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Abstract

Non-pharmaceutical interventions have been critical in the fight against the
COVID-19 pandemic. However, these sanitary measures have been partially
lifted due to socioeconomic factors causing a worrisome rebound of the epi-
demic in several countries. In this work, we assess the effectiveness of the
mitigation implemented to constrain the spread of SARS-CoV-2 in the Mex-
ican territory during 2020. We also investigate to what extent the initial
deployment of the vaccine will help to mitigate the pandemic and reduce the
need for social distancing and other mobility restrictions. Our modeling ap-
proach is based on a simple mechanistic Kermack-McKendrick-type model.
To quantify the effect of NPIs, we perform a monthly Bayesian inference
using officially published data. The results suggest that in the absence of
the sanitary measures, the cumulative number of infections, hospitalizations,
and deaths would have been at least twice the official number. Moreover,
for low vaccine coverage levels, relaxing NPIs may dramatically increase the
disease burden; therefore, safety measures are of critical importance at the
early stages of vaccination. The simulations also suggest that it may be more
desirable to employ a vaccine with low efficacy but reach a high coverage than
a vaccine with high effectiveness but low coverage levels. This supports the
hypothesis that single doses to more individuals will be more effective than
two doses for every person.
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1. Introduction

Since the beginning of the pandemic, the scientific community has acted
fast to better understand several aspects of COVID-19, including epidemi-
ological, biological, immunological, and virological features. Mathematical
modeling has been crucial in helping public health officers make informed
decisions [23]. In particular, there is a growing literature on epidemiological
modeling papers that have been mainly used to forecast the epidemic dynam-
ics in specific countries or cities, see, for example, [3, 5, 13, 14, 20, 22, 29, 33].
Mathematical models have also been central to evaluate the procedures in-
volved in the containment of the pandemic [4]. Many governments worldwide
have implemented national lockdowns as extreme measures to stop disease
spread. Lockdowns in addition to other non-pharmaceutical interventions
(NPIs) such as mask-wearing, social distancing, temperature screening, clo-
sure of schools, restaurants, bars, and other places for social gathering have
been of paramount importance in the fight against the pandemic. However,
although such measures have had a significant impact in reducing the num-
ber of deaths and infections, helping to decrease the risk of health services
being overwhelmed, their cost to society and economic life have been huge
[15]. Hence, public health authorities are constantly monitoring the current
state of the epidemic to evaluate lockdown exit strategies, and once again
the use of mathematical models becomes a valuable tool to study the impact
of partial mobility restrictions and the optimal time to relax the imposed
restrictions [3].

There have been many modeling efforts presented to analyze and under-
stand the COVID-19 pandemic in Mexico [2, 7, 11, 16, 24, 25, 27, 28, 31].
The study of the early phase of the pandemic together with estimations of
the basic and effective reproduction numbers is presented in [2, 16, 24]. In
[7], the authors present a forecasting model aiming to predict hospital oc-
cupancy. Using both hospital admittance confirmed cases and deaths, they
infer the contact rate and the initial conditions of the dynamical system,
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considering breakpoints to model lockdown interventions and the increase in
effective population size due to lockdown relaxation. In [28], the authors use
a mathematical model to characterize the impact of short duration transmis-
sion events. They showed that super-spreading events have been one of the
main drivers of the epidemic in Mexico.

Beyond NPIs, there has been a vast-scale effort by researchers and phar-
maceutical companies to develop an effective and safe vaccine to prevent in-
fection with the SARS-CoV-2 and now several vaccines have been approved
by national regulatory authorities. The availability of a vaccine represents an
important positive step towards the control of the pandemic and the hope to
return to normality. Nevertheless, the implementation of mass vaccination
worldwide involve several financial, logistic, and social challenges [30]. More-
over, even for a very effective vaccine, the immunization coverage needed to
reach herd immunity levels and successfully control the pandemic may be
very high and potentially difficult to achieve.

