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Abstract. In this article, we propose a mathematical model –based on
a cellular automaton– for the redistribution of patients within a network
of hospitals with limited available resources, in order to reduce the risks
of a local/global collapse of the healthcare system. We attempt at de-
veloping a conceptual tool to support making rational decisions relevant
to the optimisation of the allocation of patients into accessible medical
facilities. The strategy is based on a version of the Abelian Sandpile
model for the Self-Organised Criticality, with the idea of testing the
paradigm for the management of patients among the COVID-19 hospi-
tals in Italian regions. In particular, we compare the novel proposal to
the standard management of connections between hospitals, showing a
number of advantages at a local and global level, by means of a reli-
able indicator function introduced for measuring the effectiveness of the
allocation strategies.

1. Introduction

Since the beginning of 2020, people from all parts of the world are strug-
gling with the COVID-19 coronavirus pandemic, which has led to a hundred
million of infections and over 2 million deaths worldwide [20, 49]. The health
emergency is not over yet and it will take months before being under control,
possibly becoming endemic among most of the world population [32].
The current data suggest the paramount importance of acting promptly, and
especially for trying to reorganize the medical facilities in order to avoid satu-
ration of the critical care capacity in the various territories (refer to Figure 1
for the evolution of employment of the intensive care units in Italy). Indeed,
several countries have been experiencing recurring epidemic waves, with a
consequent worsening of the social and economic conditions, thus increasing
dramatically the pressure on the healthcare systems.

The emergence of infectious diseases has to be considered as an inher-
ent property of human and animal populations, which cannot be generally
avoided and/or foreseen: before the present COVID-19 emergency, SARS
(2002-2004) and influenza A/H1N1 (2009-2010) are other recent notable in-
cidents [50, 51].
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Figure 1. Occupancy level (aggregate data) of intensive care
units in the Italian healthcare system.

Most epidemics are characterised by outbreaks in localized geographical ar-
eas, and there may be no pharmaceutical solutions already available to safe-
guard the people’s health when the disease begins to spread largely around.
Moreover, the development of effective vaccines typically takes a rather
long time, and therefore temporary alternative strategies must be imple-
mented (quarantine, travel restrictions, activities closing, social distancing,
face masks obligation, ...) However, the demand for specific healthcare facil-
ities such as hospitals consistently increases, reaching and sometimes exceed-
ing critical levels. For example, in the case of COVID-19, the saturation of
intensive care units depends on the amount of patients requiring mechanical
support for ventilation and proper equipment, so that any healthcare system
can be overwhelmed if the number of severe cases becomes very high (refer
to Figure 2 for the present-day situation of intensive care units in Italian
regions).

In that context, the rapid filling of the so-called COVID-19 hospitals in
the areas most affected by the disease represents a serious danger while
dealing with sudden emergencies at different scales (villages, cities, regions,
countries). Hence, it is compelling to develop new arrangements of the
healthcare system, for optimizing the overall structure especially in terms
of an efficient distribution of patients among the most suitable facilities.

In this article, we present innovative intervention options, by comparing
the standard organisation of the Italian healthcare system with a novel pro-
posal based on the Abelian Sandpile paradigm. We provide a systematic
approach for an improved planning of the healthcare system by means of
a mathematical model for the self-organisation of critical issues, which is
capable to achieve some specific optimization inside the hospital manage-
ment. In particular, we aim at reducing the risks of a local/global collapse
of hospitals in times of crisis, while improving their functioning in normal
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Figure 2. Saturation of intensive care units in the Italian regions
(updated to January 23, 2021). Source: Il Sole 24 Ore – elaboration
on data from the Italian Civil Protection Department

times. More specifically, the basic model is grounded in the framework of
cellular automata and postulates a large network of links between hospitals
in a cooperative style of communication. Unfortunately, such connections
are currently very limited, which drastically restricts the possibilities of real-
location for the supernumerary patients, and the strong urgency to enhance
the hospital network is an important conclusion of the present analysis.

The content of this article is organized as follows.
In Section 2, we introduce the Abelian Sandpile paradigm, with a short
description of its basic concepts and properties. Section 3 focuses on the
adaptation of such paradigm to build up a novel proposal for the organisation
of the healthcare system. In Section 4, we provide a gallery of examples
aiming at illustrating how the proposed model works in the present context
of COVID-19 epidemic. More specifically, we analyze two cases relevant to
realistic applications: the central and peripheral outbreaks. The article is
concluded by Section 5 which includes some generalisations of the model
and (provisional) conclusions.

Abbreviations

ASM – Abelian Sandpile Model
SOC – Self-Organized Criticality
CAM – Cellular Automaton Model
SRH – Sandpile with Redistribution to the Hub
SID – Sandpiles with Internal Dissipation

2. Abelian Sandpile paradigm

The notion of Self-Organized Criticality (SOC) was originally introduced
by Bak, Tang and Wiesenfeld [4, 5] starting from a basic example proposed as
a model for sandpiles (we refer to [3, 22, 37] for a general introduction to this
broad subject). Since then, the concept has been expanded in many different
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directions, spanning from classical topics of physics (sandpile avalanches [27],
distribution of earthquakes [35, 47], amplitude of solar flares [39]) to less
standard economic and socio-political contexts [2, 7, 9, 13, 24, 38, 42, 44, 52],
passing through computer networks and biological applications [1, 40, 53,
15]. At the same time, a huge effort to extend the mathematical tools to deal
with theoretical questions has been made, thus contributing to drive SOC
into an extraordinary crossroads of probabilistic approaches, graph theory,
algebraic geometry, mathematical analysis and optimisation [6, 8, 10, 11,
12, 23, 28, 41].

