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Abstract

The COVID-19 pandemic due to the novel coronavirus SARS CoV-2 has inspired remarkable break-

throughs in development of vaccines against the virus and the launch of several phase 3 vaccine trials in

Summer 2020 to evaluate vaccine efficacy (VE). Trials of vaccine candidates using mRNA delivery systems

developed by Pfizer-BioNTech and Moderna have shown substantial VEs of 94-95%, leading the US Food

and Drug Administration to issue Emergency Use Authorizations and subsequent widespread adminis-

tration of the vaccines. As the trials continue, a key issue is the possibility that VE may wane over time.

Ethical considerations dictate that all trial participants be unblinded and those randomized to placebo

be offered vaccine, leading to trial protocol amendments specifying unblinding strategies. Crossover of

placebo subjects to vaccine complicates inference on waning of VE. We focus on the particular features

of the Moderna trial and propose a statistical framework based on a potential outcomes formulation

within which we develop methods for inference on whether or not VE wanes over time and estimation of

VE at any post-vaccination time. The framework clarifies assumptions made regarding individual- and

population-level phenomena and acknowledges the possibility that subjects who are more or less likely to

become infected may be crossed over to vaccine differentially over time. The principles of the framework

can be adapted straightforwardly to other trials.

Key words: Crossover; Inverse probability weighting; Potential outcomes; Randomized phase 3 vaccine

trial; Waning vaccine efficacy
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1 Introduction

The primary objective of a vaccine trial is to estimate vaccine efficacy (VE). Typically, these trials are

double-blind, placebo-controlled studies in which participants are randomized to either vaccine or placebo

and followed for the primary endpoint, which is often time to viral infection, on which inference on VE

is based, where VE is defined as a measure of reduction in infection risk for vaccine relative to placebo,

expressed as a percentage.

Vaccine trials have become the focus of immense global interest as a result of the COVID-19 disease

pandemic due to the novel coronavirus SARS-CoV-2. The pandemic inspired unprecedented scientific

breakthroughs in the rapid development of vaccines against SARS-CoV-2, culminating in the launch of

several large phase 3 vaccine trials in Summer 2020. Trials in the US studying the vaccine candidates

using messenger RNA (mRNA) delivery systems developed by Pfizer-BioNTech and Moderna began in

July 2020 and demonstrated substantial evidence of VEs of 94-95% at interim analyses, leading the US

Food and Drug Administration (FDA) to issue Emergency Use Authorizations (EUAs) for both vaccines

in December 2020 and to the rollout of vaccination programs shortly thereafter.

Implicit in the primary analysis in these trials is the assumption that VE is constant over the study

period and, with primary endpoint time to infection, VE is represented by the 1 − the ratio of the hazard

rate for vaccine to that for placebo, estimated based on a Cox proportional hazards model. As the trials

continue following the EUAs, among the many issues to be addressed is the possibility that VE may wane

over time. Principled evaluation of the nature and extent of waning of VE is of critical public health

importance, as waning has implications for measures to control the pandemic. Were all participants in the

trials to continue on their randomized assignments (vaccine or placebo), evaluation of potential waning

of VE would be straightforward. However, once efficacy is established, ethical considerations dictate the

possibility of unblinding all participants and offering the vaccine to those randomized to placebo. After

consultation with stakeholders, Pfizer and Moderna issued amendments to their trial protocols specifying

unblinding strategies and modifications to planned analyses.

Crossover of placebo subjects to vaccine of necessity complicates inference on waning of VE and

has inspired recent research (Follmann et al., 2020; Fintzi and Follmann, 2021; Lin, Zeng and Gilbert,

2021). We propose a statistical framework within which we develop methods for inference on whether

or not VE wanes over time based on data where subjects are unblinded and those on placebo may cross

over to vaccine and in which assumptions made regarding individual and population phenomena are

made transparent. It is possible that subjects who are more or less likely to become infected could be

unblinded and cross over to vaccine differentially over time, which could lead to biased inferences due to
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confounding; accordingly, this possibility is addressed explicitly in the framework. The first author (AAT)

has the privilege of serving on the Data and Safety Monitoring Board for all US government-sponsored

COVID-19 vaccine trials and is thus well-acquainted with the unblinding approach for the Moderna trial.

Accordingly, the development is based on the specifics of this trial, but the principles can be adapted to

the features of other trials.

In Section 2, we review the Moderna trial and the resulting data. We present a conceptual framework

in which we precisely define VE as a function of time post-vaccination in Section 3. In Section 4, we

develop a formal statistical framework within which we propose methodology for estimation of VE and

describe its practical implementation in Section 5. Simulations demonstrating performance are presented

in Section 6.

2 Clinical Trial Structure and Data

We first describe the timeline of the Moderna Coronavirus Efficacy (COVE) trial (Baden et al., 2020) on

the scale of calendar time. The trial opened on July 27, 2020 (time 0), and reached full accrual at time TA

(October 23, 2020). On December 11, 2020, denoted TP , the FDA issued an EUA for the Pfizer vaccine,

followed by an EUA for the Moderna mRNA-1273 vaccine on TM = December 18, 2020. Amendment 6

of the study protocol was issued on December 23, 2020 and specified the unblinding strategy (see Figure

2 of the protocol) under which, starting on TU = December 24, 2020, study participants are scheduled

on a rolling basis over several months for Participant Decision clinic visits (PDCVs) at which they will

be unblinded. If originally randomized to vaccine, participants continue to be followed; if randomized

to placebo, participants can receive the Moderna vaccine or refuse. Let TC denote the time at which

all PDCVs have taken place. The study will continue until time TF at which all participants will have

completed full follow-up at 24 months after initial treatment assignment. Assume that the analysis of

vaccine efficacy using the methods in Sections 4.4 and 5 takes place at time TC ≤ L ≤ TF , where all

participants have achieved the primary endpoint, requested to be unblinded, or attended the PDCV by

L.

Under this scheme, we characterize the data on a given participant as follows. Let 0 ≤ E ≤ TA

denote the calendar time at which the subject entered the trial, X denote baseline covariates, and A = 0

(1) if assigned to placebo (vaccine). Denote observed time to infection on the scale of calendar time as

U , and ∆ = I(U ≤ L), where I(B) = 1 if B is true and 0 otherwise. At TP , availability of the Pfizer

vaccine commenced, at which point some subjects not yet infected requested to be unblinded. Denote

by R (calendar time) the minimum of (i) time to such an unblinding, in which case TP ≤ R < TU , and
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Table 1: Summary of notation. All times are on the scale of calendar time, where time 0 is the start of the trial.

Trial Milestones

TA Full accrual reached, October 23, 2020

TP Pfizer granted EUA, December 11, 2020

TM Moderna granted EUA, December 18, 2020

TU Participant Decision clinic visits (PDCVs) commence, December 24, 2020

TC PDCVs conclude

TF Follow-up concludes, trial ends

ℓ Lag between initial vaccine dose and full efficacy, 6 weeks, TP − TA > ℓ

L Time of analysis of vaccine efficacy using the proposed methods; L > time at

which all subjects have achieved the endpoint, requested unblinding, or attended

the PDCV, L ≤ TF

Observed Data on a Trial Participant

E Study entry time, 0 ≤ E ≤ TA
X Baseline information

A Treatment assignment, placebo, A = 0, or vaccine, A = 1

U,∆ Time to infection, indicator of infection by time L, ∆ = I(U ≤ L)

R,Γ Time to requested unblinding, PDCV/requested unblinding, or infection, whichever

comes first

Γ = 0: R = U , infection occurs before requested/offered unblinding

Γ = 1: R = time to requested unblinding, TP ≤ R < TU
Γ = 2: R = time to PDCV or requested unblinding, TU ≤ R < TC

Ψ If A = 0, Γ ≥ 1, indicator or whether subject receives Moderna vaccine, Ψ = 1,

or refuses, Ψ = 0

define Γ = 1; (ii) time of PDCV, so TU ≤ R < TC , and let Γ = 2; or (iii) time to infection, in which case

R = U and Γ = 0. If Γ ≥ 1 and A = 1, so that the subject was randomized to vaccine, s/he continues

to be followed; if A = 0, s/he can choose to receive the Moderna vaccine, Ψ = 1 or refuse, Ψ = 0. We

distinguish the cases Γ = 1 and 2 to acknowledge different unblinding dynamics before and after TU .

Because a very small number of participants requested unblinding before TP , and, although the protocol

allows participants to refuse unblinding at PDCV, all subjects are strongly encouraged to unblind, we do

not include these possibilities in the formulation.

Table 1 summarizes the timeline and observed data. The trial data are thus

Oi = {Ei,Xi, Ai, Ui,∆i, Ri,Γi, I(Γi ≥ 1, Ai = 0)Ψi}, i = 1, . . . , n, (1)

independent and identically distributed (iid) across i.
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3 Conceptualization of Vaccine Efficacy

Similar to Halloran, Longini, and Struchiner (1996) and Longini and Halloran (1996), we consider the

following framework in which to conceptualize vaccine efficacy. The study population, comprising indi-

viduals for which inference on vaccine efficacy is of interest, is that of individuals susceptible to infection,

represented by the trial participants. There is a population of individuals outside the trial with which trial

participants interact, assumed to be much larger than the number of participants, so that interactions

among participants are much less likely than interactions with the outside population. The probability

that a trial participant will become infected at calendar time t depends on three factors: c(t), the contact

rate, the number of contacts with the outside population per unit time; p(t), the prevalence of infections

in the outside population at t; and π(t), the transmission probability at t, the probability a susceptible

individual in the study population will become infected per contact with an infected individual from the

outside population. Dependence of π(t) on time acknowledges the emergence of new variants of the virus,

which may be be more or less virulent, as in the COVID-19 pandemic. Assuming random mixing, p(t)c(t)

is the contact rate at time t with infected individuals, and the infection rate at time t is p(t)c(t)π(t).