The first goal of this work is to evaluate the impact of the sanitary mea-
sures implemented in the mitigation of the COVID-19 pandemic in Mexico
during the year 2020. We also investigate to what extent the initial deploy-
ment of the vaccine will help to mitigate the pandemic and reduce the need
for social distancing and other mitigation measures. To this end, we fit a
simple mechanistic Kermack-McKendrick-type model using official data of
the COVID-19 epidemic in Mexico. We use Bayesian inference to calibrate
the state variables and estimate how key parameters have been changing
alongside the epidemic. As in [7], our modeling approach assumes that as
lockdown measures as relaxed, more individuals become in contact with the
outbreak. In other words, lockdown-relaxations not only cause a change in
the transmission rates but also causes changes in the effective size of the
population at risk.

The rest of the paper is structured as follows. In the next section, we
present the mathematical model and use officially published data on the daily
number of confirmed cases, hospitalizations, and cumulative deaths during
the year 2020 to perform a monthly parameter inference. In Section 3.1, such
results are used to assess the role of NPIs in the mitigation of the COVID-19
pandemic. We also explore several vaccination scenarios depending on the
immunization coverage, delivery time, and vaccine efficacy. A discussion of
the results is presented in Section 4.



2. Methods

2.1. Model formulation

The model presented here is based on the mathematical model first in-
troduced in a previous work [25]. The model is an extension of the classical
SEIR Kermack-McKendrick-type model tailored to incorporates the most
important features of the COVID-19 disease and the population-level impact
of vaccination.

The disease dynamics are described by the following system of differential
equations

S' = —\S — ¢S,

V' = —(1—¢)AV + ¢S,

E' = \S — kE,

E' =\1—9)V —kE,

A'=(1=pkE + (1 - PKE — 744, (1)

I' = pkE + pkE — ~I —nI — ul,
H =nl —~vyyH —mH,

R =y4A+~1 +ypH,

D' = ul +mH,

where S,V,E,E,A,I,H and R represent the number of susceptible, vac-
cinated susceptible, exposed, vaccinated exposed, asymptomatic infectious,
symptomatic infectious, hospitalized, and recovered individuals, respectively.
In this study, the asymptomatic class A includes infected individuals with no
symptoms but also considers mild symptomatic infections. The symptomatic
class I consists of individuals who develop severe disease and therefore are
expected to have fewer contacts in comparison with individuals in the A class.
Considering disease-induced deaths, the total population size, denoted N (t),
is N(t) =S{t)+ V(@) + E(t)+E() +AT)+ I(T)+ H(t)+ R(t) + D(1).
The force of infection (FOI) A = (44 + 5;I)/N in model (1) represents
the classical standard incidence, where 54 and S; are the effective contact
rates for the asymptomatic and symptomatic infectious classes, respectively.
Note that we are assuming that the hospitalized class is effectively isolated
and does not contribute to the FOI. After a mean latent period of 1/k, a
proportion p of the exposed class E transition to the symptomatic infectious
class I, while the other proportion 1 — p enter the asymptomatic infectious



class A. The parameters v4, 7, and vy are the recovery rates of the classes
A, I, and H, respectively. The parameter 1 denotes the rate of transition
from the I class to the hospitalized class H. Individuals in the symptomatic
and hospitalized classes experience disease-induced death at rates p and m,
respectively. We incorporate vaccination in the susceptible class with a rate
¢. In our model, vaccination not only prevents SARS-CoV-2 infection but
also prevents severe symptomatic COVID-19 disease. The parameter 1) is the
vaccine efficacy to prevent infection and 1 — p is the fraction of vaccinated
individuals who after infection do not develop severe disease. Therefore, 1 —p
may be interpreted as the vaccine efficacy to prevent severe disease. The
basic qualitative properties of the model (1) and the reproduction numbers
are studied in S-1.