2.1. SOC and Sandpiles. The original application concerns with model-
ing of sandpiles, which are regarded as a manageable prototype of SOC, and
fundamental contributions have been made by Dhar [17, 16, 18] notably in
showing the crucial property of commutativity. On this account, the ad-
jective Abelian has since been added to the technical terminology, leading
to the actual meaning of Abelian Sandpile Model (ASM). Nevertheless, as
usual in the most active fields of science, the terminology is not unique,
and indeed similar topics are explored under different names (avalanches,
chip-firing games, forest-fire models, parking functions, probabilistic aba-
cus, Rotor-Router or Eulerian-walker models, ...) with more or less the same
meaning. We refer to [14, 19, 29, 30, 36] for introductory presentations of
the ASM and its various applications.

We are particularly interested to the load balancing property, which de-
notes the method of distributing a set of tasks across a group of resources
with the purpose of making their overall processing more efficient by balanc-
ing the workload of each operating unit. In the abstract formulation, units
are represented by vertexes/nodes of a graph/network, with the correspond-
ing connections represented by edges/links. The objective is to balance the
loading process by allowing nodes to exchange particles with their neighbors
through the incident edges.
For the problem covered in this article, we build a specific ASM with critical
height provided by the capacity of the medical facilities, and we propose to
apply the Abelian Sandpile paradigm to achieve a methodical and efficient
distribution of patients across the hospitals, in order to maintain the oc-
cupancy below the saturation level for dealing with eventual sudden and
unexpected emergencies.

A sandpile is also a type of Cellular Automaton Model (CAM), namely a
discrete mathematical system fulfilling the following essential conditions:

1. the evolution takes place without external interventions;
2. the overall structural development depends only on local rules.

To a large extent, the CAM is capable of simulating the dynamics of complex
systems which are disposed to organize themselves through unstable critical
states until reaching a stable configuration. In addition, the CAM imple-
mentation makes it possible to generate global coherent patterns starting
from suitable local instructions, without any external supervisor in charge
for understanding the process in its entirety [31, 43, 48].
In practical applications, each restricted portion of space contains a finite
number of cells, which assume a finite set of (time-dependent) states. The
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initial configuration z̄0 is the combination of a ground state configuration
z0 with some perturbation w, and for instance

z̄0 = z0 + w .

After a given time interval ∆t > 0, the system typically comes to a new
state z1, designated final configuration, which is determined by the changes
of state of the single cell together with all the others, according to the
preliminarily established series of (local) rules. Therefore, the evolution is
described by means of a function Φ mapping some input z̄0 defined (from
z0 and w) over the graph/network Γ to an output z1, as specified by the
simple formula z1 = Φ(z̄0).

It is worth stressing that, in order to properly manage the patients be-
tween hospitals of the healthcare system, an optimal underlying ethical-
cooperative paradigm has to be stipulated [34].

2.2. Sandpiles on a general network. We start by recollecting some
basic definitions in graph theory [45, 25].

Definition 1. A graph (or network) is a pair Γ = (X,E) where X is a
set whose elements are called vertexes (or nodes) and E is a set of paired
vertexes called edges (or links). A rooted graph (or pointed graph) is
a graph in which one vertex, denoted by x∗, is distinguished as the root of
the graph.

In what follows, the root x∗ of the graph is also referred to as the hub,
coherently with the subsequent meaning of the specific application to the
healthcare system.

Definition 2. An adjacent vertex y ∈ X of x ∈ X is a vertex which is
connected to x by an edge, so that (x, y) ∈ E. The neighbourhood I(x)
of a vertex x is the subgraph composed of the vertexes adjacent to x and all
the edges connecting vertexes adjacent to x. The degree (or valency) of
a vertex x, denoted by deg(x), is the number of edges which are incident to
the vertex x.

Let the graph Γ be connected, finite (with a finite number of vertexes
denoted by x1, x2, . . . , xp), simple (i.e. there are no loops connecting any
vertex with itself) and undirected (i.e. the edges are bidirectional). We
assume that a stock of identical particles is initially allocated at any vertex
xi of the graph Γ. The configurations z0, z̄0 and z1, collecting the number of
elements located at xi for any i, are natural-valued functions defined on the
graph. The rules of the evolution are established to guarantee stability of
the sandpile dynamics, starting from the definition of the height function
given by z : X → Np (refer to Figure 3 for the graphical representation of
a sandpile on a two-dimensional Cartesian grid).

Definition 3. The height zi = z(xi) is unstable (at xi ∈ X) if zi ≥
deg(xi), where deg(xi) is the degree of the vertex xi. Otherwise, the vertex
is stable.
A stable configuration is a configuration of vertexes which are stable for
any index i. A maximum stable configuration (or minimally stable
state) is a configuration in which all the vertexes have a height zi of one unit
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Figure 3. A simple sandpile with variable height (on a two-
dimensional Cartesian grid)

lower than the corresponding threshold value deg(xi). An almost stable
configuration is a configuration of vertexes which are stable for any index
i different from the root, and a maximum almost stable configuration
is defined accordingly.

