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Abstract

In this study, we formulate a mathematical model incorporating age specific transmission dynamics of
COVID-19 to evaluate the role of vaccination and treatment strategies in reducing the size of COVID-19
burden. Initially, we establish the positivity and boundedness of the solutions of the model and calculate the
basic reproduction number. We then formulate an optimal control problem with vaccination and treatment
as control variables. Optimal vaccination and treatment policies are analysed for different values of the weight
constant associated with the cost of vaccination and different transmissibility levels. Findings from these
suggested that the combined strategies(vaccination and treatment) worked best in minimizing the infection
and disease induced mortality. In order to reduce COVID-19 infection and COVID-19 induced deaths to
maximum, it was observed that optimal control strategy should be prioritized to population with age greater
than 40 years. Not much difference was found between individual strategies and combined strategies in case
of mild epidemic (R0 ∈ (0, 2)). For higher values of R0(R0 ∈ (2, 10)) the combined strategies was found
to be best in terms of minimizing the overall infection. The infection curves varying the efficacies of the
vaccines were also analysed and it was found that higher efficacy of the vaccine resulted in lesser number of
infection and COVID induced death.

1 Introduction

Mathematical modeling of infectious diseases such as COVID-19, influenza, dengue, HIV/AIDS etc. is one of the
most important research areas today. Mathematical epidemiology has contributed to a better understanding
of the dynamical behavior of these infectious diseases, its impacts, and possible future predictions about its
spreading. Mathematical models are used in comparing, planning, implementing, evaluating, and optimizing
various detection, prevention, therapy, and control programs. COVID-19 is one such contagious respiratory and
vascular disease that has shaken the world today. It is caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). On 30 january it was declared as a Public Health Emergency of International Concern. As
of latest statistics(on 24 January 2021) of COVDI-19, around 96.2 million cases has been reported and around
2 million have died worldwide. Several mathematical models has been developed to understand the dynamics
of the disease. In [6] a basic within host model is developed to determine the crucial inflammatory mediators
and the role of combined drug therapy in the treatment of COVID-19. A SAIU compartmental mathematical
model that explains the transmission dynamics of COVID-19 is developed in [23]. The role of some of the
control policies such as treatment, quarantine, isolation, screening, etc. are also applied to control the spread
of infectious diseases [9, 18, 3]. COVID-19 has caused the most severe health issues for adults over the age of
60 with particularly fatal results for those 80 years and older. This is due to the number of underlying health
conditions present in older population [1]. A mathematical model for estimating the age-specific transmissibility
of a novel coronavirus is developed in [27]. In this study the age age-specific SEIARW model was fitted with the
reported data well by dividing the population into four age groups and the results from this study suggested
that the highest transmissibility occurred from age group 1− 14 to 15− 44.

One of the most effective method to prevent any infectious disease is vaccination. Implementation of vaccina-
tion program is estimated to prevent approximately 2-3 million deaths each year [24]. With several stakeholders
working together across the globe some of the countries are successful in producing COVID-19 vaccines today.
The approved vaccines for COVID-19 today includes Pfizer with 95 % efficacy, Moderna with 94 % efficacy,
and AstraZeneca-oxford with 70 % efficacy. Drug Controller General of India (DCGI), the country’s national
drug regulator, approved two coronavirus vaccines for restricted emergency use — Serum Institute of India’s
Covishield (the Indian variant of the AZD1222 vaccine developed by Oxford University and AstraZeneca) and
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Bharat Biotech’s Covaxin [2]. Several mathematical models are developed to study the role of vaccination and
treatments in reducing the disease burden. In [5] a mathematical model is used to compare five age-stratified
prioritization strategies. A highly effective transmission-blocking vaccine prioritized to adults ages 20-49 years
was found to minimize the cumulative incidence, whereas mortality and years of life lost were minimized in most
scenarios when the vaccine was prioritized to adults over 60 years old. Reports from Israel suggested that one
dose of Pfizer vaccine could be less effective than expected [19]. A two-dose regimen of BNT162b2 conferred 95%
protection against Covid-19 in persons 16 years of age or older. Safety over a median of 2 months was similar to
that of other viral vaccines [22]. The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness,
including severe disease [4]. The combination vaccines for protection against multiple diseases began with the
combination of individual diphtheria, tetanus, and pertussis (DTP) vaccines into a single product; this combined
vaccine was first to be used to vaccinate infants and children in 1948. Over the years we have seen the addition
of other vaccines to the combination and the replacement of components to improve its reactogenicity profile
[25]. The addition of inactivated polio, Haemophilus influenzae, and hepatitis B vaccines into the combination
has facilitated the introduction of these vaccines into recommended immunization schedules by reducing the
number of injections required and has therefore increased immunization compliance [25].

To reflect the real behavior of some infectious diseases and to make models more realistic, many researchers
have proposed and analyzed more realistic models including delays to model different mechanisms in the dy-
namics of epidemics like latent period, temporary immunity and length of infection [15, 26]. An optimal control
problem with time delay in both the state variable and control variable is studied in [11].