We adapt this framework to the COVID-19 pandemic. The prevalence rate in the pandemic can vary

substantially in time and space, so denote by S the trial site at which a participant is enrolled, and

let p(t, s) be the prevalence at time t at site S = s. Although p(t, s) varies by t and s, assume it is

unaffected by the individuals in the trial and thus represents an external force. We view the contact rate

as individual specific; accordingly, for an arbitrary individual in the study population, let the random

variables {cb0(t), c
b
1(t), c

u
0 (t), c

u
1ℓ(t), c

u
1 (t)} denote potential contact rates. These potential outcomes can be

regarded as individual-specific behavioral characteristics of trial participants, where some may be more

careful and make fewer contacts while others take more risks, and behavior can vary over time and by

vaccination and blinding status. Here, cba(t) is the contact rate at time t if the individual were to receive

vaccine, a = 1, or placebo, a = 0, and be blinded to this assignment; by virtue of blinding, it is reasonable

to take cb1(t) = cb0(t) = cb(t). The Moderna vaccine is administered in two doses, ideally 4 weeks apart, and

is not thought to achieve full efficacy until 2 weeks following the second dose. Thus, letting ℓ denote the

lag between initial dose and full efficacy, cu1ℓ(t) and c
u
1(t) reflect behavior of an individual who is unblinded

and vaccinated in the periods prior to ℓ and after ℓ, respectively, allowing for unblinded vaccinees to, e.g.,

behave more cautiously before full efficacy is achieved. The rate cu0 (t) reflects behavior of an unblinded

individual on placebo and does not play a role in the development. Similar to the stable unit treatment

value assumption (Rubin, 1980), assume that cu1ℓ(t) and cu1 (t) are the same whether the individual was

randomized to vaccine and unblinded before t or was randomized to placebo and subsequently unblinded
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and crossed over to vaccine before t.

Finally, for an arbitrary participant, let the random variable π0(t) be the potential individual-specific

transmission probability per contact at t if s/he were to receive placebo, and let π1(t, τ) be the same if

s/he were to receive vaccine and have been vaccinated for τ ≥ 0 units of time. As we now demonstrate,

this formulation allows us to represent VE as a function of τ and thus consider whether or not VE wanes

over time since vaccination.

With the set of potential outcomes for an arbitrary individual in the study population who enrolls at

site S thus given by {cb(t), cu0 (t), c
u
1ℓ(t), c

u
1 (t) t > 0, π0(t), π1(t, τ), τ ≥ 0}, the infection rate in the study

population at calendar time t if all individuals were to receive placebo and be blinded to that assignment

is Ib
0(t) = E{p(t, S)cb(t)π0(t)}; likewise, the infection rate at t if all individuals were to receive vaccine at

time t− τ and be blinded to that assignment is Ib
1(t, τ) = E{p(t, S)cb(t)π1(t, τ)}. The relative infection

rate at t is then

Rb(t, τ) =
Ib
1(t, τ)

Ib
0(t)

=
E{p(t, S)cb(t)π1(t, τ)}

E{p(t, S)cb(t)π0(t)}
. (2)

Accordingly, vaccine efficacy at time t after vaccination at t − τ is V E(t, τ) = 1 − Rb(t, τ), reflecting

the proportion of infections at t that would be prevented if the study population were vaccinated and on

vaccine for τ units of time during the blinded phase of the study.

In the sequel, we assume that Rb(t, τ) and thus V E(t, τ) depend only on τ and write Rb(τ) and

V E(τ) = 1 − Rb(τ). This assumption embodies the belief that, although infection rates may change

over time, the relative effect of vaccine to placebo remains approximately constant and holds if (i)

{π1(t, τ), π0(t)} ⊥⊥ {S, cb(t)}|X, where ⊥⊥ means “independent of” and this independence is conditional

on X; and (ii) E{π1(t, τ)|X}/E{π0(t)|X} = q(τ), so does not depend on t and X. Condition (i) reflects

the interpretation of π1(t, τ) and π0(t) as inherent biological characteristics of an individual, whereas

S and cb(t) are external and behavioral characteristics, respectively; thus, once common individual and

external baseline covariates are taken into account, biological and geographic/behavioral characteristics

are unrelated. Condition (ii) implies that, although new viral variants may change transmission prob-

abilities under both vaccine and placebo over time, this change stays in constant proportion, and this

proportion is similar for individuals with different characteristics. Further discussion is given in Section 7

and Appendix B.

Within this framework, the goal of inference on waning of VE based on the data from the trial can be

stated precisely as inference on V E(τ) = 1−Rb(τ), τ ≥ ℓ, so reflecting VE after full efficacy is achieved.

It is critical to recognize that, like estimands of interest in most clinical trials, V E(τ) represents VE

at time since vaccination τ under the original conditions of the trial, under which all participants are
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blinded. The challenge we address in subsequent sections is how to achieve valid inference on V E(τ),

τ ≥ ℓ, using data from the modified trial in which blinded participants are unblinded in a staggered

fashion, with placebo subjects offered the option to receive vaccine.

We propose a semiparametric model within which we cast this objective. Let Iu
1ℓ(t, τ) = E{p(t, S)cu1ℓ(t)π1(t, τ)},

τ < ℓ, and Iu
1 (t, τ) = E{p(t, S)cu1 (t)π1(t, τ)}, τ ≥ ℓ, be the infection rates in the study population at t

if all individuals were to receive vaccine at time t − τ and be unblinded to that fact. Analogous to (i)

above, assume that {π1(t, τ), π0(t)} ⊥⊥ {S, cu1ℓ(t), c
u
1 (t)}|X, and continue to assume condition (ii). Then,

for two values τ1, τ2 of τ , it is straightforward that (see Appendix A)

Iu
1ℓ(t, τ1)

Iu
1ℓ(t, τ2)

=
Rb(τ1)

Rb(τ2)
, τ1, τ2 < ℓ;

Iu
1 (t, τ1)

Iu
1 (t, τ2)

=
Rb(τ1)

Rb(τ2)
, τ1, τ2 ≥ ℓ. (3)

Defining Iu
1ℓ(t) = Iu

1ℓ(t, 0) = E{p(t, S)cu1ℓ(t)π1(t, 0)} and Iu
1 (t) = Iu

1 (t, ℓ) = E{p(t, S)cu1 (t)π1(t, ℓ)}, by (3)

with τ1 = τ and τ2 = 0 (ℓ) on the left (right) hand side, the infection rates at t if all individuals in the

study population were unblinded and to receive vaccine at time t− τ are

Iu
1ℓ(t, τ) = Iu

1ℓ(t)
Rb(τ)

Rb(0)
, τ < ℓ; Iu

1 (t, τ) = Iu
1 (t)

Rb(τ)

Rb(ℓ)
, τ ≥ ℓ. (4)

Likewise, from (2), the infection rate at t if all individuals in the study population were blinded and to

receive vaccine at time t− τ is

Ib
1(t, τ) = Ib

0(t)R
b(τ). (5)

We now represent the infection rate ratio Rb(τ) as

Rb(τ ; θ) = exp{ζ(τ)}I(τ < ℓ) + exp{θ0 + g(τ − ℓ; θ1)}I(τ ≥ ℓ), θ = (θ0, θ
T
1 )

T , (6)

where ζ(τ) is an unspecified function of τ ; θ0 and θ1 are real- and vector-valued parameters, respectively;

and g(u; θ1) is a real-valued function of such that g(0; θ1) = 0 for all θ1 and g(u; 0) = 0. For example,

taking g(u; θ1) = θ1u yields Rb(τ ; θ) = exp{θ0 + θ1(τ − ℓ)}, τ ≥ ℓ, in which case θ1 = 0 implies that

V E(τ) = 1−Rb(τ), τ ≥ ℓ, does not change with time since vaccination, and θ1 > 0 indicates that V E(τ)

decreases with increasing τ ; i.e., exhibits waning. More complex specifications of g(u; θ1) using splines

(e.g., Fintzi and Follmann, 2021) or piecewise constant functions could be made; e.g., for v1 < v2 ≤ L,

g(u; θ1) = θ11I(v1 < u ≤ v2) + θ12I(u > v2), θ1 = (θ11, θ12)
T . (7)

Under this model, (5) and (4) can be written as

Ib
1(t, τ) = Ib

0(t)
[
exp{ζ(τ)}I(τ < ℓ) + exp{θ0 + g(τ − ℓ; θ1)}I(τ ≥ ℓ)