In that framework, an unstable vertex is forced to topple over its neigh-
bouring vertexes, thus causing a change of state in the entire configuration.

Definition 4. A toppling (or firing) from the vertex xi is the mapping Ξ
from the graph Γ to itself determined by the following (local) rules:

Ξ(z)j = zj −∆i→j with ∆i→j :=


deg(xi) if xj = xi

− 1 if xj ∈ I(xi)

0 otherwise

and ∆i→j is called the toppling matrix [17].

In principle, different stability criteria could be proposed involving values
other than the degree deg(xi) of the vertex xi, and modified redistribution
criteria could also be considered, but we focus on the above definitions for
the sake of simplicity in presentation.

The addition of a particle to the sandpile is schematized by summing
to the ground state configuration z0 = (z01 , z

0
2 , . . . , z

0
p) the vector δi with 1

at some fixed index i and zeros elsewhere. By iterating this procedure m
times for possibly different choices of the index, the initial configuration z̄0

is finally given by z0 + w with w = δi1 + δi2 + · · · + δim . It is a straight-
forward consequence that the operation of adding particles to a sandpile is
associative. Moreover, the final configuration z1 resulting from the evolu-
tion is independent of the order in which the topplings are performed, and
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therefore the operation of toppling is commutative [17].
As an illustrative case, we assume that deg(xi) = deg(xj) for two adjacent
vertexes xi and xj . Then, we consider a sandpile in which both xi and xj
are at their critical height, that is zi ≥ deg(xi) and zj ≥ deg(xj). Accord-
ing to the dynamics described above, a toppling from the vertex xi causes
the vertex xj to become unstable, and viceversa, and the sandpile comes to
a configuration in which the height zk for some k ∈ {1, 2, . . . , p} increases
by a value 4i→k +4j→k. Such procedure being symmetrical, by applying
this argument repeatedly, we conclude that the same stable configuration
is reached irrespective of whether xi or xj is toppled first, and in general
regardless of the sequence in which unstable vertexes are toppled.

2.3. Two-dimensional Cartesian grids. We focus on the simple case of
a two-dimensional Cartesian grid, with two standard schemes for adjacent
vertexes given by the von Neumann neighbourhood, consisting of the four
cells obtained moving one step towards North/East/South/West (refer to
Figure 4(left)), and the Moore neighbourhood, which includes also the four
diagonal cells (refer to Figure 4(right)). Of course, selecting a more general
network provides a higher degree of flexibility and allows to closely represent
the connections between various medical facilities of the healthcare system
(refer to Figure 5).

Figure 4. The von Neumann neighbourhood (left) of the (blue)
central cell (an extended neighbourhood includes also the pink
cells) and the Moore neighbourhood (right)

We consider a special grid of p = n2 cells organized over a squared matrix
of size n × n, where the particles are dropped randomly being allowed to
stack on top of each other, so that a configuration of the sandpile is described
by an element of the space of natural-valued matrices

Mn(N) :=
{
A ∈ Rn×n : aij ∈ N for any i, j = 1, 2, . . . , n

}
.

The position of each vertex xi (with its corresponding height zi ∈ N) is
determined by the index i ∈ {1, 2, . . . , p = n2} according to the following
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common practise:
1 2 3 . . . n

n+ 1 n+ 2 n+ 3 . . . 2n
2n+ 1 2n+ 2 2n+ 3 . . . 3n

...
...

...
. . .

...
n(n− 1) + 1 n(n− 1) + 2 . . . . . . n2


For the von Neumann neighborhood, we have deg(xi) = 4 for any index i
associated with an element of the bulk of the matrix, and for instance

I(xn+2) =
{
x2 (North), xn+3 (East), x2n+2 (South), xn+1 (West)

}
.

Similarly, for the Moore neighborhood, we have deg(xi) = 8 for any index i
associated with an element of the bulk of the matrix, and for instance

I(xn+2) =
{
x2 (North), x3 (North-East), xn+3 (East), x2n+3 (South-East),

x2n+2 (South), x2n+1 (South-West), xn+1 (West), x1 (North-West)
}
.

Example 1. We analyze the simple case n = 3 (p = n2 = 9) with the von
Neumann neighbourhood. By combining the perturbation w = 4 δ5 with
the ground state configuration z0 = 0, we obtain the following initial and
final configurations

z̄0 = 0 + 4 δ5 =

0 0 0
0 4 0
0 0 0

 −→ z1 = Ξ(z̄0) =

0 1 0
1 0 1
0 1 0


As expected, the threshold value deg(x5) = 4 is reached at the central
cell, thus inducing a destabilisation of the corresponding vertex, with the
consequence that four particles are poured into the adjacent vertexes –the
elements of the von Neumann neighbourhood– to compose a stable final
configuration.