Motivated by the above, in this study, we consider a nine compartment age structured model to study the
role of individual vaccines, combination vaccines and treatment in reducing the COVID-19 infection. In the
model we incorporate time delay in both the control and state variables.

The paper is organised as follows: In section 2 we formulate a mathematical model explaining the details
of the parameters and variables used and establish the positivity and boundedness of the solutions. In section
3 we formulate an optimal control problem to evaluate the role of vaccination and treatment in reducing the
cumulative infection and disease induced mortality. Numerical simulation is presented in section 4 followed by
discussion and conclusion in section 5.
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2 Model Formulation

Various mathematical models has been developed and studied to understand the dynamics of COVID-19 and
design optimal control strategies to control an epidemic. In this work we formulate an optimal control prob-
lem with age specific transmission dynamics of COVID-19. The total population in the model is divided into
different compartments such as susceptible(Si), vaccinated but not protected(Vi), ineffectively vaccinated(Fi),
Protected(Pi), exposed(Ei), infected(Ii), hospitalized(Ji), recovered(Ri) and deaths(Di) for i = 1, 2. We con-
sider two age groups here, the first between 0-40 years and second group with age greater than 40 years. At
any point in time we assume that the individuals will be in one of these compartments. When susceptible indi-
viduals in age group i come in close contact with the infected or hospitalized they become exposed to the virus
at rates βij where, βij is the transmission rate between age groups i and j. Exposed individuals Ei progress
to the infectious class Ii at the rate k (where 1/k is the mean latent period). The term αie

−γτ1 gives the rate
at which infected are hospitalized. Here τ1 represents the delay in hospitalization and with increasing value of
delay or γ the rate of movement to Ji compartment is less [21], d1i and γ are the disease induced death rate
and recovery rate of the infected individuals. Hospitalized individuals either recover at the constant rate γ or
die at the age-specific rate d2i .

We employ time-dependent (age-specific) control functions to measure the effectiveness of age-specific vac-
cination and treatment policies aimed at minimizing the number of infected individuals during the pandemic.
The control functions µ1i(t) and µ2i(t) determine the age-specific vaccination rates of susceptible individuals
(Si) per unit of time for each age group i. We assume that the suceptibles are given both the vaccines together
at the same time and only those individuals who were vaccinated at time (t− τ) will now move to Vi, Fi or Pi
compartment. The control variables µ3i, µ4i represents the age specific treatment rates for infected and hospi-
talized population respectively. To make model realistic we assume that there is a time lag between treatment
and recovery represented by τ2 and τ3 for infected and hospitalized population respectively. The dynamic model
with age-specific controls is described by the following system of nonlinear differential equations:

dSi
dt

= ωi −
2∑
j=1

βij(Ij + Jj)Si − µ1i(t− τ)Si(t− τ)− µ2i(t− τ)Si(t− τ)− µSi (1)

dVi
dt

= ε1iµ1i(t− τ)Si(t− τ) + γ1iµ2i(t− τ)Si(t− τ)−
2∑
j=1

βij(Ij + Jj)Vi − µVi (2)

dFi
dt

= ε2iµ1i(t− τ)Si(t− τ) + γ2iµ2i(t− τ)Si(t− τ)−
2∑
j=1

βij(Ij + Jj)Fi − µFi (3)

dPi
dt

= (1− ε1i − ε2i)µ1i(t− τ)Si(t− τ) + (1− γ1i − γ2i)µ2i(t− τ)Si(t− τ)− µPi (4)

dEi
dt

=

2∑
j=1

βij(Ij + Jj)

(
Si + Vi + Fi

)
− kEi − µEi (5)

dIi
dt

= kEi − d1iIi − αie−γτ1Ii(t− τ1)− µ3i(t− τ2)Ii(t− τ2)− γIi (6)

dJi
dt

= αie
−γτ1Ii(t− τ1)− d2iJi − µ4i(t− τ3)Ji(t− τ3) (7)

dRi
dt

= γIi + µ4i(t− τ3)Ji(t− τ3) + µ3i(t− τ2)Ii(t− τ2)− µRi (8)

dDi

dt
= d1iIi + d2iJi − µD(i) (9)

OBJECTIVES OF THE PROPOSED STUDY

1. To study and compare the dynamics of cumulative infection, hospitalized and mortality with and without
the controls.

2. To determine which age groups should be prioritized for COVID pandemic vaccination.

3. To study and compare the dynamics of infected and hospitalized population with varying efficacies of the
vaccine.

4. To study and compare the dynamics of infected and death population with varying cost of implementation
of vaccination strategy.
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Table 1