2.2. Data, parameter estimates and Bayesian inference

In this section, we perform a parameter inference using a Bayesian ap-
proach. Our main objective is to estimate the impact of the sanitary emer-
gency measures implemented to control the spread of the virus. However,
such measures have been relaxed or only partially implemented alongside
the epidemic depending on several circumstances. The initial phase of the
epidemic in Mexico covers from February 17 to March 22, 2020. On March
23, 2020, phase 2 was declared, which primarily includes the suspension of
certain non-essential economic activities, the restriction of massive congrega-
tions, and the recommendation of home quarantine to the general population.
On March 30, 2020, a sanitary emergency was declared and the public health
authorities implemented a national lockdown until May 31, 2020. After this,
the lockdown was lifted and other mitigation measures were only partially
implemented. These changes have had a significant impact on the value of
the transmission parameters [7, 24]. We take this into account making a
parameter inference by periods. We consider the estimation of parameters
by month using three sets of data obtained from the daily report of the Mex-
ican Federal Health Secretary [26]: (i) new daily reported infections, (ii) new
daily hospitalizations, and (iii) cumulative deaths in Mexico. We remark
that this data corresponds to the confirmed cases on the date that the pa-
tient approached the medical center and not on the day its symptoms began.
Moreover, the testing rate in Mexico is the lowest among the OECD coun-
tries [16], so the data on the confirmed cases corresponds to symptomatic
infections, see S-II for the details of the inference.
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Figure 1: Mean and variance (vertical black lines) of (a) the effective contact rate of the
symptomatic class fr, (b) the hospitalization’s rate 7, (c¢) the mortality rate from hospital-
ized patients m, (d) the effective susceptible population Sy, (e) the effective reproduction
number, and (f) the susceptible fraction .



As in [7, 13, 14, 16], we assume that partial lifting of lockdowns and
NPIs not only affects the transmission rate but also the effective popula-
tion size, N,, that usually satisfies N, < N. We remark that deterministic
Kermack-McKendrick-type models predict a single epidemic wave. How-
ever, our modeling approach allows us to capture the possibility of multiple
waves induced by NPIs relaxation. Hence, for the inference, we consider
N. = So+ Eo+ A(0) + Iy + H(0) + R(0) + D(0). The vector of parameter
to estimate in the Bayesian formulation is x = (Sy, Fo, 1o, 51,m,m). The in-
ference process is performed in a monthly way from March to December (see
Figure 1).

As expected, the highest value of the effective contact rate in the symp-
tomatic class is reached at the beginning of the pandemic (March), before
the national lockdown and NPIs implementation. The maximum for the
hospitalization’s rate is reached in April, one month after the start of the
pandemic in Mexico, and the maximum in the mortality rate from hospital-
ized patients reached in May, respectively (see Figure 1). At the beginning
of the pandemic, the implementation of the lockdown in Mexico produced a
small effective susceptible population for March and April. The progression
of the pandemic and the relaxation of the measures produced a monthly in-
crease until September. After this, an increase in the new daily infections
and the contact rates in October and November produced measures that re-
sulted in a decrease in the corresponding Sy. In December a new increase
is noted probably due to the end of the year festivities. Moreover, observe
that the effective reproduction number R, was very high in the early phase
of the epidemic. The national lockdown reduced significantly the value of R,
achieving its lowest value in August. After lockdown-relaxation, June 1, the
value of R, has been oscillating close to unity. The susceptible fraction S/N
is practically decreasing along the period from April to December. This be-
havior was broken in September, same month where the effective susceptible
population reaches its maximum value. Performing a parameter inference by
periods allow us to obtain accurate estimations on the number of daily infec-
tions, hospitalizations, and cumulative deaths and make a reliable short-term
prediction of such outcomes per period (see Figure 2).
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Figure 2: Monthly estimation for new daily infections (a), new daily hospitalizations (b)
and cumulative deaths (c¢) in the Mexican population. Vertical lines represent official data
while solid lines represent our model predictions for the respective month. Observe that
we extended our model predictions to overlap some unseen data of the next month.