As a matter of fact, the toppling from an unstable vertex changes the state
of the adjacent vertexes, sometimes causing the appearance of instabilities
at some other vertex. Then, subsequent topplings over the adjacent vertexes
are generated, triggering a sequence of events which are evocative of sandpile
avalanches and stopping only when all the cells return strictly below their
threshold capacity.
If the graph is infinite and connected, with a finite number of particles,
all vertexes become stable after a finite number of topplings; moreover, it
can be proven that the final (stable) configuration z1 depends solely on the
initial configuration z̄0, independently of the order in which the topplings
are performed [17].
On the other hand, if the graph is finite, appropriate boundary conditions
must be implemented: assuming that the particles are evacuated from the
boundaries, an analogous result of stability holds [14], but other types of
boundary conditions may not guarantee the same property. During the
operation of toppling, no particles are created as they are redistributed to
neighbouring cells. For dissipative boundary conditions, the toppling can
actually lead to the loss of particles if it occurs on a boundary cell, and we
refer to this case as open boundary conditions.
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3. Application to healthcare system management

In this article, we pursue the idea of applying the Abelian Sandpile par-
adigm to the management of patients among the COVID-19 hospitals in
Italy.
The current organisation assigns responsibility for the healthcare system to
the regions, which are restricted territorial bodies with their own statutes,
powers and functions established by the Italian Constitution. We refer to
the Lazio region when selecting (the order of magnitude of) the number of
medical facilities relevant to the numerical simulations. More specifically,
the healthcare system of the Lazio region is composed of about 100 hospi-
tals, mostly located in the metropolitan area of Rome, which are structured
within a network of reciprocal connections [33].

Figure 5. Arrangement of hospitals on a general unstructured
and undirected network.

In that framework, the height function of the nodes (hospitals) indicates
the number of hospitalised patients, and the links between different nodes
represent the possibility of a direct exchange of patients (that is subject
to constraints of geographical proximity, together with inherent organisa-
tional requirements of the connecting medical facilities). The node of the
network exhibiting the largest number of links is the hub, which usually
takes on a strategic function for the whole system, whilst the nodes with
fewer links identify the hospitals with unfavorable geographical location and
reduced capacity/functionality (each hospital having different resources, in
the general case the threshold value changes from node to node).

3.1. Reassignment of outgoing particles. We have already discussed
about the crucial role played by the boundary conditions associated with
the ASM settled on finite networks, and indeed the existence of stable con-
figurations is strongly influenced by the presence of a dissipation mechanism
such as the open boundary conditions.
Because the loss of particles through the edge of the network and the hy-
pothesis of an infinite network are unrealistic assumptions for practical ap-
plications, we have to implement a suitable reassignment law for particles
generating a critical height at some boundary cells. Hence, we are induced to
redistributing the outgoing particles to the root of the network, namely the
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hub, which is typically a collecting node of the healthcare system. There-
fore, we call the resulting process a Sandpile with Redistribution to the Hub
(SRH), and we notice that actually the SRH is equivalent to the ASM when
there are no topplings occurring at the edge of the network.

In particular, for two-dimensional Cartesian grids with odd size, we in-
corporate the reassignment of outgoing particles from cells toppling at the
border of the matrix by proposing that they are reallocated to the central
cell. Furthermore, in case the threshold capacity is reached in several cells at
the same time, we impose that the first cell to topple is always the hub, and
then additional toppling is performed from the other nodes. In particular,
the hub is allowed to topple only once, at the very beginning of the toppling
procedure.

We summarize the essential steps of the CAM workflow –which turns out
to be also the implementation scheme of the numerical codes– as follows.

1. Initialisation. We choose a (stable) ground state z0 = (z01 , z
0
2 , . . . , z

0
p)

which satisfies the condition that z0i < deg(xi) for any index i ;
2. Inflow. We combine the ground state z0 with a perturbation w =

(w1, w2, . . . , wp) which indicates the number of new patients requir-
ing hospitalization, and we obtain the initial configuration z̄0 =
z0 + w ;

3. Hub toppling. If z0∗ ≥ deg(x∗), the hub performs a toppling towards
the adjacent nodes of its neighbourhood I(x∗) ;

4. Additional toppling. If z0i ≥ deg(xi) for some xi 6= x∗, these nodes
perform (a sequence of) topplings until reaching an almost stable
configuration z1 = Φ(z̄0) ;

5. Iteration. We reinitialize the ground state with z0 equal to z1, and
we restart from 2.

3.2. Comparison with the standard healthcare system manage-
ment. In order to to compare the efficiency of the novel proposal with
the standard organisation of the Italian healthcare system, we provide a re-
formulation of the current management of connections between hospitals in
terms of the CAM paradigm.
Perhaps surprisingly, the connection between medical facilities is presently
mainly determined by their geographical proximity, corresponding to the
basic adjacency of nodes. If a patient comes to a hospital where there are
no places available, because the threshold capacity has been reached, then
the single patient is reallocated to the nearest hospital with available places,
and the reassignment is limited to the patients exceeding the threshold value.
That being the case, the redistribution of patients is handled manually at
each hospitalization, without foreseeing the possibility of repeated similar
events which are instead highly probable during sudden and unexpected
emergencies.

We summarize the essential steps of the standard workflow as follows, by
assuming the reassignement law from the edge of the network at the hub as
in Section 3.1.

1-2. Initialisation/Inflow. We proceed as in Section 3.1 ;
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3. Hub redistribution. If z0∗ ≥ deg(x∗), the hub reallocates only the
exceeding patients to the adjacent medical facilities, starting from
the less crowded ones (in case of equal crowding, a random choice is
operated) ;

4. Additional redistribution. If z0i ≥ deg(xi) for some xi 6= x∗, the
redistribution procedure is repeated for these nodes, until reaching
an almost stable configuration z1 = Ψ(z̄0) ;

5. Iteration. We reinitialize the ground state with z0 equal to z1, and
we restart from 2.

We illustrate the comparison by considering the following simple example.

