
Modeling COVID-19 hospital admissions and
occupancy in the Netherlands

René Bekkera,b, Michiel uit het Broeka,c, and Ger Koolea,b
a
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Abstract

We describe the models we built for hospital admissions and occupancy of COVID-
19 patients in the Netherlands. These models were used to make short-term decisions
about transfers of patients between regions and for long-term policy making. We
motivate and describe the model we used for predicting admissions and how we use
this to make predictions on occupancy.
Keywords: Prediction; COVID-19 hospital admissions; bed occupancy levels

1 Introduction

The coronavirus has an enormous impact on our health system and today’s society as a
whole. On March 11, 2020, the World Health Organization has officially characterized
COVID-19 as a pandemic. By the end of January 2021, the number of people diagnosed
worldwide with COVID-19 crossed the 100 million mark [29], which has put a tremendous
strain on scarce hospital capacities. Specifically, the pandemic places a load on clinical
bed capacity, and in particular on Intensive Care Units (ICU’s), that is well beyond the
currently available bed capacities [4, 5]. The catastrophic situation in Lombardy, Italy, mid-
March 2020 has tragically shown the impact of the lack of health capacities [24], and the
need to manage hospital bed capacities as good as possible. In [22], the authors call upon
ICU practitioners, hospital administrators, governments, and policy makers to be prepared
early for a substantial increase in critical care capacity. Their recommendations relate to,
among others, ICU capacity and ICU staffing. More specifically, they recommend to make
plans for an increase in capacity as a result of a rapid increase in critically ill COVID-19
patients.

The aim of this paper is to present a prediction model to support plans related to
adjusting clinical bed capacities. In the Netherlands, there is a national plan in place for
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upscaling the number of (ICU) beds for COVID-19 patients. Moreover, to balance the
pressure on clinical and ICU beds over the Netherlands, patients may be relocated to dif-
ferent regions; the LCPS (Landelijk Coördinatiecentrum Patiënten Spreiding) is the Dutch
center responsible for these relocations. In both situations, regions and local hospitals
need a couple of days to modify the number of available COVID-19 beds, and thus require
occupancy predictions of a couple of days ahead.

The prediction model that we implemented consists of two steps. First, we predict
arrivals on the basis of historical data. For this, we employ a linear programming model
that is inspired by smoothing splines that incorporates weekly seasonality and requires
little data. The prediction has interpretations in terms of the day-to-day reproduction
factor. These arrival predictions, together with information about the length-of-stay (LoS)
distribution, is used in the second step to predict hospital occupancy. This second step
uses methods stemming from queueing theory, specifically from discrete-time infinite server
queues. In this paper we use publicly available data to make predictions at the national
level. The same model was and is used to make predictions at the regional level at the
LCPS.

The amount of literature on short-term predictions (in the order of days) of bed oc-
cupancy levels is limited. Recently, [10] used an ensemble of two forecasting methods for
a short-term forecast of occupied COVID-19 beds in Italy. Furthermore, [31] applied epi-
demic models for short-term ICU occupancy forecasts in Switzerland; [19] uses a similar
approach for the situation in France. The authors of [20] focus on a collection of coun-
tries and provide predictive analytic tools for excess demand in the supply chain due to
COVID-19. We refer to [12] for an overview of the transmission dynamics of the COVID-
19 pandemic. The studies above focus directly on the number of occupied beds. We
think that queueing-based insight is essential to understand the relation between arrivals
and occupancy, which the studies above are lacking. The study of [18] provides such a
queueing-theoretic foundation. They explicitly focus on bed demand due to COVID-19
and use queueing models to present scenarios for the occupancy based on different arrival
patterns of patients, that are based on different measures taken. However, the paper does
not involve short-term predictions. For a more extensive exposition of these types of queues
in health care, we refer the reader to [28].