Symbols Biological Meaning

Si Suceptible Population

Vi effectively Vaccinated but not protected

Fi ineffectively vaccinated

Pi Protected Population

Ei Exposed Population

Ii infected Population

Ji hospitalized Population

Ri recovered Population

ωi Rate of entries in each groups

βij transmission rates among different age groups

µ1i rate of decrease in suceptibles due to first vaccine

µ2i rate of decrease in suceptibles due to second vaccine

µ Natural death rate

d11 disease induced death rates for first infected population

d12 death for second infected group

d21 disease induced death rates for first group hospitailized population

d22 disease induced death rates for second group hospitailized population

k infection rates

αi rates at which infected are hospitalized

µ3i recovery rate of infected due to treatment

µ4i recovery rate of hospitalized due to treatment

ε1i, ε2i efficacy of first vaccine

γ1i, γ2i efficacy of second vaccine

γ natural recovery rate
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Positivity and Boundedness
For any mathematical model it is fundamental to show that the system of equations considered are positive and
has bounded solutions. We now show that if the initial conditions of the system (3.1)-(3.9) are positive, then
the solution remain positive for any future time. Using the equations (3.1)-(3.9), we get,

dSi
dt

∣∣∣∣
Si=0

≥ 0,
dVi
dt

∣∣∣∣
Vi=0

= ε1iµ1iSi + γ1iµ2iSi ≥ 0,

dFi
dt

∣∣∣∣
Fi=0

= ε2iµ1iSi + γ2iµ2iSi ≥ 0.
dDi

dt
= d1iIi + d2iJi

∣∣∣∣
Ji=0

≥ 0

dEi
dt

∣∣∣∣
Ei=0

=

2∑
j=1

βij(Ij + Jj)

(
Si + Vi + Fi

)
≥ 0.

dIi
dt

∣∣∣∣
Ii=0

= kEi ≥ 0.

dJi
dt

∣∣∣∣
Ji=0

= αie
−γτ1Ii ≥ 0.

dRi
dt

∣∣∣∣
Ri=0

= γIi + µ4iJi + µ3iIi ≥ 0.

dPi
dt

∣∣∣∣
Pi=0

= (1− ε1i − ε2i)µ1iSi + (1− γ1i − γ2i)µ2iSi ≥ 0.

Thus all the above rates are non-negative on the bounding planes (given by Si = 0, Vi = 0, Pi = 0,Fi = 0,Ei =
0,Ii = 0,Ji = 0,Ri = 0,Di = 0) of the non-negative region of the real space. So, if a solution begins in the interior
of this region, it will remain inside it throughout time t. This happens because the direction of the vector field
is always in the inward direction on the bounding planes as indicated by the above inequalities. Hence, we
conclude that all the solutions of the the system (3.1)-(3.9) remain positive for any time t > 0 provided that
the initial conditions are positive. Next we will show that the solution is bounded with each of the bounded
control variables.

Boundedness: Let Ni(t) = Si(t) + Vi(t) + Fi(t) + Pi + Ei + Ii + Ji +Ri +Di

Now,

dNi
dt

=
dSi
dt

+
dVi
dt

+
dFi
dt

+
dPi
dt

+
dEi
dt

+
dIi
dt

+
dJi
dt

+
dRi
dt

+
dDi

dt

=

(
ωi + µ(Ii + Ji)

)
− µN(t)

≤ 0

with the assumption that

(
ωi + µ(Ii + Ji)

)
≤ µN(t). This implies that Ni(t) = C, where C is a constant

Thus we have shown that the system (2.1)-(2.9) is positive and bounded for each bounded controls considerd.
Therefore the biologically feasible region is given by the following set,

Ω =

{(
Si(t), Vi(t), Pi(t), Fi(t), Ei(t), Ii(t), Ji(t), Ri(t), Di(t)

)
: Ni(t) ≤ C, t ≥ 0

}

2.1 Calculation of Basic Reproduction Number R0

The basic reproduction number which is the average number of secondary cases produced per primary case is
calculated using the next generation matrix method described in [8] at infection free equilibrium. Our system
(2.1)-(2.9) has four infected states (E1, E2, I1, I2). In order to see the behaviour of the optimal strategies
with varying transmissibility we calculate the basic reproduction number. Calculating the jacobian matrix at
infection free equilibrium E0(which has only susceptible component) we have,
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J(E0) =


−k − µ 0 β11S

∗
1 β12S

∗
1

0 −k − µ β11S
∗
2 β12S

∗
2

k 0 −d11 − γ − α1e
−γτ1 0

0 k 0 −d12 − γ − α2e
−γτ1


or,

J(E0) = F + V

where, F describes transmission of new infection and V describes changes in the state including removal by
death or recovery rate.