]
,

Iu
1ℓ(t, τ) = Iu

1ℓ(t) exp{ζ(τ)}, τ < ℓ, Iu
1 (t, τ) = Iu

1 (t) exp{g(τ − ℓ; θ1)}, τ ≥ ℓ.
(8)

Thus, to estimate V E(τ) for any τ and make inference on potential waning of VE, we must develop a

principled approach to estimation of θ based on the data from the modified trial in which participants

are unblinded and those on placebo may cross over to vaccine.
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4 Statistical Framework

4.1 Motivation

Estimation of V E(τ), equivalently Rb(τ), would be straightforward for any τ ≥ ℓ over the entire follow-up

period if all participants remained on their assigned treatments throughout the trial. However, subjects

randomized to placebo have the option to cross over to vaccine on or after TP . For τ < TP , it is possible

to estimate Rb(τ) because, due to randomization, for t < TP we have representative samples of blinded

subjects on vaccine and placebo and thus information on Ib
1(t, τ) and Ib

0(t), so can estimate θ0 and

components of θ1 identified for such τ ; e.g., in (7) depending on the values of v1 and v2. At TP ≤ t < TC ,

the data comprise a mixture of blinded and unblinded participants, where, within the latter group, those

on placebo may have crossed over to vaccine. Here, information, albeit diminishing during the interval

[TP ,TC), on Ib
1(t, τ) and Ib

0(t) is available from those participants not yet unblinded, which contributes

to estimation of θ0 and components of θ1. Information is also available on Iu
1 (t, τ) from individuals who

were originally randomized to vaccine and provide information on longer τ , and from individuals who

recently crossed over to vaccine and provide information on shorter τ . For t ≥ TC , there are no longer

blinded participants, so that information is available only on Iu
1 (t, τ). For these latter groups, for longer

τ1 ≥ ℓ and shorter τ2 ≥ ℓ, Iu
1 (t, τ1)/I

u
1 (t, τ2) = exp

[
g{τ1 − ℓ; θ1} − g{τ2 − ℓ; θ1}

]
, and, because of the

mixture of times since vaccination, θ1 can be fully estimated.

Through the following potential outcomes formulation and under suitable assumptions, in the next

several sections we develop an approach to estimation of θ based on the observed data (1) that embodies

the foregoing intuitive principles.

4.2 Potential outcomes formulation

Denote by T ∗
0 (e, r) the potential time to infection on the scale of patient time for an arbitrary individual

in the study population if s/he were to enter the trial at calendar time e, receive placebo and be blinded

to that fact, and, if not infected by calendar time r, be unblinded and cross over to vaccine at r. Let

T ∗
0 (e) = T ∗

0 (e,∞), if s/he is never crossed over to receive vaccine. Similarly, define T ∗
1 (e, r) to be the

potential time to infection (patient time scale) for an arbitrary individual if s/he were to enter the trial

at e, receive vaccine and be blinded to that fact, and, if not infected by r, be unblinded at r; and

define T ∗
1 (e) = T ∗

1 (e,∞). We make the consistency assumptions that T ∗
0 (e, r) = T ∗

0 (e) if T ∗
0 (e) < r and

T ∗
1 (e, r) = T ∗

1 (e) if T
∗
1 (e) < r. For a = 0, 1, denote the hazard at calendar time t, t > e, by

λa(t, e, r) = lim
dt→0

pr{t ≤ T ∗
a (e, r) + e < t+ dt |T ∗

a (e, r) + e ≥ t}, a = 0, 1, (9)
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where the addition of e induces a shift from patient to calendar time. Denote the set of all potential

outcomes as

W ∗ = {T ∗
0 (e, r), T

∗
1 (e, r); e > 0, r > e}.

The development in Section 3 is in terms of infection rates at the individual-specific and population

levels. Population-level hazard rates such as (9) are not equivalent to population-level infection rates.

However, we argue in Appendix C that, because the probabilities of infection under vaccine and placebo

during the course of the trial are small, population-level hazard rates and population-level infection

rates are approximately equivalent; this assumption is implicit in the standard primary analysis noted

in Section 1. Thus, to reflect this, we use familiar notation and write λb(t) = Ib
0(t), λ

u
ℓ (t) = Iu

1ℓ(t), and

λu(t) = Iu
1 (t). Under these conditions, using (8), we can write for t > e

λ0(t, e, r) = λb(t)I(t < r) + λuℓ (t) exp{ζ(t− r)}I(t− r < ℓ)

+ λu(t) exp{g(t − r − ℓ; θ1)}I(t− r ≥ ℓ), (10)

λ1(t, e, r) = λb(t)
[
exp{ζ(t− e)}I(t− e < ℓ) + exp{θ0 + g(t− e− ℓ; θ1)}I(t− e ≥ ℓ)

]
I(t < r)

+ λu(t) exp{g(t− e− ℓ; θ1)}I(t ≥ r), (11)

where (11) follows because r ≥ TP , e ≤ TA, TP − TA > ℓ. Define the counting processes for infection

by N∗
a (t, e, r) = I{T ∗

a (e, r) + e ≤ t} and N∗
a (t, e) = N∗

a (t, e,∞), and the at-risk processes by Y ∗
a (t, e, r) =

I{T ∗
a (e, r) + e ≥ t} and Y ∗

a (t, e) = Y ∗
a (t, e,∞), a = 0, 1 (Fleming and Harrington, 2005). From the

above consistency assumptions, if t < r, then N∗
a (t, e, r) = N∗

a (t, e), Y
∗
a (t, e, r) = Y ∗

a (t, e), a = 0, 1. For

a = 0, 1, let Λa(t, e, r) =
∫ t
0 λa(u, e, r) du be the cumulative hazard. Because E{dN∗

a (t, e, r)|Y
∗
a (t, e, r)} =

dΛa(t, e, r)Y
∗
a (t, e, r), a = 0, 1, it follows that {dN∗

a (t, e, r)−dΛa(t, e, r)Y
∗
a (t, e, r)}, a = 0, 1, are mean-zero

counting process increments. Thus, any linear combination of these increments over t, e, r can be used

to define unbiased estimating functions in W ∗ of quantities of interest. In Appendix D, we formulate a

particular set of estimating functions such that, given iid potential outcomes W ∗
i , i = 1, . . . , n, lead to

consistent and asymptotically normal estimators for {Λb(t),Λu(t), θT }T , Λk(t) =
∫ t
0 λ

k(u) du, k = b, u.

Because interest focuses on V E(τ) for τ ≥ ℓ, estimation of Λu
ℓ (t) =

∫ t
0 λ

u
ℓ (u) du and ζ(·) is not considered.

For fixed t, 0 ≤ t ≤ L, the estimating functions for Λb(t) and Λu(t) are, respectively,

E∗
Λb{W

∗; Λb(t), θ} = I(t < TC)

(∫ min(t,TA)

0
{dN∗

0 (t, e) − dΛb(t)Y ∗
0 (t, e)}w̃0(t, e) de (12)

+I(t ≥ ℓ)

∫ min(t−ℓ,TA)

0

[
dN∗

1 (t, e)− dΛb(t) exp{θ0 + g(t− e− ℓ; θ1)I(t− e ≥ ℓ)}Y ∗
1 (t, e)

]
w̃1(t, e) de

)
,
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E∗
Λu{W ∗;Λu(t), θ} = I(t ≥ TP + ℓ)

(∫ TA

0

∫ min(t−ℓ,TC)

TP

[
dN∗

0 (t, e, r)

−dΛu(t) exp{g(t − r − ℓ; θ1)I(t− r ≥ ℓ)}Y ∗
0 (t, e, r)

]
w0(t, e, r) dr de

)

+ I(t ≥ TP )

(∫ TA

0

∫ min(t,TC)

TP

[
dN∗

1 (t, e, r)− dΛu(t) exp{g(t − e− ℓ; θ1)}

× Y ∗
1 (t, e, r)

]
w1(t, e, r)I(t ≥ r) dr de

)
,

(13)

where w̃a(t, e) and wa(t, e, r), a = 0, 1, are arbitrary nonnegative weight functions, specification of which

is discussed later. The estimating function for θ is given by

E∗
θ {W

∗; Λb(·),Λu(·), θ}

=

∫ TC

ℓ

∫ min(t−ℓ,TA)

0


 1

gθ(t− e− ℓ)


[dN∗

1 (t, e) − dΛb(t) exp{θ0 + g(t− e− ℓ; θ1)

× I(t− e ≥ ℓ)}Y ∗
1 (t, e)

]
w̃1(t, e) de

+

∫ L

TP+ℓ

∫ TA

0

∫ min(t−ℓ,TC)

TP


 0

gθ(t− r − ℓ)


[dN∗

0 (t, e, r)− dΛu(t) exp{g(t − r − ℓ; θ1)I(t− r ≥ ℓ)}

× Y ∗
0 (t, e, r)

]
w0(t, e, r) dr de (14)

+

∫ L

TP

∫ TA

0

∫ min(t,TC)

TP


 0

gθ(t− e− ℓ)


[dN∗

1 (t, e, r) − dΛu(t) exp{g(t− e− ℓ; θ1)}

× Y ∗
1 (t, e, r)

]
w1(t, e, r)I(t ≥ r) dr de,

where gθ(u) = ∂/∂θ1{g(u; θ1)}. Analogous to Yang, Tsiatis, and Blazing (2018), envisioning (12)-(14) as

characterizing a system of estimating functions

E∗{W ∗; Λb(·),Λu(·), θ} = [E∗
Λb{W

∗; Λb(t), θ}, E∗
Λu{W ∗; Λu(t), θ}, 0 ≤ t ≤ L, E∗

θ {W
∗; Λb(·),Λu(·), θ}T ]T ,

if we could observe W ∗
i , i = 1 . . . , n, we would estimate dΛb(·), dΛu(·), θ by solving the estimating equa-

tions
∑n

i=1 E
∗(W ∗

i ; Λ
b(·),Λu(·), θ)} = 0.