3. Results

3.1. Retrospective evaluation of non-pharmaceutical interventions and vacci-
nation impact

The national lockdown in Mexico was officially lifted on May 31. How-

ever, after this date, NPIs were issued through mass media by public health

authorities and are still partially implemented in the population. In this sec-
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tion, we investigate the impact of such NPIs in the control of the transmission
dynamics of SARS-CoV-2 for the first year of the pandemic in Mexico. For
this, we compare with a theoretical case in which no mitigation measures
were implemented. We must remark that after the national lockdown was
lifted, NPIs were state-specific in Mexico. Nevertheless, for simplicity, we are
considering the total data for the whole country.
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Figure 3: Monthly worst-case scenario for cumulative number of infections (a), hospital-
izations (b) and deaths (c) predicted in the absence of NPIs or any sanitary measures
(dotted lines). Vertical lines represent official published data by the Mexican Secretary of
Health since the beginning of the pandemic until December 30, 2020.

In Fig. (3) we evaluate a counterfactual scenario that reflects a monthly
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worst-case scenario, in which no sanitary measures were implemented dur-
ing the whole year of 2020. For each month, the no-measures scenario was
obtained by using the same initial conditions from the Bayesian inference,
but changing the value of the estimated [ for that month to the value of
at the beginning of the pandemic. Such simulations allow us to quantify the
impact of NPIs in the reduction of the burden caused by COVID-19 in the
Mexican population. The outcomes of interest are the cumulative number of
infections, hospitalizations, and deaths predicted in the worst-case scenario
in comparison with the official data. The results suggest that in the absence
of the sanitary measures, the cumulative number of infections by the end of
2020 would have been above 3 million cases which is more than twice the
official number. We observe a similar pattern for the cumulative number of
hospitalizations and deaths, that is, they would have presented at least a two-
fold increase in the absence of NPIs. From these results, it is evident that
the implementation of NPIs has been of paramount importance to reduce
the transmission of SARS-CoV-2 and the morbidity caused by COVID-19
disease.

3.2. Impact of vaccine introduction

Since a vaccination program is starting in Mexico, we would like to know
if there are vaccination scenarios that allow similar savings to those obtained
by the implementation of NPIs. Results from leading vaccine developers have
shown that their vaccines are more than 90% effective to prevent infection
with SARS-CoV-2 (see [25] and the references therein). Nevertheless, the
success of a vaccination program depends not only on the vaccine efficacy
but also on the immunization coverage, C', and the time needed to achieve
such a coverage T.

The population-level impact of a vaccination program on the number of
new daily infections, hospitalizations, and cumulative deaths is shown in Fig-
ure 4 (a), (b), and (c), respectively. To have a better understanding of the
effect of vaccination, we consider its interaction with the impact of imple-
menting or partially lifting NPIs. The no-NPIs scenario, that is, the case in
which no mitigation measures are implemented at all, is shown in solid red
lines. On the other hand, the disease burden for the case in which NPIs are
implemented is shown in solid blue lines (see Figure 4). Moreover, dashed
lines correspond to the respective scenario considering the introduction of a
vaccination program. Vaccination parameters are as follows: coverage time
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Figure 4: Impact of a vaccination program on the number of (a) new daily infections, (b)
hospitalizations, and (c¢) cumulative deaths (dashed lines). The no-NPIs scenario is shown
in solid red lines and the scenario under NPIs implementation is shown in solid blue lines.
The initial deployment of the vaccine starts on October 1. Vaccination parameters are as
follows: coverage time 7 = 90 days, vaccination coverage C' = 0.20, efficacy ¥ = 0.90, and
symptomatic fraction p = 0.30. Bar plots represent officially reported data.
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7 = 90 days, vaccination coverage C' = 0.20, efficacy ¥ = 0.90, and symp-
tomatic fraction p = 0.30. The vaccination rate ¢ is obtained from the
approximation 1 — exp{—¢7} = C. The initial deployment of the vaccine
starts on October 1, so we employ our estimated parameters for October,
November, and December. The results shown in Figure 4 point out that,
in the absence of NPIs, the immunization coverage needed to control the
pandemic is very high.

