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Multi-feature Multi-Scale CNN-Derived COVID-19 Classification from
Lung Ultrasound Data
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Abstract— The global pandemic of the novel coronavirus
disease 2019 (COVID-19) has put tremendous pressure on
the medical system. Imaging plays a complementary role
in the management of patients with COVID-19. Computed
tomography (CT) and chest X-ray (CXR) are the two dominant
screening tools. However, difficulty in eliminating the risk of
disease transmission, radiation exposure and not being cost-
effective are some of the challenges for CT and CXR imaging.
This fact induces the implementation of lung ultrasound (LUS)
for evaluating COVID-19 due to its practical advantages of
noninvasiveness, repeatability, and sensitive bedside property.
In this paper, we utilize a deep learning model to perform the
classification of COVID-19 from LUS data, which could produce
objective diagnostic information for clinicians. Specifically, all
LUS images are processed to obtain their corresponding local
phase filtered images and radial symmetry transformed images
before fed into the multi-scale residual convolutional neural
network (CNN). Secondly, image combination as the input of
the network is used to explore rich and reliable features. Feature
fusion strategy at different levels is adopted to investigate
the relationship between the depth of feature aggregation and
the classification accuracy. Our proposed method is evaluated
on the point-of-care US (POCUS) dataset together with the
Italian COVID-19 Lung US database (ICLUS-DB) and shows
promising performance for COVID-19 prediction.

I. INTRODUCTION

The COVID-19 pandemic has increased the burden of
excess morbidity and mortality worldwide. The high trans-
missibility and long incubation time of the SARS CoV-2
virus increase the difficulty in containing viral spread. A
rapid diagnosis and severity classification in the early stage
of the disease can significantly reduce the risk of further
infections and help mitigate the excess morbidity and mor-
tality of critically ill patients. At present, the main detection
methods for COVID-19 infection are the genetic test (reverse
transcription polymerase chain reaction (RT-PCR)) [1] and
serology test. RRadiological assessment, based on CT and
CXR, has been incorporated to improve the management of
COVID-19 disease. However, difficulty in eliminating the
risk of disease transmission, radiation exposure, not being
cost-effective are some of the challenges for CT and CXR
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imaging [2]. CT scan can also be not performed bedside
limiting its use in the intensive care unit (ICU) settings.

Lung ultrasound (LUS) is non-invasive, rapid, repeatable,
and provides bedside imaging providing a safer alternative
to CXR and CT. As such, LUS use for rapid assessment
of the severity of COVID-19 pneumonia has been reported
[1]-[3]. However, early lesions or less obvious tissue changes
are difficult to distinguish by the human eyes. Furthermore,
differences in medical pathology around various regions
and the varied LUS experience of clinicians can result
in misdiagnosis. Thus, developing standardized systems to
report and interpret disease findings is a challenge with LUS
[2].

Artificial intelligence (Al)-based solutions in medical
imaging have demonstrated the potential to establish ob-
jective and unified interpretation standards. In [1] a new
convolutional neural network (CNN) architecture, termed
POCOVID-Net, was proposed. A VGG-16 architecture was
used as the backbone and was fine-tuned during network
training [1]. The reported average 3-class classification ac-
curacy was 89% [1]. In [4], a multi-task CNN architecture
was proposed. The network achieved an Flg.y, of 61%, a
precision of 70%, and a recall of 60% for risk prediction.

Although promising early results, CNN-based methods
for processing B-mode US data are affected by the image
acquisition settings and quality of the collected data [5].
Finally, the limited availability of COVID-19 LUS data is
also another bottleneck.

To address the above problems, we propose using a multi-
feature multi-scale CNN-based approach to achieve a more
accurate COVID-19 classification. Given that incorporating
local-phase image tissue features can improve the accuracy
of CNNSs [5] for processing B-mode US data, local phase US
image-based COVID-19 signatures are extracted for diverse
and robust representations. Then we adopted the feature-
fusion strategy to realize the effect of feature complement.
To enlarge the network perception dimensions for more
discriminative features of the input images, extra convolu-
tional layers with different-size kernels are used in our CNN
architecture. Our proposed approach is evaluated on 1752
scans obtained from 76 subjects.