There are also some papers focusing on short-term occupancy forecasts that is not
directly related to COVID-19. In [13], the authors use a hybrid approach of neural networks
and ARIMA models to predict hospital occupancy directly. The studies [3, 14] mainly focus
on hourly seasonality, and [16] uses a predictive occupancy database, in which the data of
each patient is registered. The focus of [7, 21] is on distinguishing patient groups; see also
[7] for additional references. We note that our approach differs from the methods used in
the papers mentioned above.

The organization of the paper is as follows. The method for predicting the arrivals is
discussed in Section 2. The LoS distribution can be found in Section 3, which is used to in
the model to predict the bed occupancy in Section 4. The prediction results can be found
in Section 5, whereas Section 6 concludes with a brief discussion on delayed care.
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2 Admissions

There are different possibilities for building a model for admissions. An obvious option
is a statistical model that uses historical values to make predictions. A disadvantage of
such a model is that trend changes cannot be predicted. Also, many classical statistical
models require a substantial number of observations in order to produce reliable predic-
tions, whereas data is typically scarce when a new pandemic arises. Furthermore, one
would assume that somehow data on positive tests could be used, and that presumably
positive tests occur before admissions, such that data on tests can be used to predict later
admissions. In Figure 1 data on admissions and positive tests (at the day of registration)
are plotted. Data comes from different publicly available sources, in this case NICE and
RIVM, as is conveniently gathered at [30]. The solid lines are smoothing splines on the
logs of the values. The red bars indicate policy changes (partial lockdowns), it took 13
and 11 days for the numbers of admissions to go down (the black bars). Surprisingly, the
number of positive tests spikes at the same days as the number of admissions. For this
reason, the number of newly registered positive tests per day cannot be used to predict
trend changes in admissions. Another reason are the substantial changes in test policy
and behavior. The green bar corresponds to one (of many) changes in test behavior; from
that day (Dec 1) on civilians without symptoms could also get a test. We see that this
led to a sharp increase in number of positive tests. Hospital admission also increased, but
at a lower pace. Other variables than number of positive tests were tried as well on their
ability to predict admissions, but they were neither useful. For these reasons we focused
on predicting admissions without external variables.

A statistical model for predicting daily admissions should have the following properties:

1. it should be smooth but at the same time allow for trend changes;

2. it should have non-negative predictions and exponential growth or decline;

3. it should model the intra-week seasonality present in the data.

For these reason we chose, inspired by smoothing splines, a model with the following
features:

1. an additive model on the logs because of the multiplicative effect of time and the
intra-week seasonality;

2. that minimizes a weighted sum of errors and second differences to have a smooth
trend;

3. that uses absolute values to reduce the impact of outliers and few trend changes,
hopefully representing the policy changes.

A similar model is used in [15] to forecast demand in hospitality. As the model is
inspired by smoothing splines, it requires little data, which is preferable at the start of a
pandemic. In mathematical terms, let at be the realization, either of the admissions at the
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Figure 1: Admissions and our fits and predictions; positive tests and their smoothing spline

ICU or the clinics. Our statistical models minimizes the sum of errors and trend changes,
thus it is actually a minimization problem. The decision variables are sd and xt, the day
factors and the weekly factors, respectively. Let w(t) be the weekday of day t, thus sw(t)
is the day factor of day t. Also define ∆xt = xt − xt−1 and ∆2xt = ∆xt −∆xt−1, and let
T be the last day with data. Our minimization problem is:

min
x,s

T∑
t=1

|xt + sw(t) − log at|+ λ
T∑
t=3

|∆2xt|. (1)

Here, λ ≥ 0 is a parameter that determines the smoothness of the prediction, the “smooth-
ing parameter”. The first term in (1) gives the difference between the smoothed curve and
the data and the second term introduces a penalty for trend changes. The fit is given by
exp(xt + sw(t)), t ≤ T , whereas the t-day ahead prediction is

ÂT+t = exp
(
xT + t(xT − xT−1) + sw(T+t)

)
.