We further explore the joint impact vaccine introduction and implemen-
tation of NPIs in Figure 5. The contour plots show the percentage scale
of the pandemic burden under vaccination concerning the scenario without
NPIs for (a)-(b) new daily infections, (c)-(d) new daily hospitalizations, and
(e)-(f) cumulative deaths. In Figure 5, a value of 60% means that the corre-
sponding curve under vaccination is 60% the value of the same curve under
the scenario without NPIs. We explore the effects of varying vaccine efficacy
1, and vaccination coverage C. We also explored the effect of varying the
symptomatic fraction p, and we found that this parameter does not affect
significantly the outcomes under study. On the other hand, the vaccination
coverage C' has a greater effect in terms of reducing the disease burden. How-
ever, the immunization coverage needed to see a significant reduction in the
number of infections should be close to 40%.

In Figure 6, we show the maximum value for new daily infections, new
daily hospitalizations, and cumulative deaths in a window of 30 days pre-
dicted for a vaccination program starting on November 1 with variations
in vaccine-associated parameters. In Figure 6(a), we explore the impact of
vaccination target coverage, C, against the contact rate 5;. As expected, in-
creasing coverage is a very effective way to control the pandemic. However,
assuming realistically low coverage levels (close to 10% within the first weeks
of vaccine introduction), we can observe that relaxing NPIs altogether with
low vaccination coverage may dramatically increase the disease burden [1].
However, if the implementation of NPIs manages to maintain a low contact
rate, the introduction of the vaccine improves notably the control of the dis-
ease burden. In Figure 6(b), we show the effects of varying vaccine efficacy
1 along with coverage C'. The results imply that it may be more desirable to
employ a vaccine with low efficacy but reach a high coverage than a vaccine
with high effectiveness but low coverage levels [19].
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Figure 5: Countour plots that show the percentage scale of the pandemic burden under
vaccination with respect to the scenario without NPIs for (a)-(b) new daily infections,
(¢)-(d) new daily hospitalizations and (e)-(f) cumulative deaths. For all plots, vaccination
starts on November 1. When fixed, the vaccine-associated parameters are coverage time

7 = 90 days, target coverage C' = 40%, effectiveness ¢ = 0.90 and symptomatic fraction
p = 0.40.
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Figure 6: Impact of vaccine-associated parameters on the maximum value of new daily
infections, new daily hospitalizations and cumulative deaths for November. (a) The im-
munization coverage C' and the contact rate 8; are varied (the rest of parameters are fixed
¥ =0.90, p = 0.40 and 7 = 30 days). (b) The vaccine efficacy ¥ and coverage C' are varied
(the rest of parameters are fixed p = 0.40 and 7 = 30 days).

4. Discussion

Since the emergence of SARS-CoV-2, health authorities worldwide have
implemented unprecedented mobility restrictions and other NPIs in an at-
tempt to control the epidemic. Nevertheless, due to socio-economic reper-
cussions, many countries decided to lift or at least partially relax such re-
strictions causing a worrisome rebound of the epidemic. Due to constant
modifications of NPIs according to epidemiological risk factors, it is very
difficult that the deterministic dynamics of a compartmental model may fit
long-term data or multiple waves of the epidemic. Moreover, the forecast
in the absence of data is limited to conditions remaining constant which is
unrealistic due to the changes needed to reactivate the economy. To cir-
cumvent this situation, we consider a monthly parameter inference. This
strategy allows us to observe and compare the progression of transmission
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parameters alongside the epidemic. Besides, Bayesian inference allowed us
to calibrate key model features and evaluate the effects of NPIs given data.
In particular, we used official epidemiological data at the early phase of the
epidemic in Mexico, before lockdowns and NPIs implementation, to establish
the effective contact rate without mitigation measures. This allowed us to
assess the effects of NPIs in the following months of the epidemic. Our model
simulations show that the number of daily infections, hospitalizations, and
cumulative deaths would have presented at least a two-fold increase in the
absence of NPIs. Hence, the implementation of NPIs in Mexico has been of
paramount importance to reduce the transmission of SARS-CoV-2 and the
morbidity caused by COVID-19 disease.