Matrix F and V are given as,

F =


0 0 β11S

∗
1 β12S

∗
1

0 0 β11S
∗
2 β12S

∗
2

0 0 0 0

0 0 0 0



V =


−k − µ 0 0 0

0 −k − µ 0 0

k 0 −d11 − γ − α1e
−γτ1 0

0 k 0 −d12 − γ − α2e
−γτ1


Calculating the inverse of V we get,

V −1 =



1
−k−µ 0 0 0

0 1
−k−µ 0 0

−k
(k+µ)(d11+γ+α1e−γτ1 )

0 1
−d11−γ−α1e−γτ1

0

0 −k
(k+µ)(d11+γ+α1e−γτ1 )

0 −d12 − γ − α2e
−γτ1


Now

−FV −1 =



β11kS
∗
1

p
β12kS

∗
1

q
β11S

∗
1

p
β12S

∗
1

(k+µ)(q

β11kS
∗
2

p
β12kS

∗
2

q
β11S

∗
2

p
β12S

∗
2

q

0 0 0 0

0 0 0 0


where

p = (k + µ)(d11 + γ + α1e
−γτ1)

q = (k + µ)(d12 + γ + α2e
−γτ1)

Since the last two rows of matrix −FV −1 has all zeros as discussed in [8] we define an auxillary matrix and
new matrix K as,

E =


1 0

0 1

0 0

0 0



K =

β11kS
∗
1

p
β12kS

∗
1

q

β11kS
∗
2

p
β12kS

∗
2

q


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Therefore the basic reproduction number which is defined as the spectral radius of K is given by,

R0 =
β11kS

∗
1

(k + µ)(d11 + γ + α1e−γτ1)
+

β12kS
∗
2

(k + µ)(d12 + γ + α2e−γτ1)

3 Optimal Control Problem

Now we frame an optimal control problem with vaccination and treatment as controls. Our aim is to study
the role and efficacies of these controls and design an optimal control policy that minimizes that infection and
disease caused mortality. The controls that we consider are as follows:

1. Vaccination: Vaccination is the most effective method of preventing infectious diseases. The susceptible
sub population are given vaccine to stimulates the body’s immune system to recognize the agent as a threat
and destroy it, thereby preventing transmission of the disease among susceptible individual. Vaccination also
further helps in recognizing and destroying any of the microorganisms associated with that agent that it may
encounter in the future. The first control that we consider here is vaccination. We assume that combination of
vaccines is given to an infected individual and denote it by variable µ1i (first vaccine) and µ2i (second vaccine)
for two age groups respectively.

2. Treatment: Infected and Hospitalized sub-population are given treatment to reduce the burden of
disease and control the spread of infection. Studies in [6] suggested the combined use of immunomodulators and
antiviral agents as a best treatment strategy to reduce the burden of COVID-19. Therefore the second control
that we consider here is treatments to infected and hospitalized population. These treatments could be either
immunomodelators such as INF, to boost the immune response or anti viral agents like remdesivir, arbidol etc.
that inhibits the viral replication. We denote this control variable by µ3i and µ4i.

Let U1 = (µ11, µ12), U2 = (µ21, µ22), U3 = (µ31, µ32) and U4 = (µ41, µ42)

The set of all admissible controls is given by
U = {(U1, U2, U3, U4) : U1 ∈ [0, U1max], U2 ∈ [0, U2max], U3 ∈ [0, U3max], U4 ∈ [0, U4max], t ∈ [0, T ]}

In order to reduce the complexity of the problem here we choose to model the control efforts via a linear
combination of the quadratic terms. Also when the objective function is quadratic with respect to the control,
differential equations arising from optimization have a known solution. Other functional forms sometimes lead
to systems of differential equations that are difficult to solve ([10], [16]). Based on these we now propose and
define the optimal control problem with the goal to reduce the cost functional defines as follows,

J(U1, U2, U3, U4) =
∫ T
0

(
I1(t) + I2(t) +A1(µ11(t)2 + µ12(t)2) +A2(µ21(t)2 + µ22(t)2)

+A3(µ31(t)2 + µ32(t)2) +A4(µ41(t)2 + µ42(t)2)

)
dt (3)

such that u =

(
µ11(t), µ12(t), µ21(t), µ22(t), µ31(t), µ32(t), µ41(t), µ42(t)

)
∈ U

subject to the system
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dSi
dt

= ωi −
2∑
j=1

βij(Ij + Jj)Si − µ1i(t− τ)Si(t− τ)− µ2i(t− τ)Si(t− τ)− µSi (10)

dVi
dt

= ε1iµ1i(t− τ)Si(t− τ) + γ1iµ2i(t− τ)Si(t− τ)−
2∑
j=1

βij(Ij + Jj)Vi − µVi (11)

dFi
dt

= ε2iµ1i(t− τ)Si(t− τ) + γ2iµ2i(t− τ)Si(t− τ)−
2∑
j=1

βij(Ij + Jj)Fi − µFi (12)

dPi
dt

= (1− ε1i − ε2i)µ1i(t− τ)Si(t− τ) + (1− γ1i − γ2i)µ2i(t− τ)Si(t− τ)− µPi (13)

dEi
dt

=

2∑
j=1

βij(Ij + Jj)

(
Si + Vi + Fi

)
− kEi − µEi (14)

dIi
dt

= kEi − d1iIi − αie−γτ1Ii(t− τ1)− µ3i(t− τ2)Ii(t− τ2)− γIi (15)

dJi
dt

= αie
−γτ1Ii(t− τ1)− d2iJi − µ4i(t− τ3)Ji(t− τ3) (16)

dRi
dt

= γIi + µ4i(t− τ3)Ji(t− τ3) + µ3i(t− τ2)Ii(t− τ2)− µRi (17)

dDi

dt
= d1iIi + d2iJi − µDi (18)