It is interesting to note that rt = ext−xt−1 is the fractional de-seasonalized increase or
decrease. It can be interpreted as a day-to-day “reproduction factor”. Epidemiologists
define the reproduction factor Rt as the amount of people that get infected on average by
one infected person at time t. As the incubation time is around four days there should
be relation between Rt and r4t . In Figure 2, r4.5t is compared to Rt as it is determined by
the Dutch National Institute for Public Health and the Environment (RIVM). We see a
similar shape, and that the biggest correlation is for a lag of around twelve days, which
corresponds roughly to the time between infection and hospital admission.
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Figure 2: Reproduction factors over time

3 Length of stay

To determine the length of stay (LoS), we use data of NICE again. Specifically, on their
website NICE presents data describing the frequencies of number of days that patients
spend at the ICU and the clinic. Define S as a random variable denoting the number of
hospitalized days taking values in {0, 1, . . .}. That is, S may be interpreted as the number
of overnight stays at the ICU or the clinic. Some recent studies [1, 26] have described the
LoS at two time scales. The LoS in hours depends on many operational factors, whereas
the LoS in days is attributed to medical factors. Our focus is on the latter, i.e., the time
resolution in days.

Currently, there are still COVID-19 patients present at the ICU and at the clinic,
yielding right-censoring of the data. Clearly, the number of patients present is also non-
negligible compared to the total number of COVID-19 patients, which in particular holds
for the ICU. Therefore, to estimate the LoS distribution, we use the Kaplan-Meier estima-
tor. In particular, we have P̂(S ≥ 0) = 1 and, for t = 1, 2, . . .,

P̂(S ≥ t) =
t∏

s=1

(
1− ds

ns

)
,

where ds is the number of patients that are discharged after s days, and ns is the number
of patients that have a LoS of at least s days (either discharged or still present).

The mean and standard deviation of the LoS can be found in Table 1. We see that
the average LoS at the ICU increases with over a day by taking the right-censoring into
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ICU Clinic
# patients Mean Stdev # patients Mean Stdev

Patients discharged or died 6,984 15.35 12.81 37,274 8.01 6.96
Patients currently treated 627 17.25 13.62 1,323 11.98 12.92
Kaplan-Meier estimate 16.64 13.69 8.43 7.51

Table 1: LoS based on public NICE data

account. The impact is smaller at the clinic as a smaller fraction of the patients is still
present (8.2% at the ICU vs 3.4% at the clinic).

It is natural to consider the LoS at the time scale of minutes or hours, and model
the LoS as a continuous random variable. There is also a considerable body of literature
devoted to fitting probability distributions to such a continuous LoS. Specifically, let X
represent a LoS taking values in (0,∞). Recall that S is a random variable denoting the
number of hospitalized days taking values in {0, 1, . . .}. When fitting a distribution to the
LoS, we will use a fit to the continuous LoS X, and use a continuity correction to find the
distribution of S. In particular, we have, for t = 1, 2, . . .,

P(S ≥ t) = P(S > t− 1) ≈ P(X ≥ t− 0.5).

In [1], a lognormal distribution is found to fit the LoS data well. The authors also
pose the challenge to explain why lognormal distributions seem to fit service durations so
well. Other common distributions for lengths of stay or survival functions are gamma and
Weibull distributions [17]; mixtures of exponentials may also be appropriate. We refer to
[27] for a study of the LoS of COVID-19 patients in the UK based on a Weibull distribution.
In line with the LoS distribution of COVID-19 patients worldwide [23], we fit lognormal,
gamma, and Weibull distributions. In Figures 8 and 9, these distributions are displayed
together with the data adjusted by the Kaplan-Meier estimate. For both the ICU and the
clinic, the gamma and Weibull distributions can hardly be distinguished. Interestingly, for
the ICU the gamma and Weibull distributions provide visually excellent fits, whereas for
the clinic the lognormal distribution provides very good fits.