After model calibration, we explored how a vaccination program affects
the control of the transmission dynamics in comparison with NPIs. The
results suggest that vaccination alone is not enough to control disease spread
if NPIs are abandoned prematurely and if the immunization coverage is low
as expected in some countries or regions. In other words, lifting mitigation
measures completely at the early stages of vaccination may lead to a dramatic
increase in the disease burden. Therefore, even though mass vaccination
programs have already started all around the world, mobility restrictions and
other NPIs are still of principal importance in the control of the COVID-19
pandemic. Furthermore, the simulations also suggest that it may be more
desirable to employ a vaccine with low efficacy but reach a high coverage
than a vaccine with high effectiveness but low coverage levels. This supports
the hypothesis that delaying the second dose and prioritizing giving the first
doses of vaccine to more individuals will be more optimal to mitigate the
COVID-19 epidemic.
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Supplementary Material: Estimating the impact of
non-pharmaceutical interventions and vaccination on
the progress of the COVID-19 epidemic in Mexico: a

mathematical approach

S-I. Mathematical properties of the model

The biologically feasible region for model (1) is
O={(SV.E.E, A LR,D)€R,:S+V+E+E+A+I+R+D=N}.

Clearly, the region 2 is positively-invariant, that is, for a well-defined initial

condition that starts in €2, the solution remains in €2 for all ¢ > 0. Therefore,

the model is both epidemiologically and mathematically well posed [S12].
System (1) presents a continuum of disease-free equilibria of the form

Ey=(S,V,E,E, A1, H R, D)= (5,V*0,0,0,0,0,0,0),

where S*, and V* are the proportions of non-vaccinated and vaccinated sus-
ceptible at the initial time. An straightforward computation allow us to ob-
tain the basic reproduction number Ry = (1—p)Sa/va+pB:/(y+n+u). Note
that, by definition, Ry assumes a fully susceptible population and, hence, it
cannot be modified through vaccination campaigns. To examine the effects
of vaccination and non-pharmaceutical interventions, the more appropriate
measure to use is the effective reproduction number R, [S9].

We obtain R, taking a next-generation approach [S10]. The matrix of
new infections F and the matrix of changes in the infection status V are
given by:

00 faS*/N* BrS*/N*
o 00 B = VYN (- VN
00 0 0
00 0 0
and
k 0 0 0
V - 0 k i 0 0
—~(1=pk —(1-pk 7a 0
—pk —pk 0 v+n+v



The next-generation matrix is K = FV~! and the effective reproduction
number is the spectral radius R, = p(K). If the symptomatic fractions
satisfy p = p, it is easy to see that R, = (S*/N*+ (1 —¢)V*/N*)Ry, and in
the absence of vaccination R, = (S*/N*)Ry. Therefore, we approximate the
time-varying effective reproduction number as the product of the proportion
of the susceptible among the effective population size at the beginning of
each month, i.e. R, = (Sy/N.)Ry (see also [S13]). Let us note that using an
explicit formula for R, based on the dynamic of the model means that the
same assumptions are taken into account. That is, the value of R. includes
the postulates about the non observed dynamic. Although it may produce
discrepancies with other ways of calculating it, the monthly computation of
R. allows us to assess the efficacy of NPIs implemented. In section 2.2, we
obtain a predictive marginal for R. based on the marginal posterior for S
and the predictive marginal of Ry. As a consequence of the Theorem 2 in
[S32], we establish the following result regarding the local stability of the
disease-free equilibrium.

Theorem S-1.1. The continuum of disease-free equilibrium of system (1)
given by Eqy 1s locally asymptotically stable if the effective reproduction number
satisfies R < 1 and unstable if R, > 1.