Here, the cost function (3) represents the number of total infected cells, and the overall cost for the im-
plementation vaccines and treatments. Effectively, our aim is to minimize the total infected population and

the overall cost. The integrand of the cost function (3), denoted by L(S, I, V, U1, U2, U3) =

(
I1(t) + I2(t) +

A1(µ11(t)2 + µ12(t)2) + A2(µ21(t)2 + µ22(t)2) + A3(µ31(t)2 + µ32(t)2) + A4(µ41(t)2 + µ42(t)2)

)
is called the

Lagrangian or the running cost.
The admissible solution set for the Optimal Control Problem (3)-(3.9) is given by

Ω = {(Si, Vi, Fi, Pi, Ei, Ii, Ji, Ri, Ei, U1, U2, U3, U4) |Si, Vi, Fi, Pi, Ei, Ii, Ji, Ri, Di satisfy(3.1)− (3.9)}

for all u ∈ U
EXISTENCE OF OPTIMAL CONTROL

We will show the existence of optimal control functions that minimize the cost functions within a finite time
span [0, T ] showing that we satisfy the conditions stated in Theorem 4.1 of [12].

Theorem 1. There exists a 8-tuple of optimal controls

(
µ∗11(t), µ∗12(t), µ∗21(t), µ∗22(t), µ∗31(t), µ∗32(t),

µ∗41(t), µ∗42(t)

)
in the set of admissible controls U such that the cost functional is minimized i.e.,

J [U∗1 , U
∗
2 , U

∗
3 , U

∗
4 ] = min

(U∗
1 ,U

∗
2 ,U

∗
3 ,U

∗
4 )∈U

{
J [U∗1 , U

∗
2 , U

∗
3 , U

∗
4 ]

}
corresponding to the optimal control problem (3)-(3.9).

Proof. In order to show the existence of optimal control functions, we will show that the following conditions
are satisfied :

1. The solution set for the system (3.1)-(3.9) along with bounded controls must be non-empty, i.e., Ω 6= φ.

2. U is closed and convex and system should be expressed linearly in terms of the control variables with
coefficients that are functions of time and state variables.

3. The Lagrangian L should be convex on U and L(Si, Vi, Fi, Pi, Ei, Ii, Ji, Ri, Di) ≥ g(U1, U2, U3, U4), where
g(U1, U2, U3, U4) is a continuous function of control variables such that |(U1, U2, U3, U4)|−1 g(U1, U2, U3, U4)→
∞ whenever |(U1, U2, U3, U4)| → ∞, where |.| is an l2(0, T ) norm.
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Now we will show that each of the conditions are satisfied :
1. From Positivity and boundedness of solutions of the system (3.1)-(3.9), all solutions are bounded for each

bounded control variable in U . Also clearly the RHS of the system (3.1)-(3.9) is lipschitz continuous. Using
Picard-Lindelof Theorem[20], we have satisfied condition 1.

2. U is closed and convex by definition. Also, the system (3.1)-(3.9) is clearly linear with respect to controls
such that coefficients are only state variables or functions dependent on time. Hence condition 2 is satisfied.

3. Choosing g(U1, U2, U3, U4) = c(µ2
11+µ2

12+µ2
21+µ2

22+µ2
31+µ2

32+µ2
41+µ2

42) such that c = min {A1, A2, A3, A4},
we can satisfy the condition 3.

Hence there exists a control 8-tuple (µ2
11 +µ2

12 +µ2
21 +µ2

22 +µ2
31 +µ2

32 +µ2
41 +µ2

42)) ∈ U that minimizes the
cost function (3).

CHARACTERIZATION OF OPTIMAL CONTROL

We will obtain the necessary conditions for optimal control functions using the Pontryagin’s Maximum
Principle with delay in state and control variables [13] and also obtain the characteristics of the optimal controls.

The Hamiltonian for this problem is given by

H =

2∑
j=1

(
Ii +A1(µ2

1i(t) +A2µ
2
2i(t) +A3µ

2
3i(t) +A4µ

2
4i(t))

)

+

2∑
j=1

λSi
dSi
dt

+

2∑
j=1

λVi
dVi
dt

+

2∑
j=1

λFi
dFi
dt

+

2∑
j=1

λPi
dPi
dt

+

2∑
j=1

λEi
dEi
dt

+

2∑
j=1

λIi
dIi
dt

+

2∑
j=1

λJi
dJi
dt

+

2∑
j=1

λRi
dRi
dt

Here λ = (λSi ,λVi ,λFi ,λPi ,λEi ,λIi ,λJi ,λRi) is called co-state vector or adjoint vector.
Now the Canonical equations that relate the state variables to the co-state variables are given by

dλSi
dt

= −∂H
∂Si
− χ[0,T−τ ](t)