Remark 1 There are different ways to determine parameters of our parametric distri-
bution X. From the perspective of medical specialist and decision makers, the method of
moments is especially appealing as the first two moment are relatively easy to interpret. For
instance, the impact of changes in the LoS distribution are straightforward to incorporate.
For X ∼ LogNormal(µ, σ2), we obtain µ = ln

(
x̄2/
√
x̄2 + s2

)
and σ2 = ln (1 + s2/x̄2),

with x̄ and s2 denoting the sample mean and the sample variance. For X ∼ Gamma(α, β),
we obtain the shape parameter α = x̄2/s2 and rate parameter β = x̄/s2. For Weibull
distributions, there are no closed-form expressions when using the method of moments.
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4 Occupancy

To predict the occupancy we use principles from queueing theory to describe the evolution
of the number of COVID-19 patients. Essentially, we model the number of patients as a
(discretized) infinite-server queueing model with a time-dependent arrival pattern. For the
special case of (continuous) time-dependent Poisson arrivals, the Mt/G/∞ has well been
analyzed with tractable results [2, 8, 9]; [18] uses such an Mt/G/∞ model to quantify how
flattening the curve affects peak demand for hospital beds. The application of infinite-server
models, also in discrete time, is also discussed in [28]. As our goal is to predict the demand
for beds without capacity constraints, the infinite-server assumption is appropriate, albeit
we use a discrete-time version.

When predicting future occupancy, we need to distinguish two groups of patients: (i)
patients that are currently present, and (ii) patients that will arrive in the future. For the
patients that will arrive in the future, we need a prediction of admissions (as described
in Section 2) and the subsequent length of stay (as described in Section 3). For the first
group, observe that the patients that are currently present, the total length of stay differs
from the one in Section 3 whereas part of the length of stay has elapsed. Since we predict
on publicly available data, we cannot use the elapsed length of stay of each individual
patient. A reasonable alternative seems to use the stationary residual length of stay (for
which P(Sr ≥ t) =

∑∞
k=t P(S > k)/ES), which follows directly from renewal theory. A

disadvantage of the stationary residual length of stay is that the arrival process is obviously
not stationary. Therefore, we propose an alternative that takes the past arrival pattern
into account.

Next, we derive the residual length of stay Sr of a tagged patient present at time
T . Note that the probability that this patient arrived at day T − u is proportional to
aT−uP(S ≥ u), for u = 1, . . . , T . Hence, the probability that this tagged patient arrived at
day T − u is

aT−uP(S ≥ u)∑T
k=1 aT−kP(S ≥ k)

.

The probability that the residual length of stay of the tagged patient is at least s, when
the patient arrived at day T − u, equals P(S ≥ s + u | S ≥ u) = P(S ≥ s + u)/P(S ≥ u).
Combining the above, we have

P(Sr ≥ t) =
T∑
u=1

aT−uP(S ≥ u)∑T
k=1 aT−kP(S ≥ k)

P(S ≥ t+ u)

P(S ≥ u)
=

∑T
u=1 aT−uP(S ≥ t+ u)∑T
k=1 aT−kP(S ≥ k)

.

Observe that this is consistent with the stationary residual length of stay by taking a·
constant and letting T →∞.

Now, we turn to predicting the occupancy. As the allocation of COVID-19 patients is
based on the occupancy in the morning, we focus on Nt, the number of occupied beds at
the beginning of day t. We then have the following relation

NT+t =

NT∑
i=0

1{Sri ≥ t}+
t−1∑
s=0

AT+s∑
i=1

1{Si ≥ t− s},
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where Sri is the residual LoS of the ith patient present, and Si represents the LoS of the ith
patient arriving on that specific day. The first term is due to patients that are currently
present at time T , whereas the second term are patients arriving in the future. Observe
that with the relation above it is possible to derive the distribution of NT+t. Focusing on
the expectation, it holds that

N̂T+t = ENT+t = NTP(Sr ≥ t) +
t−1∑
s=0

EAT+sP(S ≥ t− s),

providing the t-day ahead prediction N̂T+t at day T . Moreover, using the same relation
above and assuming that AT+s and AT+u are independent for s 6= u, the variance is