S-1I. Bayesian Inference

To perform the parameter inference, we first retrieved some of the model
parameters from the literature and epidemiological data on COVID-19. The
incubation period of COVID-19 is on average 5-6 days, but can be as long
as 14 days, we choose the average estimation 1/k = 5.1 days [S2]. There is
substantial variation in the estimates for the infectious period. Some studies
provided an approximate median infectious period for asymptomatic cases of
6.5 — 9.5 days and a potential maximum infectious period of 18 days in the
symptomatic cases [S6]; here, we assume 1/v4 = 1/v = 7.0 days. Mortality
data shows that most deaths come from hospitalized patients [S26]. Hence,
we assume that m = 10u, so the mortality rate is higher in the hospitalized
class than in the symptomatic class. Recent studies suggest that at least one
third of SARS-CoV-2 infections are asymptomatic [SOran and Topol], thus,
we postulate the value p = 0.5. With respect to the asymptomatic effective
contact rate, we assume the relation 54 = 2; since symptomatic individuals
are the ones that develop severe conditions and therefore, on average, are



expected to have reduced mobility compared with asymptomatic cases. We
remark that some studies have found that completely asymptomatic individ-
uals will transmit the virus to significantly fewer people than a symptomatic
case [S17]. However, in our model the asymptomatic class A includes both,
completely asymptomatic and mild infections who do not attend a medical
center.

The initial value of the state variables (corresponding to March, 2020)
are fixed as follows: A(0) = 20, and R(0) = H(0) = D(0) = 0. The rest of
initial conditions, S(0), £(0), and I(0), are included in the inference process.
We assume the following model for new infections and new hospitalizations
data y;

y; ~ Poisson (Z;(x)) , i=0,...,k (S1)

where Z;(x) denote the predicted number of new cases between times j — 1
and 7, see [S21]. For the case of the infections in our model,

Il (x) = /t ’ pkE(x)dt (S2)

with E the exposed individuals given by system (1) at time ¢; and x the vector
of parameters to estimate. By assuming independence on the observations,
the likelihood function £(x) satisfies:

I=k =TI (71 (x ) )Y
o )

i y;!

(S3)

Analogously, we consider

2
I (x) = / nl(x)dt (S4)
tj 1
the incidence for the new hospitalizations. In the case of deaths, as at the
beginning of the epidemic there were only a few, we consider cumulative cases
and propose a Gaussian likelihood to fit this data.

We define by my(x) the prior distribution for x. We assume independence
of the parameters, hence

mo(x) = m(So) o (Br)m5 (Eo)mg (Io)mg () (). (S5)

We consider gamma distributions for each one. Recall that the gamma dis-
tribution is denoted by I'(«v, #) with « the shape parameter and § the inverse
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Figure S1: Marginal posterior for the parameters in x: (a) Ey, (b) Ip, (c) So, (d) 7, (e)
m and (f) 5.

scale parameter. If Z ~ T'(«, 3) then E[Z] = o/8 and Var[Z] = a/3?. We
propose
SO ~ F((l, b), B[ ~ F(]., ].), EO ~ P(?O, ].),

I ~T(20,1), n~T(0.1,1), m~T(0.1,1) (S6)

where a and b are chosen such that E[Sy] = 5.0e5 with an standard deviation
of 7.0e4. As the national lockdown was implemented in Mexico around March
25, we use data from March to estimate the baseline transmission rate before
the implementation of the lockdown and other NPIs. The posterior marginals
of the parameters in x are obtained using the t-walk [S8] and are shown in
Figure S1. It is natural to expect a lower contact rate for April and May as
a consequence of the lockdown. Since there was no vaccination in the early
phase of the pandemic, compartments V and E are not considered in the
inference.

The inference allows us to obtain a predictive marginal for state variables



(S,E,A,I,H, R, D) at the final date of March. These distributions will pro-
vide information to perform the inference in the next month. The mean of
these values will be used as initial condition of the model for the quantities
A H, R, D and the marginal predictive of S, F/, and I at March 31 will be
used as prior distributions for the inference of April. This process is repeated
to perform a parameter inference in a monthly way from April to December
(see Figure 1).
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