4.3 Identifiability assumptions

Of course, the potential outcomes W ∗
i , i = 1, . . . , n, are not observed. However, we now present assump-

tions under which we can exploit the developments in the last section to derive estimating equations

yielding estimators based on the observed data (1).

Define the indicator that a participant is observed to be infected at time t by dN(t) = I(U = t,∆ = 1),

the observed at-risk indicator at t by Y (t) = I(E < t ≤ U), and

I0(t, e) = (1−A)I(E = e)I(R ≥ t), I1(t, e) = A I(E = e)I(R ≥ t),

I01(t, e, r) = (1−A)I(E = e){I(R = r,Γ = 1,Ψ = 1) + I(R = r,Γ = 2,Ψ = 1)}, (15)

I11(t, e, r) = A I(E = e){I(R = r,Γ = 1) + I(R = r,Γ = 2)}.
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Ia(t, e) = 1 indicates that a subject entering the trial at time e and randomized to placebo (a = 0) or

vaccine (a = 1) has not yet been infected or unblinded by t. For t > r, I01(t, e, r) = 1 indicates that a

subject randomized to placebo at entry time e is unblinded (either by request or at a PDCV) at time r

and crosses over to vaccine at r, and I11(t, e, r) = 1 if a subject randomized to vaccine at entry time e is

unblinded at r. Make the consistency assumptions

Ia(t, e)dN(t) = Ia(t, e)dN
∗
a (t, e), Ia(t, e)Y (t) = Ia(t, e)Y

∗
a (t, e), a = 0, 1,

I01(t, e, r)dN(t) = I01(t, e, r)dN
∗
0 (t, e, r), I01(t, e, r)Y (t) = I01(t, e, r)Y

∗
0 (t, e, r), (16)

I11(t, e, r)dN(t) = I11(t, e, r)dN
∗
1 (t, e, r), I11(t, e, r)Y (t) = I11(t, e, r)Y

∗
1 (t, e, r).

We now make assumptions similar in spirit to those adopted in observational studies. By randomiza-

tion,

A ⊥⊥ (X,E,W ∗), (17)

where we subsume the site indicator S in X, and let pA = pr(A = 1). It is realistic to assume that the mix

of baseline covariates changes over the accrual period; e.g., during the trial, because of lagging accrual of

elderly subjects and subjects from underrepresented groups, an effort was made to increase participation

of these groups in the latter part of the accrual period. Accordingly, we allow the distribution of entry

time E to depend on X, and denote its conditional density as fE|X(e|x). We make the no unmeasured

confounders assumption
E ⊥⊥W ∗ |X. (18)

Define the hazard functions of unblinding in the periods between the Pfizer EUA and the start of

PDCVs and after the start of PDCVs, respectively, as

λR,1(r|X,A,E,W
∗) = lim

dr→0
pr(r ≤ R < r + dr,Γ = 1|R ≥ r,X,A,E,W ∗), TP ≤ r < TU

λR,2(r|X,A,E,W
∗) = lim

dr→0
pr(r ≤ R < r + dr,Γ = 2|R ≥ r,X,A,E,W ∗), TU ≤ r < TC ,

where λR,j(r|X,A,E,W
∗) = 0 for r ≥ TU (j = 1) and r ≥ TC (j = 2). Because the accrual period

was short relative to the length of follow-up, we take these unblinding hazard functions to not depend

on E, although including such dependence is straightforward; and, similar to a noninformative censoring

assumption, to not depend on W ∗ and write

λR,j(r|X,A,E,W
∗) = λR,j(r|X,A), j = 1, 2. (19)

Define KR(r|X,A) = exp[−{ΛR,1(r|X,A) + ΛR,2(r|X,A)}], ΛR,j(r|X,A) =
∫ r
Tj
λR,j(u|X,A) du, Tj = TP

(j = 1) or Tj = TU (j = 2). Because λR,1(r|X,A) and λR,2(r|X,A) are defined on the nonoverlapping
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intervals [TP ,TU ) and [TU ,TC), respectively, with KR,j(r|X,A) = exp{−ΛR,j(r|X,A)}, j = 1, 2,

KR(r|X,A) = 1, r < TP ,

= KR,1(r|X,A), TP ≤ r < TU ,

= KR,1(TU |X,A)KR,2(r|X,A), TU ≤ r < TC ,

= 0, r ≥ TC .

Finally, define fR,j(r|X,A) = KR(r|X,A)λR,j(r|X,A), j = 1, 2.

Let pr(Ψ = 1|X,E,Γ, R,W ∗) be the probability that a placebo participant unblinded at R agrees

to receive the Moderna vaccine. Similar to (19), we assume this probability does not depend on E,W ∗;

moreover, because the unblinding interval [TP ,TC) is very short relative to the length of follow-up, we

assume it does not depend on R but does depend on the unblinding dynamics at R. Thus, write

pr(Ψ = 1|X,E,Γ, R,W ∗) = pr(Ψ = 1|X,Γ) = pΨ(X,Γ). (20)

4.4 Observed data estimating equations

We now outline, under the assumptions (16)-(20), which we take to hold henceforth, how we can develop

unbiased estimating equations based on the observed data yielding consistent and asymptotically normal

estimators for dΛb(·), dΛu(·), θ. The basic premise is to use inverse probability weighting (IPW) to

probabilistically represent potential outcomes in terms of the observed data to mimic the estimating

functions (12)-(14).

Considering (15), define the inverse probability weights

h0(t, e|X) = (1− pA)fE|X(e|X)KR(t|X,A = 0), h1(t, e|X) = pA fE|X(e|X)KR(t|X,A = 1),

h01(e, r|X) = (1− pA)fE|X(e|X)

× {fR,1(r|X,A = 0)pΨ(X,Γ = 1) + fR,2(r|X,A = 0)pΨ(X,Γ = 2)},

h11(e, r|X) = pA fE|X(e|X){fR,1(r|X,A = 1) + fR,2(r|X,A = 1)}.

We show in Appendix E that

E

{
I0(t, e)dN(t)

h0(t, e|X)

∣∣∣∣X,W ∗

}
= dN∗

0 (t, e), E

{
I0(t, e)Y (t)

h0(t, e|X)

∣∣∣∣X,W ∗

}
= Y ∗

0 (t, e) (21)

E

{
I1(t, e)dN(t)

h1(t, e|X)

∣∣∣∣X,W ∗

}
= dN∗

1 (t, e), E

{
I1(t, e)Y (t)

h1(t, e|X)

∣∣∣∣X,W ∗

}
= Y ∗

1 (t, e), (22)

E

{
I01(t, e, r)dN(t)

h01(e, r|X)

∣∣∣∣X,W ∗

}
= dN∗

0 (t, e, r), E

{
I01(t, e, r)Y (t)

h01(e, r|X)

∣∣∣∣X,W ∗

}
= Y ∗

0 (t, e, r), (23)

E

{
I11(t, e, r)dN(t)

h11(e, r|X)

∣∣∣∣X,W ∗

}
= dN∗

1 (t, e, r), E

{
I11(t, e, r)Y (t)

h11(e, r|X)

∣∣∣∣X,W ∗

}
= Y ∗

1 (t, e, r). (24)
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To obtain observed data analogs to the estimating functions (12)-(14), based on the equalities in (21)-

(24), we substitute the IPW expressions in the conditional expectations on the left hand sides. Using

(15) and (21)-(22), the analog to (12) is given by

EΛb{O; Λb(t), θ} = I(t < TC)

(∫ min(t,TA)

0

I0(t, e)

h0(t, e|X)
{dN(t) − dΛb(t)Y (t)}w̃0(t, e) de

+ I(t ≥ ℓ)

∫ min(t−ℓ,TA)

0

I1(t, e)

h1(t, e|X)

[
dN(t)− dΛb(t) exp{θ0 + g(t− e− ℓ; θ1)

× I(t− e ≥ ℓ)}Y (t)
]
w̃1(t, e) de

)

= I(t < TC)

(
(1−A)I(R ≥ t)

h0(t, E|X)
{dN(t) − dΛb(t)Y (t)}w̃0(t, E)

+
AI(E + ℓ ≤ t ≤ R)

h1(t, E|X)

[
dN(t)− dΛb(t) exp{θ0 + g(t− E − ℓ; θ1)}Y (t)

]
w̃1(t, E)

)
.

