs ranging from 0.380 to 0.540. 

 



Figure 6: ROC Curves on the test data for the models that trained on multiple datasets. 
Each row represents the datasets that the model was trained on, and each column 
represents the datasets that the model was evaluated on. 

IV. Discussion 
In this study we demonstrate that our DL models can correctly identify patients that are COVID-
19–positive with high accuracy, but only when the model was trained on the same datasets that 
it was tested on. Otherwise, the performance is poor—close to random guessing—which indicates 
that the model cannot easily generalize to an entirely new dataset distribution that it has never 
seen before for COVID-19 classification. Several data augmentation techniques were applied 
during training to prevent overfitting on the test set. In addition, the weights of the model that 
performed the best on the validation data with regards to accuracy were used as the final model. 
Dropout and DropBlock regularization were added to further prevent the model from overfitting. 

We additionally observed that certain combined dataset models performed best for particular 
datasets in detecting patients who are positive for COVID-19. For example, we found that the 
highest performing model in the dataset from UTSW dataset was obtained when the training step 
combined UTSW and COVID-CTset datasets. This may have occurred due to the relatively low 
sample count in the UTSW dataset (73 positive, 170 negative patients for training); therefore, 
adding  data samples from COVID-CTset improved with DL-model’s AUC from 0.826 to 0.937 on 
the UTSW dataset. However, adding more data from different distributions into the training did 
not always monotonically improve the model's performance. For example, adding the CC-CCII 
data for training did not improve the model performance, with the AUC of 0.920 for the UTSW 
dataset. Adding MosMedData into the training lowered the performance of the model on the other 
three datasets. This is likely because the original intent of MosMedData was to train a model to 
categorize the severity of COVID-19 into five classes and, therefore lacked negative labels. 
Without definitive negative labels, our models likely learned simply to identify the data source as 
MosMedData and compromised some of their learning capacity and performance to use the 
relevant imaging features for the predictions. This does serve as an important lesson in data 
collection: datasets from a particular healthcare center or region should be fully representative of 
the task at hand to be used in training. Simply collecting COVID-19–positive patients from one 
source and negative patients from a different source is likely to introduce an uncorrectable bias 
during training that led to poor model performance.  

Although this study did not fully explore possible techniques to improve robustness and prevent 
overfitting, it may serve as a baseline for future model generalization studies that use medical 
data for the clinical implementation of COVID-19–related classification models. We will continue 
to explore the limits of model generalization with respect to improving the algorithm and to the 
intra- and inter-source data variability, regarding the identification of COVID-19–positive patients 
by their medical data. As a whole, the deep learning models achieved high performance on the 
unseen test set from the same distribution that they were trained on, which indicates that we did 
not have typical overfitting problem with the training data. The low performance on datasets that 
the models had never seen before may actually be an indicator that the problem is not in the 
approach to initial algorithm development—the problem may be the transfer and deployment of 
the algorithm to a new clinical setting. Creating a globally generalizable algorithm is a tall order 
when people around the world have vastly different demographics and data collection protocols. 
With limited data and learning time, these AI algorithms are bound to fail when they encounter a 
unique data distribution they have never seen before. This results underscore the limited 
versatility of AI algorithms which may hamper widespread adoption of AI algorithms for automated 



diagnosis of radiology images. This is in contrast to radiologists who in general can easily adapt 
to new clinical practices quickly. Perhaps we need to recalibrate our mindset in regards to the 
expectation for these AI algorithms—we should expect that these AI algorithms will always need 
to be fine-tuned to the local distribution when implemented and deployed in a specific clinical 
setting, then need to be retuned over time as distributions inevitably shift, either through 
demographic shifts or the advancement of new treatment technologies. Transfer learning and 
continuous learning techniques36 are an active field of research, and may become critical 
components to rapidly transferring, deploying, and maintaining an AI model into the clinic.  

AI tools designed for automatic identification of diseases on CT datasets, such as COVID-19, will 
only succeed if they can prove their robustness against a wide array of patient populations, scan 
protocols, and image quality. Notwithstanding, they hold the promise of becoming a powerful 
resource for identifying diseases where time to detection is a critical variable. In the case of 
COVID-19, it is well known that many infections are asymptomatic, of which up to 54% will present 
abnormalities on chest CT37. Thus, COVID-19 can be incidentally found on routine imaging. 
Timely identification of incidental cases of COVID-19 on chest CT by AI tools could lead to 
adequate prioritization of scans for reporting, resulting in prompt initiation of disease tracking and 
control measures. Moreover, the model architecture developed in this work can also serve as a 
template for similar tools tailored for detecting other clinical conditions.  

 

V. Conclusion 
The deep learning models were capable of identifying COVID-19–positive patients when the 
testing data was in the same dataset as the training data, whether the model was trained on a 
single dataset or on multiple datasets. However, we found poor performance, close to random 
guessing, when models were evaluated on datasets that they had never seen. This is likely due 
to different factors, such as patient demographics, image acquisition methods/protocols, or 
diagnostic methods, causing a data shift between different countries’ data. This lack of 
generalization for the identification of COVID-19–positive patients may not necessarily mean that 
the models were trained poorly, but rather the distribution of the training data may be too different 
from the evaluation data. Transfer learning and continuous learning may become imperative tools 
for tuning and deploying a model in a new clinical setting. 
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