∂H(t+ τ)

∂Si(t− τ)

dλVi
dt

= −∂H
∂Vi

dλFi
dt

= −∂H
∂Fi

dλPi
dt

= −∂H
∂Pi

dλEi
dt

= − ∂H
∂Ei

dλIi
dt

= −∂H
∂Ii
− χ[0,T−τ1](t)

∂H(t+ τ1)

∂Ii(t− τ1)
− χ[0,T−τ2](t)

∂H(t+ τ2)

∂Ii(t− τ2)

dλJi
dt

= −∂H
∂Ji
− χ[0,T−τ3](t)

∂H(t+ τ3)

∂Ji(t− τ3)

dλRi
dt

= − ∂H
∂Ri

(19)

Substituting the Hamiltonian value gives the canonical system
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dλSi
dt

=

( 2∑
j=1

βij(Ij + Jj) + µ

)
λSi − χ[0,T−τ ](t)(−µ1i − µ2i)λSi(t+ τ)

− χ[0,T−τ ](t)(ε1iµ1i + γ1iµ2i)λVi(t+ τ)− χ[0,T−τ ](t)(ε2iµ1i + γ2iµ2i)λFi(t+ τ)

− χ[0,T−τ ](t)(1− ε1i − ε2i)µ1i + (1− γ1i − γ2i)µ2i)λPi(t+ τ)−
2∑
j=1

βij(Ij + Jj)λEi

dλVi
dt

=

( 2∑
j=1

βij(Ij + Jj) + µ

)
λVi −

( 2∑
j=1

βij(Ij + Jj)

)
λEi

dλFi
dt

=

( 2∑
j=1

βij(Ij + Jj) + µ

)
λFi −

( 2∑
j=1

βij(Ij + Jj)

)
λEi

dλPi
dt

= −µλPi
dλEi

dt
= (k + µ)λEi − kλIi

dλIi
dt

= −1 + (d1i + γ)λIi − γλRi +

( 2∑
j=1

βijSj(λSj − λEj )
)

+

( 2∑
j=1

βijVj(λVj − λEj )
)

+

( 2∑
j=1

βijFj(λFj − λEj )
)

+ χ[0,T−τ1](t)

(
αie
−γτ1λIi(t+ τ1)− αie−γτ1λJi

)

+ χ[0,T−τ2](t)

(
µ3i(λIi(t+ τ2)− λRi(t+ τ2))

)
dλJi
dt

= (d2i)λJi + (

2∑
j=1

βij

(
Sj(λSj − λEj ) + Vj(λVj − λEj ) + Fj(λFj − λEj )

)

+ χ[0,T−τ3](t)

(
µ4i(λJi(t+ τ3)− λRi(t+ τ3))

)
dλRi

dt
= −µλRi

along with transversality conditions λSi(T ) = 0, λVi(T ) = 0, λFi(T ) = 0, λPi(T ) = 0, λEi(T ) = 0, λIi(T ) =
0, λJi(T ) = 0, λRi(T ) = 0.

Now, to obtain the optimal controls, we will use the Hamiltonian minimization condition. Differentiating
the Hamiltonian with respect to each of the controls and solving the equations, we obtain the optimal controls
in the following. Let

xi = (1− ε1i − ε2i)S1λP1
(t+ τ), i = 1, 2

yi = (1− γ1i − γ2i)λPi(t+ τ), i = 1, 2

µ∗11 = min

{
max

{χ[0,T−τ ](t)

(
λS1(t+ τ)S1 − ε11S1λV1(t+ τ)− ε21S1λF1(t+ τ)− x1

)
2A1

, 0

}
, µ11max

}

µ∗12 = min

{
max

{χ[0,T−τ ](t)

(
λS2

(t+ τ)S2 − ε12S1λV1
(t+ τ)− ε22S2λF1

(t+ τ)− x2
)

2A1
, 0

}
, µ12max

}

µ∗2i = min

{
max

{χ[0,T−τ ](t)

(
λSi(t+ τ)S2 − γ1iS1λVi(t+ τ)− γ2iS2λFi(t+ τ)− yi

)
Si

2A2
, 0

}
, µ2imax

}

µ∗3i = min

{
max

{χ[0,T−τ2](t)

(
λIi(t+ τ2)− λRi(t+ τ2)

)
Ii

2A3
, 0

}
, µ3imax

}

µ∗4i = min

{
max

{χ[0,T−τ3](t)

(
λJi(t+ τ3)− λRi(t+ τ3)

)
Ii

2A4
, 0

}
, µ4imax

}
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4 Numerical Simulations

In this section, we perform numerical simulations to understand the age specific efficacies of vaccination and
the treatment. This is done by studying the effect of control on the dynamics of the system. Let there exist a
step size h > 0 and n > 0 such that T − t0 = nh. Let m = max(τ, τ1, τ2, τ3). For programming point of view
we consider m knots to left of t0 and right of T and we obtain the following partition:

∆ =

(
t−m = −max(τ, τ1, τ2, τ3).... < t1 < t0 = 0 < t1... < tn = tf (= T ) < .... < tn+m)

)
.