(25)

Likewise, using (23)-(24), the analog to (13) is

EΛu{O;Λu(t), θ} = I(t ≥ TP + ℓ)

(∫ TA

0

∫ min(t−ℓ,TC)

TP

I01(t, e, r)

h01(e, r|X)

[
dN(t)

− dΛu(t) exp{g(t − r − ℓ; θ1)I(t− r ≥ ℓ)}Y (t)
]
w0(t, e, r) dr de

)

+ I(t ≥ TP )

(∫ TA

0

∫ min(t,TC )

TP

I11(t, e, r)

h11(e, r|X)

[
dN(t)− dΛu(t) exp{g(t− e− ℓ; θ1)}

× Y (t)
]
w1(t, e, r)I(t ≥ r) dr de

)

= I(t ≥TP + ℓ)

(
(1−A)I(t−R ≥ ℓ){I(Γ = 1,Ψ = 1) + I(Γ = 2,Ψ = 1)}

h01(E,R|X)

×
[
dN(t)− dΛu(t) exp{g(t−R− ℓ; θ1)}Y (t)

]
w0(t, E,R)

)

+ I(t ≥ TP )

(
AI(t > R){I(Γ = 1) + I(Γ = 2)}

h11(E,R|X)

×
[
dN(t)− dΛu(t) exp{g(t − E − ℓ; θ1)}Y (t)

]
w1(t, E,R)

)
.

(26)

A entirely similar representation Eθ{O; Λb(·)Λu(·), θ} of (14) in terms of the observed data can be deduced

and is suppressed for brevity.
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To simplify notation, based on (25), (26), and the analogous expression for (14), define

dÑ b(t) = dN(t)

{
(1−A)I(R ≥ t)w̃0(t, E)

h0(t, E|X)
+
AI(E + ℓ ≤ t ≤ R)w̃1(t, E)

h1(t, E|X)

}

Ỹ b(t) = Y (t)

[
(1−A)I(R ≥ t)w̃0(t, E)

h0(t, E|X)
+
AI(E + ℓ ≤ t ≤ R)w̃1(t, E)

h1(t, E|X)
exp{θ0 + g(t− E − ℓ; θ1)}

]

dÑu(t) = dN(t)

[
(1−A)I(t−R ≥ ℓ){I(Γ = 1,Ψ = 1) + I(Γ = 2,Ψ = 1)}w0(t, E,R)

h01(E,R|X)

+
AI(t > R){I(Γ = 1) + I(Γ = 2)}w1(t, E,R)

h11(E,R|X)

]

Ỹ u(t) = Y (t)

[
(1−A)I(t−R ≥ ℓ){I(Γ = 1,Ψ = 1) + I(Γ = 2,Ψ = 1)}w0(t, E,R)

h01(E,R|X)
× exp{g(t−R− ℓ; θ1)

+
AI(t > R){I(Γ = 1) + I(Γ = 2)}w1(t, E,R)

h11(E,R|X)
exp{g(t − E − ℓ; θ1)

]
.

Define also

Zb(t) = A


 1

gθ(t−E − ℓ)


 , Zu(t) = A


 0

gθ(t− E − ℓ)


+ (1−A)


 0

gθ(t−R− ℓ)


 .

Then it is straightforward that the observed-data estimating functions are

EΛb{O; Λb(t), θ} = dÑ b(t)− dΛb(t)Ỹ b(t), EΛu{O; Λu(t), θ} = dÑu(t)− dΛu(t)Ỹ u(t),

Eθ{O; Λb(·)Λu(·), θ} =

∫ TC

0
Zb(t){dÑ b(t)− dΛb(t)Ỹ b(t)}+

∫ L

TP

Zu(t){dÑu(t)− dΛu(t)Ỹ u(t)}.

Letting Ñ b
i (t), Ñ

u
i (t), Ỹ

b
i (t), Ỹ

u
i (t), Z

b
i (t), and Zu

i (t) denote evaluation at Oi in (1), the foregoing

developments lead to the set of observed-data estimating equations

n∑

i=1

{dÑ b
i (t)− dΛb(t)Ỹ b

i (t) = 0,

n∑

i=1

{dÑu
i (t)− dΛu(t)Ỹ u

i (t) = 0, (27)

n∑

i=1

[∫ TC

0
Zb
i (t){dÑ

b
i (t)− dΛb(t)Ỹ b

i (t)}+

∫ L

TP

Zu
i (t){dÑ

u
i (t)− dΛu(t)Ỹ u

i (t)}

]
= 0. (28)

For fixed θ, the estimators for dΛb(t) and dΛu(t) are the solutions to the equations in (27) given by

dΛ̂b(t) =

{
n∑

i=1

Ỹ b
i (t)

}−1 n∑

i=1

dÑ b
i (t), dΛ̂u(t) =

{
n∑

i=1

Ỹ u
i (t)

}−1 n∑

i=1

dÑu
i (t). (29)

Substituting these expressions in (28) yields, after some algebra, the equation

n∑

i=1

[∫ TC

0
{Zb

i (t)− Z
b
(t)}dÑ b

i (t) +

∫ L

TP

{Zu
i (t)− Z

u
(t)}dÑu

i (t)

]
= 0, (30)

Z
b
(t) =

{
n∑

i=1

Ỹ b
i (t)

}−1 n∑

i=1

Zb
i (t)Ỹ

b
i (t), Z

u
(t) =

{
n∑

i=1

Ỹ u
i (t)

}−1 n∑

i=1

Zu
i (t)Ỹ

u
i (t).
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5 Practical Implementation and Inference

Choice of the weight functions w̃0(t, e), w̃1(t, e), w0(t, e, r), and w1(t, e, r) is arbitrary but can play an

important role in performance of the resulting estimators. We recommend taking a fixed value x̃ of X,

e.g., the sample mean, and setting w̃a(t, e) = ha(t, e|x̃) and wa(t, e, r) = ha1(e, r|x̃), a = 0, 1, where

the latter does not depend on t. The resulting weights ha(t, e|x̃)/hj(t, e|X) and ha1(e, r|x̃)/ha1(e, r|X),

a = 0, 1, are referred to as stabilized weights (Robins, Hernán, and Brumback, 2000), as they mitigate

the effect of small inverse probability weights that can give undue influence to a few observations. Note

that dependence of the inverse probability weights on pA cancels in construction of stabilized weights.

Moreover, if there is no confounding, in that λR,j(r|X,A), j = 1, 2 in (19), fE|X(e|X), and pΨ(X,Γ) do

not depend on X, the stabilized weights are identically equal to one.

If the “survival probabilities” for R, KR,j(r|X,A), and the densities fR,j(r|X,A), j = 1, 2, and

fE|X(e|X) in the inverse probability weights, which appear in the expressions in the estimating equation

(30), were known, (30) could be solved to yield an estimator for θ and in particular θ1 characterizing VE

waning. As these quantities are unknown, models must be posited for them, leading to estimators that

can be substituted in (30). We propose the use of Cox proportional hazards models for λR,j(r|X,A),

j = 1, 2, in (19), which can be fitted using the data {Xi, Ai, Ri, I(Γi = j)}, i = 1 . . . , n; and for the

hazard of entry time E given X, which can be fitted using (Ei,Xi), i = 1, . . . , n. A binary, e.g., logistic,

regression model can be used to represent pΨ(X,Γ) and fitted using (Xi,Γi,Ψi) for i such that Ai = 0.

For individual i, the stabilized weights involve the quantities fR,j(Ri|x̃, a)/fR,j(Ri|Xi, a), j = 1, 2,

a = 0, 1, and fE|X(Ei|x̃)/fE|X(Ei|Xi). With proportional hazards models as above with predictors

φj(X,βj), say, it is straightforward that fE|X(Ei|x̃)/fE|X(Ei|Xi) and

fR,j(Ri|x̃, a)/fR,j(Ri|Xi, a) = [exp{φj(x̃, βj)}KR(Ri|x̃, a)]/[exp{φj(Xi, βj)}KR(Ri|Xi, a)],

where in each case the baseline hazard cancels from numerator and denominator. for Thus, the estimated

stabilized weights involve only the estimated cumulative hazard functions and estimators for the βj , each

of which is root-n consistent and asymptotically normal.

As sketched in Appendix F, with stabilized weights set equal to one or estimated, the estimating

equation (30) can be solved easily via a Newton-Raphson algorithm. A heuristic argument demonstrating

that θ̂ is asymptotically normal leading to an expression for its approximate sampling variance using the

sandwich technique is given in Appendix F.
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6 Simulations

We report on simulation studies demonstrating performance of the methods, each involving 1000 Monte

Carlo replications, based roughly on the Moderna trial. We took pA = 0.5 and TA = 12, TP = 19,

TU = 21, and TC = 31, where all times are in weeks, and consider an analysis at calendar time L = 52

weeks, with n = 30,000. In all cases, g(u, θ1) = θ1I(u > v) where v = 20 weeks and θ0 = log(0.05),

corresponding to VE = 95% prior to time v, so that, depending on θ1, VE potentially wanes following

v. We consider θ1 = log(7), corresponding to VE = 65% after time v, and θ1 = 0, corresponding to no

waning.