Example 2. Let the healthcare system be represented by a two-dimensional
Cartesian grid of size 3× 3, with the von Neumann neighbourhood (so that
deg(xi) = 4 for any index i) and reassignment of outgoing particles to the
hub located at the central cell. We choose

z0 =

2 1 3
1 3 1
1 0 2

 and w =

0 0 0
0 1 0
0 0 0

 ,

so that

z̄0 = z0 + w =

2 1 3
1 4 1
1 0 2


and the initial configuration is unstable. The standard organization manages
this critical situation by moving a single particle (patient) from the central
cell towards one in the von Neumann neighbourhood, and preferably the
South cell, to obtain

Ψ(z̄0) =

2 1 3
1 3 1
1 1 2

 ,

where Ψ denotes the evolution mapping of the grid according to the stan-
dard approach. Then, we reinitialize the ground state with Ψ(z̄0) and the
perturbation w is chosen as above, so that the configuration Ψ(z̄0) + w is
also unstable with respect to the central cell. By selecting randomly one of
the neighbouring cells, another single particle is transferred, and after two
additional iterations, the system reaches the final configuration

Ψ(z̄0) =

2 2 3
2 3 2
1 1 2

 .

On the other hand, the ASP paradigm suggests to transfer at the same time
all the four patients initially allocated to the hub towards the von Neumann
neighbourhood, to obtain

Φ(z0) =

2 2 3
2 0 2
1 1 2

 .

Finally, under the assumption that new patients are always collected at the
hub, the system can accept exactly 3 more particles from the additional
iterations, before reaching a critical situation as before. Of course, it could
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be argued that, being the final configurations the same, there would be no
obvious evidence to prefer the novel approach to the standard organization.
However, the deciding factor is that we have unified within a single time-
step the efforts for reallocating patients among the medical facilities, which
is usually regarded as a source of stress for the overall healthcare system.
Hence, we have left the structure time to reorganize without suffering a
constant state of emergency, which is precisely the issue of the so-called
predictive logistics.

4. Examples and numerical simulations

We collect numerical results from a selection of preliminary cases, which
are nevertheless useful to understand the alternative methods of healthcare
system management provided by the two approaches described in Section 3,
and their inherent dynamics. We consider two-dimensional Cartesian grids,
which are arranged into n × n (squared) matrices with the Moore neigh-
bourhood, so that deg(xi) = 8 for any index i ∈ {1, 2, . . . , p = n2}, and we
assume the reassignment to the hub of outgoing particles from the edge of
the network as in Section 3.1.
We recall that each cell/node of the grid represents a hospital, and the
height function reproduces the number of patients in the medical facilities,
expressed as the percentage of capacity already achieved.

We start by focusing on the possible outputs of a basic case consisting in
a single hospital originally attaining its threshold capacity, which is located
at the hub (central cell), with a (randomly chosen) stable ground state
configuration. To highlight possibly critical situations, we boldmark all
values above the threshold capacity, and we encircle the values 5, 6 and 7
dangerously close to the saturation level.

Example 3. For n = 3, the hospitals are p = n2 = 9, and we choose an
initial configuration with all new patients coming to the hub x5, given by
the perturbation w = 4 δ5, so that

z0 =

 2 3 1
5 7 2
4 3 3

 and z̄0 =

 2 3 1
5 11 2
4 3 3

 .

Because the hub has to manage a number of hospitalisations greater than its
threshold capacity, some patients must be transferred to adjacent facilities.
According to the standard strategy, only four patients need a different al-
location to be found among the neighbourhing cells, ending at the (stable)
configuration

Ψ(z̄0) =

 2 4 1
5 7 4
4 4 3

 .

As it is clearly seen, an additional iteration with w = 4 δ5 determines a new
unstable/critical configuration at the central node (with again four patients
in excess), demanding for a further reorganisation of the hub by means
of another transfer operation. On the other hand, by employing the SRH
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approach, we obtain a different outcome given by

Φ(z̄0) =

 3 4 2
6 3 3
5 4 4

 ,

such situation being more favorable in terms of load-balancing since an ad-
ditional iteration with perturbation w = 4 δ∗ does not produce any unstable
configuration. Moreover, there is still a certain amount of available places
at the hub, and therefore the novel proposal solves the criticalities possibly
generated by an emergency.

Despite its simplicity, the above example suggests to attribute to each
configuration the value of a given functional, aiming to provide an easily
readable indicator of the effectiveness of the allocation strategy. This is nec-
essarily a very delicate issue.
As a first attempt, a possible choice is to count the total number of med-
ical facilities attaining a given fraction of their threshold capacity, which
are denoted by critical points. Such choice is actually quite questionable,
since it does not take keep memory of the value of incoming patients at the
beginning of the iteration.
A different (rough) quantitative measure of the system management effi-
ciency is

F(w, z) :=
w∑
j wj

· z ,

which intends to evaluate the risk that a new patient comes to a given
location, taking into account the previous history of the system (in this
case, the effect of the perturbation w).

For the case illustrated in the Example 3, the function F equals the state
of the hub x5, so that

F(w, z̄0) = z̄05 = 11, F
(
w,Ψ(z̄0)

)
= Ψ(z̄0)5 = 7, F

(
w,Φ(z̄0)

)
= Φ(z̄0)∗ = 3 .