VarNT+t = NTP(Sr ≥ t)(1− P(Sr ≥ t))

+
t−1∑
s=0

(
VarAT+s × Ḡ(t− s)2 + EAT+s × Ḡ(t− s)(1− Ḡ(t− s))

)
,

where Ḡ(t − s) = P(S ≥ t − s). Note that the expression above simplifies if the arrivals
follow a Poisson process with a known parameter. In that case VarAT+s = EAT+s and
VarNT+t will converge to ENT+t, such that NT+t will behave as a Poisson random variable
for t large enough.

5 Predictions

In this section we present the numerical results that follow from our prediction model. As
we only have reliable occupancy data of COVID-19 patients from mid October 2020, we
will use the time period from November 1, 2020, until February 1, 2021 as an illustration.
This also involves an interesting period due to the remarkable behavior of infections and
hospital admissions during the ‘second wave’. In line with the operations at the LCPS, we
use predictions of 3 and 7 days ahead. To assess the accuracy of the predictions, we use the
following three evaluation measures: weighted absolute percentage error (WAPE), mean
absolute error (MAE), and root mean squared error (RMSE). We note that the WAPE is
also referred to as the weighted MAPE. For a period of n days, these measures are defined
as

WAPE =

∑n
t=1 |yt − ŷt|∑n

t=1 yt
, MAE =

1

n

n∑
t=1

|yt − ŷt| , RMSE =
1

n

√√√√ n∑
t=1

(yt − ŷt)2,

where yt and ŷt are the actual and predicted values, respectively, at day t.
First, in the arrival predictions (1) there is a tunable smoothing parameter λ. Figure 3

shows the impact of the smoothing parameter on the WAPE and MAE for both the ICU
arrivals (red lines) and occupied ICU beds 3-day ahead predictions. For the ICU beds, we
use both the complete prediction model (blue lines), and the occupancy model fed by the
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Figure 3: Impact of the smoothing parameter λ on accuracy of arrival and occupancy 3-day
ahead predictions at the ICU

actual arrival stream (green lines). The aim of the latter is to obtain insight in the impact
of the LoS on the accuracy of the occupancy forecast, as there is no error in the arrival
prediction in that case. This also implies that the green lines are not affected by λ as this
parameter only affects the arrival prediction.

The differences between the green and blue lines should be interpreted as the error in
occupancy prediction that is due to the unknown arrival process. Also observe that the
arrivals (red) and occupancy (blue) are at a completely different level, as will also become
apparent below, explaining the differences in absolute (MAE) and relative (WAPE) errors.
Clearly, for λ very small the forecast is too responsive, whereas the opposite occurs for
large λ. We note that the behavior is similar for 7-day ahead predictions and for the clinic.
In practice, it is desirable to tune the parameter λ based on contextual information, such
as measures taken, as this may improve the prediction [25]. For consistency, we use a single
smoothing parameter of λ = 10 in the experiments below.

Next, we visualize the predictions for 1, . . . , 7 days ahead for the arrivals and occupancy
of both the ICU and the clinic. In Figure 4 we present the predictions made at December
22, 2020. The arrivals are plotted on the left, with the solid lines the actual values, the
blue dotted lines the fit, and the red dotted lines the predictions. The occupancies are
plotted on the right, with the solid lines the actual values again, the red dotted lines the
predicted values, and the blue dotted lines the predictions when the arrivals are known;
the aim of the latter is to obtain insight in the impact of inaccurate predictions for the
arrival process.