Because the trial and unblinding process are ongoing, we were not able to base our generative scenarios

on data from the trial. Owing to the complexity of the trial and multiple potential sources of confounding,

to facilitate exploration of a range of conditions while controlling computational complexity and intensity,

we focused on several basic scenarios meant to represent varying degrees of confounding consistent with

our expectations for the most likely sources of such confounding in the trial. Specifically, we took

fE|X(e|X) and λR,2(r|X,A) to not depend on X (or A in the latter case) in any scenario, reflecting mostly

random entry and PDCV unblinding processes. In scenarios involving confounding, we took λR,1(r|X,A),

corresponding to the period [TP ,TU ) in which “requested unblinding” occurred, and the “agreement

process” pΨ(X,Γ) to depend on X, as described below, reflecting our belief that these processes could be

associated with participant characteristics.

In the first set of simulations, we consider two cases: (i) no confounding, where all of λR,j(r|X,A),

j = 1, 2, fE|X(e|X), and pΨ(X,Γ) do not depend on X; and (ii) confounding, where λR,1(r|X,A) and

pΨ(X,Γ) depend on X as above. In both (i) and (ii), the entry process E ∼ U(0,TA), i.e., uniform

on [0,TA], and the unblinding process during PDCVs was U(TU ,TC); see below. In each simulation

experiment, for each participant in each Monte Carlo data set, we first generated A ∼ Bernoulli(pA), two

baseline covariates X1 ∼ Bernoulli(pX1
= 0.5) and X2 ∼ N (µX2

= 45, σ2X2
= 102), and E as above. To

obtain R, we generated G1 to be exponential with hazard λR,1(r|X,A) = exp[β̃10 + {β̃11(X1 − pX1
) +

β̃12(X2 − µX2
)}(1 − A) + {β̃13(X1 − pX1

) + β̃14(X2 − µX2
)}A], where β̃10 = log(0.036), corresponding

to roughly 7% unblinding during [TP ,TU ), and (β̃11, β̃12, β̃13, β̃14) = (0, 0, 0, 0, 0) for (i), no confounding,

and (−0.8,−0.08, 0.8, 0.08) for (ii), confounding. With R1 = TP + G1 and R2 ∼ U(TU ,TC), we let

Γ̃ = 1 + I(R1 ≥ TU) and R̃ = R1I(Γ̃ = 1) + R2I(Γ̃ = 2). We generated Ψ as Bernoulli{pΨ(X, Γ̃)},

pΨ(X, Γ̃) = expit{γ̃0 + γ̃1(X1 − pX1
) + γ̃2(X2 − µX2

) + γ̃3Γ̃}, expit(u) = (1 + e−u)−1, where γ̃0 = 1.4,

corresponding to approximately 80% agreement to receive the vaccine by unblinded placebo participants,

and (γ̃1, γ̃2, γ̃3) = (0, 0,−0.1) for (i) and = (−0.8,−0.08,−0.1) for (ii).
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To generate U,∆, we first generated T ∗
0 (E,R) and T ∗

1 (E,R) based on (10)-(11), with λb(t) = λb =

exp{δ0 + δ1(X1 − pX1
) + δ2(X2 − µX2

) + Z}, where (δ0, δ1, δ2) = {log(0.0006), 0.4, 0.04}, leading to

approximately a 3% infection rate for placebo participants over L, and Z ∼ N (0, 0.04),; λuℓ (t) = λuℓ = λb;

ζ(t) = 0; and λu(t) = λu = 1.25λb, so that λa(t, e, r) in (10)-(11), a = 0, 1, are piecewise constant hazards.

T ∗
0 (E,R) and T ∗

1 (E,R) were obtained via inverse transform sampling. We then generated U (calendar

time) as U = E +AT ∗
1 (E,R) + (1−A)

[
I{T ∗

0 (E,R) < R̃}T ∗
0 (E,R) + I{T ∗

0 (E,R) ≥ R̃}{ΨT ∗
0 (E,R) + (1−

Ψ)T ∗
r }, where T

∗
r = R̃ + G2 for G2 exponential with hazard λb; infection times for unblinded placebo

participants who decline vaccine are not used in the analysis. Finally, we set ∆ = I(U < L), and defined

R = U I(U ≤ R̃) + R̃I(U > R̃) and Γ = Γ̃I(U > R). Although we obtained Ψ for all n participants, Ψ is

used only when A = 0, Γ ≥ 1.

For each combination of (i) and (ii) and (a) θ1 = log(7) and (b) θ1 = 0, we estimated θ and thus

V E(τ) for τ ≤ v and τ > v two ways: taking the stabilized weights equal to one, so disregarding possible

confounding, and with estimated stabilized weights. The latter were obtained by fitting proportional

hazards models for entry time E with linear predictor ν1X1 + ν2X2 and for λR,j(r|X,A), j = 1, 2, with

linear predictors β11X1+β12X2+β13A+β14X1A+β15X2A and β21X1+β22X2, respectively; and a logistic

regression model for pΨ(X,Γ) = expit{(γ10 + γ11X1 + γ12X2)I(Γ = 1) + (γ20 + γ21X1 + γ22X2)I(Γ = 2)}.

Table 2 presents the results for estimation of θ1, dictating waning; V E≤20 = 1 − exp(θ0), VE prior

to v = 20 weeks; and V E>20 = 1 − exp(θ0 + θ1), VE after v = 20 weeks. Because the Monte Carlo

distribution of some of these quantities exhibited slight skewness, those for the VE quantities likely due

to the exponentiation, we report both Monte Carlo mean and median. Estimation of V E≤20 shows

virtually no bias for both (a) and (b); that for V E>20 in case (a) shows minimal bias and virtually none

for (b). In all cases, standard errors obtained via the sandwich technique as outlined in Appendix F

along with the delta method for the VEs track the Monte Carlo standard deviations. Under both (i) no

confounding and (ii) confounding, estimation of the stabilized weights appears to have little consequence

for precision of the estimators relative to setting them to equal to one. 95% Wald confidence intervals,

exponentiated for the VEs, achieve nominal coverage. For (b) and each combination of stabilized weights

set equal to one or estimated and (i), no confounding, and (ii), confounding, we also calculated the

empirical Type I error achieved by a Wald test at level of significance 0.05 for VE waning addressing

the null and alternative hypotheses H0 : θ1 ≤ 0 versus H1 : θ1 > 0. These values are 0.043 and 0.056

when using stabilized weights set equal to one under (i) and (ii), respectively; the analogous values with

estimated weights are 0.046 and 0.050 under (i) and (ii).

In the first set of simulations, the confounding induced by our generative choices led to little to no
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Table 2: Simulation results based on 1000 Monte Carlo replications, first scenario. Mean = mean of Monte

Carlo estimates, Med = median of Monte Carlo estimates, SD = standard deviation of Monte Carlo estimates,

SE = average of standard errors obtained via the sandwich technique/delta method, Cov = empirical coverage of

nominal 95% Wald confidence interval (transformed for V E). V E≤20 = 1 − exp(θ0), VE prior to v = 20 weeks;

V E>20 = 1 − exp(θ0 + θ1), VE after v = 20 weeks. True values: (a) θ1 = log(7) = 1.946, V E≤20 = 0.95,

V E>20 = 0.65; (b) θ = 0, V E≤20 = V E>20 = 0.95.

Stabilized Weights = 1 Stabilized Weights Estimated

Mean Med SD SE Cov Mean Med SD SE Cov

(i), no confounding; (a) θ1 = log(7)

θ1 1.961 1.935 0.310 0.308 0.955 1.983 1.959 0.303 0.310 0.957

V E≤20 0.950 0.953 0.019 0.019 0.952 0.950 0.952 0.019 0.019 0.953

V E>20 0.634 0.663 0.183 0.174 0.956 0.626 0.662 0.188 0.177 0.957

(ii), confounding; (a) θ1 = log(7)

θ1 2.030 2.013 0.325 0.320 0.949 1.990 1.973 0.346 0.335 0.948

V E≤20 0.951 0.953 0.019 0.018 0.958 0.951 0.952 0.019 0.019 0.955

V E>20 0.614 0.647 0.199 0.185 0.948 0.619 0.665 0.201 0.186 0.941

(i), no confounding; (b) θ1 = 0

θ1 -0.020 -0.019 0.433 0.422 0.954 0.007 0.019 0.421 0.424 0.958

V E≤20 0.950 0.952 0.020 0.019 0.955 0.950 0.952 0.020 0.019 0.956

V E>20 0.947 0.954 0.032 0.030 0.958 0.946 0.953 0.033 0.031 0.954

(ii), confounding; (b) θ1 = 0

θ1 0.053 0.045 0.446 0.436 0.955 0.011 -0.004 0.452 0.450 0.956

V E≤20 0.951 0.952 0.019 0.019 0.958 0.950 0.952 0.020 0.019 0.955

V E>20 0.944 0.951 0.035 0.032 0.957 0.945 0.954 0.036 0.033 0.952

bias in the estimators for θ1 and the VEs prior to and after 20 weeks. Notably, modeling and fitting of the

stabilized weights to adjust for potential confounding shows little effect relative to setting the stabilized

weights to one. To the extent that this scenario is a plausible approximation to actual conditions of the

trial, it may be that confounding will not be a serious challenge for the analysis of VE waning.