Using combination of forward and backward difference approximations,we simulate the results in matlab soft-
ware. All the parameter values and the source from which they are taken is given in table 2. Initially, we
work with the assumption that the efficacy of both the vaccine is 60 % and later varying the efficacy level
of both the vaccines we plot the the changes in the infection and disease induced mortality. For the initial
simulation we take the values of Ai, i = 1, 2, the cost associated with vaccination as 102. We also study the
effects of optimal vaccination strategies on the dynamics of the disease under different vaccination coverages.
In this context larger values of of the weights Ai mean that the cost associated with vaccination is expensive;
hence, the vaccination coverages is less for larger Ai. The values for weight constant associated with treatment
for infected and hospitalized population (Ai, i = 3, 4) are taken as 200 and 100. The cost of treatment of the
hospitalized population is taken lesser than that of treatment of infected population because it is assumed that
all the facilities are available in the hospital. We have also assumed that the disease induced death rate of
hospitalized is 100 times more than that of infected.

In simulation three control strategies are performed
A: Implementation of vaccination only strategy to control the spread of COVID-19.
B: Implementation of treatment only strategy to control the spread of COVID-19.
C: Implementation of both treatment and vaccination strategies to control the spread of COVID-19.

Table 2

Parameters Value Source

ωi 7.192 [23]

βij (0.0175,0.0341,0.0319, 0.0339) approximated from[17]

µ 0.062 [23]

d11 .000073 [7]

d12 0.0000913 [7]

d21 .0073 assumed

d22 0.00913 assumed

k 0.035 [14]

αi (0.4, 0.5) [21]

ε1i, ε2i 0.2 assumed

γ1i, γ2i 0.2 assumed

τ1 4 [21]

τ2 12 assumed

τ3 12 assumed

γ 0.07 [21]

τ 10 [11]

Ai 102 assumed (baseline scenario)

A3, A4 200, 100 assumed
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4.1 Optimal control strategy

In this section we evaluate the role of each of the control strategy (vaccination and treatment) in reducing the
COVID-19 burden for two specific age groups considered. Initially, we assume that the efficacy of both the
vaccine is 60% and in later sections, we study the effect of increasing the efficacy of vaccine on the infection and
disease induced deaths. In figure 1 we plot the proportion of infected population with time for both the age
groups under different control strategies. In figure 2 and 3 the proportion of hospitalized and disease induced
death curves are shown. From these figures we observe that the peak in the proportion of infected, hospitalized
and deaths are minimum when treatment and vaccination strategies are followed together compared to the
individual strategies alone. We also observe from figure 1 that with treatment only and combined strategy
the peak of infection is reached faster in time compared to no control and vaccination only strategy. The
implementation of optimal combined therapy leads to the reduction of approximately 50 % in the peak of
infection for population of age between 0 to 40 followed by a reduction of approximately 53 % for the second
group (> 40) years compared to no control case. The reduction in the peaks of disease induced mortality for first
and second age groups under the combined strategy are approximately 55 % and 62 % respectively compared
to no control case.
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Figure 1: (a) Proportion of Infected population for first group
(b) Proportion of Infected population for second group
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Figure 2: (a) Proportion of hospitalized population for first group
(b) Proportion of hospitalized population for second group

Now we explore the role of age specific optimal combined strategies on the cumulative infection and disease
induced mortality. In figure 4 we plot the cumulative infected and disease induced mortality considering optimal
combined strategy. Comparing the cumulative infected population in absence of controls to the cumulative
infected population with optimal control strategies on the first age group, we observe from figure 4(a) that
the reduction in the peaks of cumulative infection is approximately 21 percent. Similarly considering optimal
control strategies on second age group, we see that there is approximately 25 percent reduction in the peaks of
cumulative infection. We see that with optimal strategy reduction in the cumulative infection is higher in case
of second group. Therefore, with this observation we claim that in order to reduce the infection to maximum
optimal control strategy should be prioritized to the second age group. The cumulative disease induced mortality
is plotted in figure 4(b) and the cumulative deaths decreased maximum when optimal combined strategy is
prioritized to second group.
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Figure 3: (a) Proportion of death population for first group
(b) Proportion of death population for second group

4.2 Optimal Vaccination Strategies Under Different Vaccination Coverages

In the previous sections we had taken the baseline weight constant value related to vaccination ( Ai) as 102

for i=1,2. In this section we study the effects of optimal vaccination strategy on the dynamics of the disease
under different vaccination coverage. In the context larger values of of the weights Ai means that the cost
associated with vaccination is expensive; hence, the vaccination coverages is less for larger Ai. We assume that
for the baseline value of the weight constant the average vaccination coverages is about 60 % and as the cost of
vaccination increases the average vacination coverage reduces.