The minimum value is achieved for the configuration Φ(z̄0) corresponding
to the SRH approach (or, equivalently, to ASM).

Example 4. For n = 5, the hospitals are p = n2 = 25, and we choose an
initial configuration with all new patients coming to the hub x13, given by
the perturbation w = δ9 + δ12 + 4δ13 + 2δ14 + δ18 + δ19, so that

z0 =


1 2 4 2 5
2 4 2 3 1
3 2 7 2 3
2 1 4 2 2
4 2 1 5 4

 and z̄0 =


1 2 4 2 5
2 4 2 4 1
3 3 11 4 3
2 1 5 3 2
4 2 1 5 4

 .

According to the standard strategy, an admissible solution could be

Ψ(z̄0) =


1 2 4 2 5
2 4 4 4 1
3 3 7 4 3
2 3 5 3 2
4 2 1 5 4

 ,
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and the same observation previously done holds, that is such configuration
likely determines an instability located at the hub after a subsequent process
iteration, since the number of hospitalised patients is very close to the critical
threshold.
On the other hand, by employing the SRH approach, we obtain

Φ(z̄0) =


1 2 4 2 5
2 5 3 5 1
3 4 3 5 3
2 2 6 4 2
4 2 1 5 4

 ,

where the number of patients hospitalised at the hub is far away from the
critical level. Indeed, by computing the indicator function F at the different
outcomes, we deduce that

F
(
w, z̄0

)
= 6.7, F

(
w,Ψ(z̄0)

)
= 5.1, F

(
w,Φ(z̄0)

)
= 4.1 ,

since
∑

j wj = 10, and the smallest value is achieved by the configuration
resulting from the SRH approach; thus, such strategy must be preferred to
the standard one.

Next, we explore a case where two subsequent topplings occur.

Example 5. For n = 5, we choose the ground state and the initial config-
uration as follows,

z0 =


4 1 0 1 3
5 0 5 1 1
1 2 7 7 4
5 5 2 4 5
3 5 4 5 3

 and z̄0 =


4 1 0 1 3
5 0 5 1 1
1 2 11 7 4
5 5 2 4 5
3 5 4 5 3

 ,

where w = 4δ13. Then, according to the standard strategy, a final configu-
ration is given by

Ψ(z̄0) =


4 1 0 1 3
5 3 5 2 1
1 2 7 7 4
5 5 2 4 5
3 5 4 5 3

 .

For applying the SRH approach, we pass through an intermediate configu-
ration

4 1 0 1 3

5 0 + 1 5+1 1 + 1 1

1 2 + 1 11− 8 7 + 1 4

5 5+1 2 + 1 4+1 5

3 5 4 5 3


=


4 1 0 1 3
5 1 6 2 1
1 3 3 8 4
5 6 3 5 5
3 5 4 5 3

 ,
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in which the cell x12 is unstable, and finally we arrive at the final configu-
ration

Φ(z̄0) =



4 1 0 1 3

5 1 6+1 2 + 1 1 + 1

1 3 3 + 1 8− 8 4+1

5 6 3 + 1 5+1 5+1

3 5 4 5 3


=


4 1 0 1 3
5 1 7 3 2
1 3 4 0 5
5 6 4 6 6
3 5 4 5 3

 .

The matrices Ψ(z̄0) and Φ(z̄0) are represented in Figure 6 with different
colors assigned to cells, corresponding to the degree of saturation achieved.

Simulation of the current model Proposal

Number of full hospitals = 5
0 2 4 6 8 10 12 14
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full

(a) (b)
Critical points: 2 Critical points: 4
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3

4
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Figure 6. Model comparison from the Example 5: final configu-
rations Ψ(z̄0) (left) and Φ(z̄0) (right). The colors attached to each
cell/node represent its corresponding relative capacity (0=green,
1/2=yellow, 3/4=magenta, 4/5=red, 6/7=black)

At the bottom of each subfigure, we report the counting of critical points,
given by the number of cells with values 6 or 7. Although a quick glance
can make us suspect that the left configuration is preferable, the situation
is indeed different. In fact, first of all we distinguish the presence of two
almost critical values 7 inside the configuration plotted on the left, against
the presence of only one value 7 from the second approach. Furthermore,
the hub –the facility most at risk taking into account recent history– has
a value 7 in the first case, whilst a value 4 occurs in the second case, thus
making the latter situation preferable.

Finally, we compute the function F corresponding to the different config-
urations: since w/

∑
j wj is everywhere zero except at the hub, where it is

equal to 1, the values of F coincide with the values at the hub, which are
given by

F(w, z̄0) = 11, F
(
w,Ψ(z̄0)

)
= 7, F

(
w,Φ(z̄0)

)
= 4,
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suggesting again the advantages of configurations proposed by the SRH ap-
proach.

4.1. Simulation of multiple central outbreaks. We analyze the case
with more than one hospital in the same restricted area (including the hub)
which is concerned with new incoming patients. One might think of this
event as the emergence of multiple outbreaks within some smaller district
of a larger area. We consider a larger network, with n = 9, whose size is
comparable to the capacity of the healthcare system in the Lazio region in
Italy [33].