II. METHODS

Our method mainly consists of two parts, local phase
features extraction and binary classification based on multi-
feature multi-scale CNNss. In this work, the use of local phase
information aims to enhance the appearance of lung tissues
and recover the pertinent tissue structure from LUS data.



The extraction of local phase image features also increase
the dataset size for training. The model applied for the clas-
sification task is based on the multi-scale two-dimensional
(2D) residual neural network (ResNet) architecture similar to
the one reported in [6]. Three different fusion architectures
are investigated during this work.

A. Local Phase Image Features

Image phase information is a key component in the inter-
pretation of a scene and has been used in various applications
for processing US data [5], [7]. In this part, we first obtain
the local phase energy feature image, denoted as LPE(x,y),
which is extracted using:

LPE(x,y) =Y |USpu1| —/US3,, +US3;5 (1)

sc

In the above formula, sc represents the number of filter scales
set to 2 throughout the experimental evaluation, and U Sy, is
the group of monogenic signal images computed using the
vector-valued odd filter (Riesz filter) [7] on band-pass filtered
LUS image, denoted as USg(x,y), as follows:

USM(X,y) = [USMI (xvy)7USMZ(xvy),USM3(xay)]
= [USB(xay)’USB(x’y)®hl(x7y)a 2
USB(x7y)®h2<x7y)]

where ® represents the convolution operation and A (x,y),
ha(x,y) are components in Riesz filter. For bandpass filtering
a-scale space derivative quadrature filters (ASSD) [7] are
used to output USp(x,y).

Then US signal transmission map is modelled with scat-
tering and attenuation information to get enhanced im-
age USg(x,y), with maximized visibility of high intensity
LPE(x,y) features inside a local region. A linear interpola-
tion model is selected to combine the two interactions:

LPE(x,y) = USa(x,y)USg(x,y) + (1 -USs(x,y))B ~ (3)

Here, LPE(x,y) is the local phase energy image, US,(x,y)
is the signal transmission map and USg (x,y) is the enhanced
image. B is a constant value representative of the tissue
echogenicity in the local region. Our aim is USg(x,y) and
we hope to get two different enhancement results with
different B value settings (60% and 90% of the maximum
intensity value of LPE(x,y)). Once the signal transmission
map US4 (x,y) is obtained using the well-established Beer
Lambert Law, USg(x,y) can be calculated according to
Equation (4):

LPE(x,y) — B
[max(US4(x,y),€)]°

0 is related to tissue attenuation coefficient, 17, and € is a
small constant to avoid division by zero. Throughout the
experimental evaluation n = 0.85, € = 0.0001. ASSD filter
parameters were kept same as reported in [7].

In Fig. 1, the two enhanced local phase images USg(x,y)
denoted as USg(x,y) and USg2(x,y) are shown. These two
enhanced images are used as the input for radial symmetry
tissue extraction. Fast radial symmetry transform algorithm is

USk(x,y) = +B )

Fig. 1. Qualitative results of local phase and radial symmetry-based image
enhancement and feature extraction methods. Top row: A regular lung.
Middle row: A bacterial pneumonia infected lung. Bottom row:A COVID-19
infected lung. All rows from left to right: LUS image US(x,y), local phase
enhanced images USg; (x,y) and USg>(x,y), radial symmetry transformed
images Sj(x,y) and Sz (x,y).

applied on the local phase images, aiming to detect points of
interest [7]. Fig. 1 shows radial symmetry images S (x,y) and
S>(x,y) corresponding to the local phase enhanced images,
USEgi(x,y) and USg2(x,y), it can be seen that the transfor-
mation highlights the points of interest that are characterized
by radial symmetry as well as high contrast.