In figure 5 we simulate the effect of varying the cost associated with vaccination. As the value of weight
constant increases, the cost of implementation of vaccination increases resulting in the reduction of vaccination
rates. Due to this there is relatively higher number of infected population compared to the baseline case
(Ai = 102). From figure 5 we see that the infection increase with the increase in the value of the cost for
both the groups. There is almost 20 % and 5% increase in the infected population with the highest cost of
vaccination for second and first age group respectively. The reason for the increase is that large coverages of
optimal age-specific vaccinations yield increased reductions in the overall number of infected individuals.

4.3 Variation in Vaccination Efficacy

Here we vary the efficacies of the vaccines and see the effects of varying efficacies in the proportion of infected
and deaths. For the baseline scenario we assume that the efficacy of both the vaccine is 60 % and then we vary
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Figure 4: (a) Proportion of cumulative infection
(b) Proportion of cumulative deaths

the efficacies and see the relative changes in the proportion of infection and death with the baseline case. From
figure 6 we see that as efficacy of vaccine increases, infection starts decreasing and it decreases the maximum
with highest efficacy of the vaccine(90%). Figure 7 shows that disease induced mortality also decreases with
increasing efficacy of the vaccine for both the age group considered.
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Figure 5: Proportion of infection varying weights

4.4 The Effect of Optimal Age-Specific Vaccination Strategies Under Different
Transmissibility Levels (R0)

In this section we study the dynamics of disease and the effect of vaccination strategy with varying transmis-
sibility (R0). Since the severity of the epidemic characterized by the high epidemic peaks which is measured
by the higher values of R0, therefore we will observe the prevalence of the cumulative count of the disease by
varying the basic reproduction number. From section 2.1 the basic reproduction number is given by,

R0 =
β11kS

∗
1

(k + µ)(d11 + γ + α1e−γτ1)
+

β12kS
∗
2

(k + µ)(d12 + γ + α2e−γτ1)

With varying values of µ = u = (0.062, 0.1, 0.2) the values of R0 were found to be (7.8, 4.5, 1.9) respectively.
From figure 8 it can be observed that epidemic reaches it peak when R0 is around 2.5 with treatment only
strategy. Whereas with vaccination only strategy and combined optimal strategy the peak is reached much
faster. In figure 8 (a) we consider the efficacy of vaccine both the vaccine to be 60 % and in figure 8 (b) 90
%. varying R0 in the x-axis in the between 0 to 10, we plot the proportion of cumulative infected population
considering different control strategies for two age groups. Our findings suggest that when the epidemic is
mild (R0 ∈ (1, 1.5)), all the control strategies works equally good. But as epidemic progresses the combined
strategies(vaccination and treatment together) seems to work best in minimizing the cumulative infection.
Comparing figure 8(a,b) it is observed that with increasing efficacy of the vaccine the cumulative infection
reduces.
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Figure 6: Proportion of infection varying vaccine efficacy

5 Discussion and Conclusion

In this work, the total population was divided into 9 different compartments such as suceptibles(Si), vaccinated
but not protected(Vi), ineffectively vaccinated(Fi), Protected(Pi), exposed(Ei), infected(Ii), hospitalized(Ji),
recovered(Ri) and deaths(Di) for i=1,2. Firstly, an age specific model representing the dynamics of COVID-
19 was formulated and the positivity and boundedness of the model was established. Secondly to study the
effectiveness of the individual vaccine, combination vaccines and treatment an optimal control problem with
age specific transmission dynamics of COVID-19 was framed. After which numerical simulation are performed.
In simulation three control strategies were performed
A: Implementation of vaccination only strategy to control the spread of COVID-19.
B: Implementation of treatment only strategy to control the spread of COVID-19.
C: Implementation of both treatment and vaccination strategies to control the spread of COVID-19.

The implementation of an age specific control strategies lead to the reduction of infection, hospitalized pop-
ulation and disease induced deaths (figure 1,2,3). Compared to an individual vaccines strategy, combination
vaccine strategy worked better in minimizing the infection and disease induced deaths. However, the best pos-
sible result in minimizing the peaks of infection and disease induced deaths was achieved when both vaccination
and treatment strategies were used. This result is in similar lines to the results obtained in [6, 24].

From figures 4, it was observed that in order to reduce the cumulative infection and cumulative disease
induced deaths to maximum optimal control strategy must be prioritized to the second age group. When
the cost of implementation of vaccination increased there was relatively higher number of infected population
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Figure 7: Proportion of deaths varying vaccine efficacy

compared to the baseline case (figure 5). The reason for these could be that with increasing cost the vaccination
coverage reduces as a result of which there is increase in the number of infection. Increasing the efficacy of the
vaccine also reduces the infection and disease induced deaths (figure 6,7).

From figure 8 we observed that larger value of R0 resulted in the larger pandemic sizes because of the rapid
spread of the pandemic. When the epidemic was mild R0 ∈ (1, 1.5), all the control strategies worked equally
good but as epidemic progressed over the time the best strategy to contain the size of epidemic was found to
be the combined strategies(vaccination and treatment together).
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