We consider the perturbation w = 2δ32+δ33+5δ41+2δ42 and the ground
state

z0 =



1 2 1 4 6 2 3 6 2
3 2 5 2 1 3 2 4 3
3 3 1 5 6 2 3 1 3
6 1 5 3 2 5 2 3 4
1 3 2 1 6 3 4 5 5
1 4 1 2 2 5 1 2 3
4 1 3 4 5 6 2 5 3
4 2 3 5 2 2 6 3 1
1 6 5 2 4 4 2 1 2


,

so that
∑

j z
0
j = 250 and

∑
j wj = 10, corresponding to the initial configu-

ration

z̄0 =



1 2 1 4 6 2 3 6 2
3 2 5 2 1 3 2 4 3
3 3 1 5 6 2 3 1 3

6 1 5 3 2 + 2 5+1 2 3 4

1 3 2 1 6+5 3+2 4 5 6

1 4 1 2 2 5 1 2 3
4 1 3 4 5 6 2 5 3
4 2 3 5 2 2 6 3 1
1 6 5 2 4 4 2 1 2



=



1 2 1 4 6 2 3 6 2
3 2 5 2 1 3 2 4 6
3 3 1 5 6 2 3 1 3
6 1 5 3 4 6 2 3 4
1 3 2 1 11 5 4 5 6
1 4 1 2 2 5 1 2 3
4 1 3 4 5 6 2 5 3
4 2 3 5 2 2 6 3 1
1 3 5 2 4 4 2 1 2


.
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Then, according to the standard strategy, a final configuration is given by

Ψ(z̄0) =



1 2 1 4 6 2 3 6 2
3 2 5 2 1 3 2 4 3
3 3 1 5 6 2 3 1 3

6 1 5 3 + 0 4 + 0 6+0 2 3 4

1 3 2 1 + 2 11-4 5+0 4 5 6

1 4 1 2 + 1 2 + 1 5+0 1 2 3

4 1 3 4 5 6 2 5 3
4 2 3 5 2 2 6 3 1
1 6 5 2 4 4 2 1 2



.

Hence, the central subgraph around the hub is composed by the elements3 4 6
3 7 5
3 3 5

 .

In the subsequent steps, any additional patients coming to the hub desta-
bilises the configuration. On the other hand, by employing the SRH ap-
proach, we obtain

Φ(z̄0) =



1 2 1 4 6 2 3 6 2
3 2 5 2 1 3 2 4 3
3 3 1 5 6 2 3 1 3

6 1 5 3 + 1 4+1 6+1 2 3 4

1 3 2 1 + 1 11− 8 5+1 4 5 6

1 4 1 2 + 1 2 + 1 5+1 1 2 3

4 1 3 4 5 6 2 5 3
4 2 3 5 2 2 6 3 1
1 6 5 2 4 4 2 1 2



,

and the corresponding central subgraph around the hub is4 5 7
2 3 6
3 3 6

 .

The difference between Ψ(z̄0) and Φ(z̄0) is transparent regarding, specifi-
cally, the number of patients hospitalised in the hub. A further iteration
with the same perturbation w would lead to a new critical situation for the
hub in the first case, but it does not in the second.

Figure 7 provides a representation of the two configurations Ψ(z̄0) and
Φ(z̄0

)
.

Counting the critical points in Figure 7 could give the (incorrect) impres-
sion that the standard approach has to be preferred with respect to the novel
proposal. But considering the indicator function F applied to z̄0, Ψ(z̄0) and
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Figure 7. Model comparison from the case of central areas out-
breaks: final configurations Ψ(z̄0) (left) and Φ(z̄0) (right). The
colors attached to each cell/node represent its corresponding rela-
tive capacity (0=green, 1/2=yellow, 3/4=magenta, 4/5=red,

6/7=black)

Φ(z̄0), we obtain

F
(
w, z̄0

)
= 7.9, F

(
w,Ψ(z̄0)

)
= 5.9, F

(
w,Φ(z̄0

)
) = 4.5,

as a consequence of the fact that memory of the dynamics –represented by
w– is now considered, and again the minimum value is achieved for the SRH
strategy.

4.2. Simulation of peripheral outbreaks. Next, we focus on the case
of outbreaks occurring in the vicinity of a node located at the edge of the
Cartesian grid. Specifically, we take n = 9 and the same ground state z0

of the previous example, and an inflow matrix of patients w given by the
submatrix (

5 2
2 1

)
located at the top-right corner of the null matrix. Then, the initial config-
uration z̄0 = z0 + w is given by

z̄0 =



1 2 1 4 6 2 3 11 4
3 2 5 2 1 3 2 6 4
3 3 1 5 6 2 3 1 3
6 1 5 3 2 5 2 3 4
1 3 2 1 6 3 4 5 6
1 4 1 2 2 5 1 2 3
4 1 3 4 5 6 2 5 3
4 2 3 5 2 2 6 3 1
1 6 5 2 4 4 2 1 2


,

with the cell above the threshold capacity located at position (1, 8). There-
fore, four patients are in excess and require a different reallocation. Among
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others, a possible output of the standard strategy is the final configuration
given by

Ψ(z̄0) =



1 2 1 4 6 2 5 7 4
3 2 5 2 1 3 4 6 4
3 3 1 5 6 2 3 1 3
6 1 5 3 2 5 2 3 4
1 3 2 1 6 3 4 5 6
1 4 1 2 2 5 1 2 3
4 1 3 4 5 6 2 5 3
4 2 3 5 2 2 6 3 1
1 6 5 2 4 4 2 1 2


.