B. Network Architecture

The multi-scale 2D ResNet is a light-weighted classifica-
tion network even though it simultaneously captures features
from multiple receptive fields. This network is composed of
three functional parts: 1) one convolutional layer for primary
feature map extraction, 2) multiple residual blocks with the
multi-scale convolutional layer, 3) a fully connected layer
with softmax activation function to act as a classifier. All
input images should be resized to 512 x 512 before fed into
the network. We investigate three different fusion architec-
tures with the US(x,y), USgi1(x,y), USga(x,y), S1(x,y), and
S2(x,y) images as an input.

Fig. 2 illustrates various network architectures. Since the
scale of the objects in the image is varies, we adopt multi-
scale receptive fields to focus on different scale information.
As shown in Fig. 2, three ResCNN blocks are basic com-
ponents in all designs to extract multi-scale features. They
have different receptive kernels, the sizes set to 3 x3, 5x 5
and 7 x 7. In every ResCNN block, there are three sub-
blocks and each sub-block contains two convolutional layers.
The skip connection is added in each sub-block to avoid the
degradation problem [5]. An average pooling layer follows
after the convolution operation to output the final feature
map. At the end of the network, a fully connected layer with
activation function is used to act as a classifier, with the input
of the concatenation of the final feature maps.

Feature-fusion function is utilized in different levels of
the CNN model to construct early-, mid-, and late-fusion
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Fig. 2. The various CNN architectures. Each convolutional layer has three parameters: kernel size, depth and stride. (a) The architecture of the early-fusion
CNN. US(x,y), USEg1(x,y), USga(x,y), S1(x,y) and Sy (x,y) images are fused at the pixel level to input the network. (b) The architecture of the mid-fusion
CNN. Five input images are separately processed by the initial convolutional block to output the corresponding primary feature maps. A concatenation
of these primary feature maps is processed through the network. (c) The architecture of the late-fusion CNN. Five input images are separately processed
through the whole network till the average pooling layer. All final feature maps are fused to input the fully-connected layer.

structures [4]. To achieve early-fusion, all the images are
concatenated at the pixel level to form input with more
channels. In the mid-fusion model, multiple input images
are input to the network separately, processed by the initial
convolutional layer to obtain corresponding primary feature
maps. Concatenation is performed to finish feature aggrega-
tion for the deeper extraction. Late fusion is operated before
the fully connected layer processing to fuse final feature
maps from each input image.

C. Data

The dataset used in this work was obtained from [1]
and [3] and consisted of 1276 COVID-19 LUS scans from
51 subjects, 254 bacterial pneumonia LUS scans from 13
subjects, and 222 LUS scans from 12 healthy subjects. All
selected images from two released datasets are in the form
of convex probe image. Bacterial pneumonia and healthy

LUS scans are joined as a non-COVID-19 class. Our task is
to perform binary classification. Before image enhancement,
all data is cropped into 334 x 334 squares for a purpose of
removing the non-relevant information.

D. Experiment Implementation

We perform 5-fold cross-validation to evaluate the per-
formance of our proposed method. During evaluation same
patient data was not included in the training and testing data.
The reported final results show the mean of the 5-fold cross
validation. All datasets maintain the same data distribution,
including the US(x,y) dataset and USg;(x,y), USE2(x,y),
S1(x,y), S2(x,y) datasets.