To examine the ability of the methods with estimated stabilized weights to adjust for confounding that

potentially could be sufficiently strong to bias results, we carried out additional simulations under settings

(a) θ1 = log(7) and (b) θ1 = 0 with (ii) confounding in which our choices of generative parameters induce

a stronger association between the potential infection times and the agreement process. Specifically, we

took instead (δ0, δ1, δ2)
T = {log(0.0006), 0.7, 0.07}T and (γ̃0, γ̃1, γ̃2, γ̃3) = (1.4,−1.0,−0.1,−0.1), with all

other settings identical to those above.
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Table 3: Simulation results based on 1000 Monte Carlo replications, second scenario. Entries are as in Table 2.

True values: (a) θ1 = log(7) = 1.946, V E≤20 = 0.95, V E>20 = 0.65; (b) θ = 0, V E≤20 = V E>20 = 0.95.

Stabilized Weights = 1 Stabilized Weights Estimated

Mean Med SD SE Cov Mean Med SD SE Cov

(ii), confounding; (a) θ1 = log(7)

θ1 2.125 2.100 0.315 0.299 0.925 2.009 2.008 0.346 0.325 0.942

V E≤20 0.952 0.953 0.017 0.016 0.970 0.950 0.952 0.017 0.017 0.964

V E>20 0.581 0.611 0.191 0.182 0.950 0.613 0.640 0.179 0.175 0.956

(ii), confounding; (b) θ1 = 0

θ1 0.171 0.149 0.436 0.403 0.921 0.050 0.053 0.447 0.426 0.955

V E≤20 0.951 0.953 0.173 0.171 0.967 0.950 0.952 0.018 0.017 0.962

V E>20 0.937 0.945 0.038 0.034 0.949 0.942 0.949 0.034 0.032 0.950

Table 3 shows the results. The estimators for θ1 and V E>20 are slightly biased when stabilized

weights are set equal to one, although coverage probability for the latter is at the nominal level. This

feature is mitigated by use of estimated stabilized weights. Coverage probability for θ1 is somewhat lower

than nominal. Under (b), empirical Type I error achieved by a Wald test at level of significance 0.05 of

H0 : θ1 ≤ 0 versus H1 : θ1 > 0. is 0.122 when stabilized weights are equal to one, demonstrating the

potential for biased inference; Type I error is 0.065 using estimated stabilized weights, leading to a more

reliable test.

7 Discussion

We have proposed a conceptual framework based on potential outcomes for study of VE in which as-

sumptions on biological, behavioral, and other phenomena are made transparent. The corresponding

statistical framework combines information from blinded and unblinded participants over time. We focus

on the setting of the Moderna phase 3 trial, but the principles can be adapted to other settings, including

the blinded crossover design of Follmann et al. (2020). The methods provide a mechanism to account for

possible confounding.

Through condition (ii) in Section 3, (ii) E{π1(t, τ)|X}/E{π0(t)|X} = q(τ), the methods embed the

assumption that VE is similar across current and emerging viral variants. If the analyst is unwilling to

adopt an assumption like condition (ii), then it is not possible to rule out that the data from the blinded

(prior to TP ) and unblinded (starting at TP phases of the trial reflect very different variant mixtures. In

this case, calendar time and time since vaccination cannot be disentangled, and thus it is not possible to
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evaluate VE solely as a function of time since vaccination. However, it may be possible to evaluate the

ratio of infection rates under vaccine at any time t (and thus variant mixture in force at t) after different

times since vaccination τ1 and τ2, say, during the unblinded phase of the trial, namely, Iu
1 (t, τ1)/I

u
1 (t, τ2),

t ≥ TP . The infection rates can be estimated based on the infection status data at time t from vaccinated

individuals who received vaccine at times t− τ1 and t− τ2, respectively. These infection rates and their

ratio will reflect information about the waning of the vaccine itself under the conditions at time t, and

in fact this infection rate ratio can be viewed as the ratio of vaccine efficacies at τ1 and τ2. However,

because after TC information on Iu
0 (t) will no longer be available, it is not possible to deduce VE itself

for t ≥ TC . But if data external to the trial became available that provide information on VE at t, even

for small τ , it may be possible to integrate this information with that from the infection rates to gain

insight into VE as a function of τ .
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Appendix A: Demonstration of (2) and (3)

We demonstrate that, under the conditions in Section 3 of the main paper, namely,

(i) {π1(t, τ), π0(t)} ⊥⊥ {S, cb(t)}|X and {π1(t, τ), π0(t)} ⊥⊥ {S, cu1ℓ(t), c
u
1 (t)}|X,

(ii) E{π1(t, τ)|X}/E{π0(t)|X} = q(τ),

that (2) of the main paper,

Rb(t, τ) =
Ib
1(t, τ)

Ib
0(t)

=
E{p(t, S)cb(t)π1(t, τ)}

E{p(t, S)cb(t)π0(t)}
(A.1)

does not depend on t, and the second equality in (3) of the main paper,

Iu
1 (t, τ1)

Iu
1 (t, τ2)

=
E{p(t, S)cu1 (t)π1(t, τ1)}

E{p(t, S)cu1 (t)π1(t, τ2)}
=

Rb(τ1)

Rb(τ2)
, τ1, τ2 ≥ ℓ; (A.2)

the first equality in (3) of the main paper follows by an entirely similar argument.

We can write (A.1) using condition (i) as

Rb(t, τ) =
E
[
E{p(t, S)cb(t)|X}E{π1(t, τ)|X}

]

E
[
E{p(t, S)cb(t)|X}E{π0(t)|X}

] .
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By condition (ii), E{π1(t, τ)|X} = E{π0(t)|X}q(τ); thus, substituting yields

Rb(t, τ) =
E
[
E{p(t, S)cb(t)|X}E{π0(t)|X}

]
q(τ)

E
[
E{p(t, S)cb(t)|X}E{π0(t)|X}

] = q(τ),

so that in fact q(τ) = Rb(τ).

We can write (A.2) as
E
[
E{p(t, S)cu1 (t)|X}E{π1(t, τ1)|X}

]

E
[
E{p(t, S)cu1 (t)|X}E{π1(t, τ2)|X}

] .

Under condition (ii), E{π1(t, τj)|X} = E{π0(t)|X}q(τj), j = 1, 2; thus, substituting these equalities

yields
E
[
E{p(t, S)cu1 (t)|X}E{π0(t)|X}q(τ1)

]

E
[
E{p(t, S)cu1 (t)|X}E{π0(t)|X}q(τ2)}

] = q(τ1)

q(τ2)
=

Rb(τ1)

Rb(τ2)
,

as required.

Appendix B: Discussion of Assumptions

The conceptual framework in Section 3 of the main paper in which we define vaccine efficacy at a particular

time since vaccination relies on some assumptions. Of critical importance is the assumption referred to

as condition (ii), namely,

E{π1(t, τ)|X}/E{π0(t)|X} = q(τ), (B.1)

which states that the ratio of transmission probabilities over time within values of X does not change

with time and does not depend on characteristics in X but depends only on time since vaccination.

As noted in Section 3 of the main paper, in our conceptualization, we let the individual-specific

transmission probabilities π1(t, τ) and π0(t) depend on t to reflect an evolving mixture of viral variants

as mutations of the virus occur over the course of the pandemic, under which the overall virulence of

virus to which individuals in the study population may be exposed is changing. From this point of

view, we can regard time t as a “proxy” for this changing variant mixture and its virulence as the study

progresses. If in fact the overall virulence of the variant mixture does not change or changes only gradually

over time, then it may be reasonable to take π1(t, τ) = π1(τ) and π0(t) = π0. In this case, the ratio

E{π1(t, τ)|X}/E{π0(t)|X} in (B.1) is a function only of τ and X. If instead the variant mixture does

change over the course of the study in a non-trivial way, taking π1(t, τ) and π(t) not to depend on t is

untenable. However, if within the mixture of variants present at any time t we are willing to assume that

the ratio of transmission probabilities between vaccine and placebo stays in constant proportion for all

variants, it again is reasonable to assume that E{π1(t, τ)|X}/E{π0(t)|X} does not depend on t so is a

function only of τ and X.
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Under either of these perspectives, for (B.1) to hold, we furthermore must be willing to assume that

E{π1(t, τ)|X}/E{π0(t)|X} does not depend on X (in addition to not depending on t) and thus depends

only on τ . Adopting (B.1) is similar in spirit to making the assumptions embodied in many popular

models; e.g., a constant odds ratio over categories in the proportional odds model or a constant hazard

ratio over time in the proportional hazards model. If (B.1) is violated in that E{π1(t, τ)|X}/E{π0(t)|X}

does depend on X (but not on t), the implication for the proposed methods is that, in estimating VE

assuming it depends only on τ , one is estimating roughly a weighted average of VE as a function of τ over

values of X in a manner similar to the Mantel-Haenzel method; such an interpretation is also commonly

invoked when the proportional odds or hazards assumptions do not hold.

If the analyst is unwilling to adopt an assumption like that in (B.1), then it is not possible to rule out

that the data from the blinded (prior to TP ) and unblinded (starting at TP , when unblinding requests

commenced following the Pfizer EUA) phases of the trial reflect very different variant mixtures. In this

case, calendar time and time since vaccination cannot be disentangled, and thus it is not possible to

evaluate vaccine efficacy solely as a function of time since vaccination. In this setting, however, it may

be possible to evaluate the ratio of infection rates under vaccine at any time t (and thus variant mixture

in force at t) after different times since vaccination τ1 ≥ ℓ and τ2 ≥ ℓ, say, during the unblinded phase of

the trial, namely,

Iu
1 (t, τ1)/I

u
1 (t, τ2), t ≥ TP .