For the arrivals, we see a very good fit (blue line), with an apparent weekly arrival
pattern, in particular for the clinic. The arrival predictions for the clinic are accurate,
but for the ICU the model seems to overestimate the number of arrivals. Specifically, the
increasing trend does not continue as strongly as suggested by the data up to Dec 22. This
also leads to an overestimation of the number of occupied ICU beds (compare the red line

9



Figure 4: Predictions of arrivals (left) and occupancies (right) for the ICU (top) and clinic
(bottom) at December 22, 2020
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Figure 5: 3-day ahead predictions of arrivals (left) and occupancies (right) for the ICU
(top) and clinic (bottom)

with the blue line for the ICU beds). Regarding the occupancy for the clinic, there seems
an overestimation of the number of occupied beds for the period from Dec 24 until Dec 28.
This is not due to the arrival predictions, as the red and blue lines are rather similar. It
seems likely that some patients might be discharged earlier from the clinic in the period
around Christmas.

To see how the predictions behave over time, we use a rolling horizon and, for every
day, make predictions for 3 and 7 days ahead. In Figure 5 the 3-day ahead predictions
(with corresponding bandwidth) together with their realizations are shown for the arrivals
and occupancies for the ICU and the clinic. Overall, the predictions are visually accurate.
We see that the predictions tend to deviate from the realizations at moments when the
arrival pattern changes, i.e., when the arrivals reach a local peak or valley. When the
number of arrivals is at such a local peak or valley, it takes a couple of days for the arrival
prediction to detect that the local trend is changing, and this change is not caused by
some random realizations. When the predictions are completely based on the time series
(without further contextual information), it seems difficult to overcome such an issue.
However, the prediction model is able to adapt to such trend changes after a couple of
days.

Similar 7-day ahead predictions are shown in Figure 6. We see similar phenomena for
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Figure 6: 7-day ahead predictions of arrivals (left) and occupancies (right) for the ICU
(top) and clinic (bottom)
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3 days ahead 7 days ahead
WAPE MAE RMSE WAPE MAE RMSE

Arrivals IC 26% 9.19 11.27 34% 12.10 14.90
Arrivals clinic 15% 34.24 47.28 24% 52.02 68.55
Beds IC (realized arrivals) 2% 9.72 12.67 2% 13.24 17.18
Beds IC (forecasted arrivals) 3% 20.02 25.58 9% 51.02 63.64
Beds clinic (realized arrivals) 6% 90.63 107.97 7% 106.97 126.73
Beds clinic (forecasted arrivals) 8% 126.25 162.20 13% 216.90 290.65

Table 2: Accuracy measures of arrival and occupancy predictions

the 7-days ahead predictions as for the 3-days ahead predictions. However, the bandwidth
is wider and it naturally takes more time to detect a trend change for the 7-days ahead
predictions than for 3-days ahead.

In Table 2 the accuracy measures of the predictions are presented, again for the arrivals
and occupancies, and the ICU and the clinic. Clearly, the relative errors (WAPE) are
largest for the admissions, which is partly explained by the fact that the number of arrivals
is considerably smaller than the number of occupied beds; see also Remark 2 for the
impact of scale. Moreover, it reveals that predicting arrivals is complicated for such a
volatile process including changes in trend. The 3-day ahead prediction in the required
number of ICU beds is remarkably accurate. Given the inherent randomness in the bed
census process, see Remark 2, a WAPE of 3% seems to be the best achievable. For the
7-day ahead prediction of ICU occupancy, we see that the error is mainly determined by
the error in the arrival process (9% with forecasted arrivals vs 2% with actual arrivals).
Overall, the model performs very well for the most important predictions, i.e., the ICU
occupancies. Compared to the ICU, the predictions for the clinic occupancies seem not as
good as expected. In particular, even with the actual arrival streams, the WAPE is still 6%
and 7% for 3 and 7 days ahead, respectively. These errors can be explained by the discharge
behavior at the clinic, where there are only few discharges during the weekend (which are
compensated during the week). We like to emphasize that the discharge behavior during
the week only has a modest impact on the prediction results in our current practice, as the
predictions are only used for at specific days during the week.