On the other hand, by employing the SRH approach, we pass through an
intermediate state

1 2 1 4 6 2 4 3 5
3 2 5 2 1 3 3 7 5
3 3 1 5 6 2 3 1 3
6 1 5 3 2 5 2 3 4
1 3 2 1 9 3 4 5 6
1 4 1 2 2 5 1 2 3
4 1 3 4 5 6 2 5 3
4 2 3 5 2 2 6 3 1
1 6 5 2 4 4 2 1 2


,

to reach the final configuration

Φ(z̄0) =



1 2 1 4 6 2 4 3 5
3 2 5 2 1 3 3 7 5
3 3 1 5 6 2 3 1 3
6 1 5 4 3 6 2 3 4
1 3 2 2 1 4 4 5 6
1 4 1 3 3 6 1 2 3
4 1 3 4 5 6 2 5 3
4 2 3 5 2 2 6 3 1
1 6 5 2 4 4 2 1 2


.

Figure 8 provides a representation of the two configurations Ψ(z̄0) and
Φ(z̄0

)
, by indicating the level of saturation reached in each hospital.

Finally, the indicator function F defined at the beginning of Section 4
takes the following values for the different configurations,

F
(
w, z̄0

)
= 7.9, F

(
w,Ψ(z̄0)

)
= 5.9, F

(
w,Φ(z̄0

)
) = 4.4 ,

and this fact contributes to the advantages of the SHR approach.

5. Beyond the Abelian Sandpile paradigm

The mathematical model introduced in this article lays the foundation for
an optimisation of the healthcare system management. A notable feature
of the novel proposal is its scalability to various levels of description, and
also the possibility of improving the experimental simulation by including
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Figure 8. Model comparison from the case of peripheral out-
breaks: final configurations Ψ(z̄0) (left) and Φ(z̄0) (right). The
colors attached to each cell/node represent its corresponding rela-
tive capacity (0=green, 1/2=yellow, 3/4=magenta, 4/5=red,

6/7=black)

more realistic situations and different types of medical facilities (emergency
rooms, external care points, ...) into an integrated dynamical system.

5.1. Sandpiles with internal dissipation. In order to incorporate other
relevant elements into the SHR model, such as recovery or (unfortunately)
death of patients, we postulate an elimination mechanism inherent to the
system, which is translated in mathematical formalism by considering the
presence of some dissipation during the evolution.

For instance, we describe the effect of removing particles from the network
by a simple subtraction of a (randomly chosen, but possibly measurable)
distribution ζ = (ζ1, ζ2, . . . , ζp) with the obvious constraint that

0 ≤ ζi ≤ Φ(z0)i for any index i = 1, 2, . . . , p .

The modified model workflow is divided into the following steps.

1-2. Initialisation/Inflow. We proceed as in Section 3.1 ;
3-4. Hub/Additional toppling. We proceed as in Section 3.1 ;

5. Internal dissipation. We subtract the distribution ζ to the interme-
diate
configuration z1, leading to the final configuration Φ(z̄0) = z1 − ζ ;

6. Iteration. We reinitialize the ground state with z0 equal to Φ(z̄0),
and we restart from 2.

We refer to this modified model as Sandpile with Internal Dissipation (SID).

In the long run, after a large but finite number of iterations, a balance
between the inflow and outflow steps has also to be incorporated in order
to guarantee conservation of the total number of patients. In particular, it
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could be useful to add the hypothesis that

N∑
n=1

p∑
i=1

wn
i =

N∑
n=1

p∑
i=1

ζni ,

where N is the total number of iterations, with wn and ζn denoting the
inflow and outflow contributions at the time-step n, respectively. Indeed,
we notice that if the lefthand side is larger than the righthand side, the
whole system risks to undergo a finite time collapse, by reaching its total
capability –sum of the capacities of each single structure– in finite time.

Other interesting features can be added to provide the model with a
higher level of realism: for instance, the presence of some inertia to the
transfer process [26], giving preference to structures with a certain level of
hospitalized patients [21], or constrain additional bulk dissipation [46].

5.2. Conclusion and perspetives. From the analysis developed in this ar-
ticle, we observe that the standard healthcare system management typically
generates highly unstable and unbalanced configurations, where specific ge-
ographical areas with semi-empty hospitals alternate with others where all
medical facilities are saturated, especially during sudden and unforeseen
events like the spread of epidemics. Instead, following the SRH strategy for
optimized management of connections between hospitals, seems to produce
more sparse allocation of patients, which has to be considered as a preferable
configuration in terms of load-balancing.

On the other hand, it is crucial to improve the exchange of information
and to provide decision-making tools to the local structures, in order to
optimise the healthcare response in normal times and to avoid the collapse of
individual hospitals in times of crisis. There are many relevant consequences
in the socio-economic field: among others, we stress the riveting possibility of
the automation of health protocols, meaning to build an application capable
of learning something from the data autonomously, without receiving explicit
instructions from the outside.

Such conceptual experimentation could create a learning environment in
which policy makers may gain a better understanding of how the system
responds to their decisions, providing forecasts of potential different choices
and strategies. We are aware that a paradigm shift is required and we hope
to give a contribution to this respect. It is worth stressing that the agreement
with realistic experimental data is presently very limited. However, the
conceptual framework we have proposed in this article applies in principle
to many different contexts, and these research directions are currently being
explored.
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