All CNN models are trained by using the cross-entropy
loss function and ADAM optimizer with a learning rate of
le —5. Classification performance is measured by four met-
rics: accuracy, precision, recall and F'l.,.. To evaluate the



TABLE I
CLASSIFICATION PERFORMANCE SUMMARY. BEST RESULT IS SHOWN IN BOLD

Precision
Method Accuracy . Recall F1 Score
Covid-19/Non Covid-19/Non | Covid-19/Non
US(x,y)(single feature CNN) 89.94% 92.48%/82.49% 93.98%/78.70% | 93.21%/80.46%
Early Fusion | 91.93% 95.18%/84.65% 93.76%/87.40% | 94.39%/85.52%
USg1(x,y) + USEg2(x,y) Mid-Fusion 90.91% 94.94%/81.69% 92.73%186.80% | 93.72%/83.56%
Late-Fusion 88.96% 92.12%/81.29% 92.99%/78.72% | 92.44%/79.39%
Early Fusion | 90.68% 93.09%/84.35% 94.33%/80.85% | 93.65%/82.17%
S1(x,y) + Sa2(x,y) Mid-Fusion 86.53% 87.35%/84.92% 95.85%/61.54% 91.27%1/69.50%
Late-Fusion 87.52% 89.70%/83.38% 93.62%170.46% | 91.48%/75.56%
Early Fusion | 88.60% 93.01%/78.21% 91.42%/81.70% | 92.09%/79.27%
US(x,y)+USEg1(x,y) + USga(x,y) Mid-Fusion 92.80% 93.28%/91.74% 97.18%/81.54% | 95.14%/86.03%
Late-Fusion 95.11% 94.93%/95.87 % 98.59%/86.05% | 96.70%/90.48 %
Early Fusion | 90.57% 93.51%/84.21% 93.89%/82.74% | 93.54%/82.50%
US(x,y) +US{E1}(x,y) + US{E2}(x,y) + S-{1}(x,y) + S{2}(x,y) | Mid-Fusion 88.79% 92.37%179.50% 92.55%179.20% | 92.37%/78.80%
Late-Fusion 89.33% 92.26%/82.15% 93.25%/79.05% | 92.69%/80.16%

effectiveness of image processing methods and feature-fusion
strategies, we compare the results of just using US(x,y)
image as the input and the combination between two groups
of processed images (USg (x,y) and USga(x,y), S1(x,y) and
S2(x,y)). Furthermore, we investigate the accuracy of the
model by using 5 kinds of images as input.

Experiments are implemented in the PyTorch framework
with an Intel Core GPU at 3.70 GHz and a NVIDIA GeForce
GTX 1080Ti GPU.

III. RESULTS

Quantitative results of our proposed method are presented
in Table 1. Our proposed multi-scale network achieves an
average classification accuracy of 89.94% when using only
LUS data (US(x,y)). The average accuracy increases to
91.93% when using enhanced images USg(x,y), and 90.68%
when using radial symmetry images S(x,y) (Table 1). The
best performance was obtained when combining the LUS
US(x,y) images with the enhanced images USg(x,y), where
an average accuracy of 95.11% was obtained. The compar-
ison among results of the first three sets of experiments
demonstrates that local phase feature is beneficial to enhance
tissue characteristics for network learning, especially, feature
fusion performed in the early stage. As seen in Table 1 the
results present that late-fusion design obtains the highest
accuracy (95.11%), Flgore (96.70%) significantly outper-
forming the other fusion operations in these two metrics.
When all the image features were combined early fusion
architecture obtained the best results compared to other
fusion networks investigated. We further observe that by
using local phase image features the performance of the
network for classifying non-COVID-19 data is also improved
(Flscore of 90.48% vs 80.46%).

IV. CONCLUSION

We proposed to apply a novel CNN-based method to
achieve accurate COVID-19 prediction from LUS. Quantita-
tive and qualitative results confirm that the use of local phase
information and multi-feature multi-scale CNN contributes
to improved COVID-19 classification performance in LUS
data. Fusing LUS features and local phase features at a

late stage gives the highest accuracy reaching 95.11%, at
the same time, other metrics prove a balanced classification
capability of the model. In most cases, early-fusion strategy
shows a better classification performance. Our future work
will include the evaluation of the proposed method on a
larger scale dataset. We also would like to extend our network
for multi-class classification for differentiating regular pneu-
monia from COVID-19. Finally, optimization of the local
phase image filter parameters based on CNN performance
will be another future work.
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