Finally, we consider the impact of the number of days ahead on the accuracy (MAE
and WAPE) of the ICU predictions in Figure 7. The red line concerns the arrivals, whereas
the blue line is the prediction of the occupancy; the green line is the occupancy in case the
actual arrivals are used (and deviations are due to the LoS). As the scale differs between
arrivals and occupancy, the MAE is considerably smaller and the WAPE considerably
larger for the arrivals compared to the occupancy. Of course, the predictions become less
accurate when the forecast is longer ahead. If the actual number of arrivals are known,
we see that the occupancy predictions (green line) remain quite accurate even for 14 days
ahead. Hence, prediction of the arrival process is crucial, in particular for predictions that
are more than a week ahead.
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Figure 7: Accuracy of ICU predictions for 1, . . . , 14 days ahead

Remark 2 The assessment of the accuracy of predictions is complicated by the inherent
randomness in arrivals and LoS. For instance, suppose that our aim is to predict the value
of a Poisson random variable with rate µ; the Poisson distribution typically reflects the
randomness in arrivals or occupancy. The most accurate prediction would be ŷt = µ. In
that case, with n→∞ and using [6], we have MAE = 2µbµc+1e−µ/bµc!, WAPE = MAE/µ,
and RMSE =

√
µ. For example, for µ equal to 50, 500, and 2000, the MAE is 5.6, 17.8,

and 35.7, respectively, whereas the WAPE is 11.3%, 3.6%, and 1.8%, respectively.

6 Conclusion and discussion

In this paper, we presented a mathematical model to give short-term predictions, in the
order of days, of the number of occupied ICU and clinical beds due to COVID-19. The
model first predicts the arrivals and then employs a queueing-based method to convert
arrivals into occupancy. The predictions for the ICU occupancies are accurate, in particular
for 3 days ahead. For the clinical occupancies, there is a seasonal component in discharges,
with considerably less discharges during the weekend, that affects the performance of the
predictions averaged over all days. An interesting topic for further research is to take the
seasonal component in discharges into account as well.

Predictions of a couple of days ahead are crucial to properly manage ICU and clinical
bed capacity and to relocate patients across the country. In essence, the framework is also
suitable for longer-term scenarios, but an appropriate approximation of the behavior of the
arrival process is then crucial. Moreover, COVID-19 admissions consume a considerable
part of the resources at the ICs and clinics in the Netherlands. Additional resources
were also used, such as post-anesthesia recovery beds, and anesthesiologists who worked
as buddies next to the intensivists. This also reduced other forms of hospital capacity,
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together leading to reduced capacity for other forms of care leading to waiting lists for
multiple forms of care. It is hard to quantify the impact of the delays. For example, [11]
reports up to 50000 “healthy years of life lost” due to the first wave, based on 28% of the
specialist medical care. However, some of this loss can be recovered if extra treatments are
provided in the future. There is no centralized information on the length of waiting lists
and the rate at which lives are lost.

From a mathematical view, it is interesting to study the impact of the second wave on
the delayed care. For the moment the daily admissions have not reached the peak level of
the first wave, but the rise and decline of the second wave has been much slower, leading
to a higher number of patients and days of hospitalization. This inevitably leads to more
delayed care, it is highly likely that waiting lists will become at least twice as long. This
has a quadratic impact on the years of life lost: if twice as many patients wait on average
twice as long before treatment, the total impact is 4 times higher. This amplifies the need
for an efficient use of resources and good predictions of required capacity.

Acknowledgments Part of the work has been carried out during the period that we
were affiliated with the LCPS. We would like to thank Marcel de Jong and the LCPS for
providing us insight in the management of COVID-19 in the Netherlands and the pleasant
and fruitful cooperation.

A Length of stay distributions

In Figures 8 and 9, the length of stay distribution is displayed for the ICU and the clinic,
respectively. For both cases, the data is plotted after applying the Kaplan-Meier estimator,
together with lognormal, gamma, and Weibull fits.
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Figure 8: Tail distribution of the LoS at the ICU

Figure 9: Tail distribution of the LoS at the clinic
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