The infection rates in this ratio presumably can be estimated based on the infection status data at time t

from vaccinated individuals who received vaccine at times t− τ1 and t− τ2, respectively. These infection

rates and their ratio will reflect information about the waning of the vaccine itself under the conditions

at time t, and in fact this infection rate ratio can be viewed as the ratio of vaccine efficacies at different

values τ1 and τ2. However, because after TC information on Iu
0 (t) will no longer be available, it is not

possible to deduce vaccine efficacy itself for t ≥ TC . But if data external to the trial became available

that provide information on vaccine efficacy at t, even for small τ it may be possible to integrate this

information with that from the infection rates to gain insight into vaccine efficacy itself as a function of

τ .
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Appendix C: Approximate Equivalence of Hazard Rate and Infection

Rate

As an example, consider λ0(t, e) = λ0(t, e,∞) defined in (9) of the main paper. From Section 3 of the

main paper, the individual-specific infection rate for an arbitrary subject in the study population at site

S who receives placebo and is never unblinded (r = ∞) is given by p(t, S)cb(t)π0(t). This quantity is

a random variable defined for the population Ω with probability {P (ω) : ω ∈ Ω}, where we view ω as

an individual in Ω. Thus, the infection rate for ω ∈ Ω is ι0(t)(ω) = p{t, S(ω)}cb(t)(ω)π0(t)(ω), and the

population-level infection rate is given by

E{ι0(t)} =

∫

Ω
ι0(t)(ω) dP (ω).

In contrast, the hazard at time t is defined by

λ0(t, e) = −
d

dt
log
[
pr{T ∗

0 (e) + e ≥ t}
]
,

where

pr{T ∗
0 (e) + e ≥ t} =

∫

Ω
pr{T ∗

0 (e)(ω) + e ≥ t} dP (ω).

If ω is at risk of infection at time t, then this individual’s hazard of becoming infected at t is given by

ι0(t)(ω). Thus,

pr{T ∗
0 (e)(ω) + e ≥ t} = exp

{
−

∫ t

e
ι0(u)(ω) du

}
.

We make the rare infection assumption

∫ L

0
ι0(t)(ω) du < ǫ a.s. (C.1)

Now

λ0(t, e) =

∫
ΩG(t)(ω)ι0(t)(ω) dP (ω)∫

ΩG(t)(ω) dP (ω)
,

where, using the rare infection assumption,

G(t)(ω) = exp

{
−

∫ t

e
ι0(u)(ω) du

}
≥ exp(−ǫ) > 1− ǫ a.s.

Because ∫

Ω
G(t)(ω)ι0(t)(ω) dP (ω) ≤

∫

Ω
ι0(t)(ω) dP (ω)

and G(t)(ω) > 1− ǫ a.s.,

λ0(t, e) ≤

∫
Ω ι0(t)(ω) dP (ω)

1− ǫ
.
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Moreover, because ∫

Ω
G(t)(ω)ι0(t)(ω) dP (ω) > (1− ǫ)

∫

Ω
ι0(t)(ω) dP (ω)

and
∫
ΩG(t)(ω) dP (ω) ≤ 1,

λ0(t, e) ≥ (1− ǫ)

∫

Ω
ι0(t)(ω) dP (ω).

Thus,

(1− ǫ) <
λ0(t, e)∫

Ω ι0(t)(ω) dP (ω)
< (1− ǫ)−1.

Consequently, under the rare infection assumption (C.1), the population-level infection rate and the

population-level hazard rate are of the same order of magnitude.

Appendix D: Derivation of Estimating Functions (12)-(14)

We present derivations leading to the estimating functions (12)-(14) based on potential outcomes given in

Section 4.2 of the main paper. Because interest focuses on τ ≥ ℓ, from (10) and (11) of the main paper, we

are concerned only with Λb(t), Λu(t), and θ. Accordingly, to determine appropriate linear combinations

of the mean-zero counting process increments {dN∗
a (t, e, r) − dΛa(t, e, r)Y

∗
a (t, e, r)}, a = 0, 1, we must

deduce relevant values of t, e, and r, where e ≤ TA and TP ≤ r < TC by design. For a = 0, from (10) of

the main paper, the relevant values are t < r or t ≥ ℓ+ r and e ≤ min(t, r). For a = 1, from (11) of the

main paper, e+ ℓ ≤ t ≤ r and t > r.

Consider for fixed 0 ≤ t ≤ L, a = 0, 1, integrals of the form

∫ ∫
{dN∗

a (t, e, r)− dΛa(t, e, r)Y
∗
a (t, e, r)}wa(t, e, r) dr de, (D.1)

where wa(t, e, r) is a non-negative weight function, a = 0, 1. We determine the limits of integration for

(D.1) by considering three time periods.

When t < TP , at which point all trial participants are still blinded, so that t < r, (D.1) for a = 0

becomes, using (10) of the main paper and the consistency assumptions below (11) of the main paper,

∫ min(t,TA)

0

∫ TC

TP

{dN∗
0 (t, e)− dΛb(t)Y ∗

0 (t, e)}w0(t, e, r) dr de

=

∫ min(t,TA)

0
{dN∗

0 (t, e) − dΛb(t)Y ∗
0 (t, e)} w̃0(t, e) de, (D.2)

where for t < TP

w̃0(t, e) =

∫ TC

TP

w0(t, e, r) dr.
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For a = 1, ℓ ≤ t < TP shows that (D.1) becomes, using (11) of the main paper,

∫ min(t−ℓ,TA)

0

∫ TC

TP

[
dN∗

1 (t, e) − dΛb(t) exp{θ0 + g(t− e− ℓ; θ1)}Y
∗
1 (t, e)

]
w1(t, e, r) dr de

=

∫ min(t−ℓ,TA)

0

[
dN∗

1 (t, e) − dΛb(t) exp{θ0 + g(t− e− ℓ; θ1)}Y
∗
1 (t, e)

]
w̃1(t, e) de, (D.3)

where for t < TP

w̃1(t, e) =

∫ TC

TP

w1(t, e, r) dr.

Next consider TP ≤ t < TC ; at times in this interval, some participants are still blinded while others

have become unblinded. We consider both t < r, so before unblinding, and t ≥ r, after unblinding at

time r. First consider (D.1) with a = 0. For t < r, (D.1) becomes

∫ TA

0

∫ TC

t
{dN∗

0 (t, e)− dΛb(t)Y ∗
0 (t, e)}w0(t, e, r) dr de

=

∫ TA

0
{dN∗

0 (t, e)− dΛb(t)Y ∗
0 (t, e)} w̃0(t, e) de, (D.4)

where for TP ≤ t < TC

w̃0(t, e) =

∫ TC

t
w0(t, e, r) dr.

Similarly, for a = 1, t < r, (D.1) becomes

∫ TA

0

[
dN∗

1 (t, e) − dΛb(t) exp{θ0 + g(t− e− ℓ; θ1)}Y
∗
1 (t, e)

]
w̃1(t, e) de, (D.5)

where for TP ≤ t < TC

w̃1(t, e) =

∫ TC

t
w1(t, e, r) dr.

Continuing to consider TP + ℓ ≤ t < TC , now take t ≥ r. For a = 0, (D.1) becomes

∫ TA

0

∫ t−ℓ

TP

[
dN∗

0 (t, e, r)− dΛu(t) exp{g(t− r − ℓ; θ1)I(t− r ≥ ℓ)}Y ∗
0 (t, e, r)

]
w0(t, e, r) dr de, (D.6)

For a = 1, (D.1) becomes

∫ TA

0

∫ t

TP

[
dN∗

1 (t, e, r)− dΛu(t) exp{g(t − e− ℓ; θ1)}Y
∗
1 (t, e, r)

]
w1(t, e, r)I(t ≥ r) dr de, (D.7)

Finally, consider t ≥ TC ; these are times where all participants are unblinded. Thus, when a = 0,

(D.1) equals

∫ TA

0

∫ min((t−ℓ,TC )

TP

[
dN∗

0 (t, e, r)− dΛu(t) exp{g(t − r − ℓ; θ1)I(t− r ≥ ℓ)}Y ∗
0 (t, e, r)

]
w0(t, e, r) dr de,

(D.8)
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and when a = 1 equals

∫ TA

0

∫ TC

TP

[
dN∗

1 (t, e, r) − dΛu(t) exp{g(t− e− ℓ; θ1)}Y
∗
1 (t, e, r)

]
w1(t, e, r)I(t ≥ r) dr de. (D.9)

Combining (D.2)-(D.5) yields estimating function EΛb{W ∗; Λb(t), θ} in (12) of the main paper.

Combining (D.6)-(D.9) yields EΛu{W ∗; Λu(t), θ} in (13) of the main paper. Estimating function

Eθ{W
∗; Λb(·)Λu(·), θ} arises through similar considerations, integrating over t and differentiating with

respect to θ0 and θ1.

Appendix E: Demonstration of (21)-(24)

We make the assumptions (16)-(20) in Section 4.3 of the main paper. Here, we show the first equalities

in (21) and (23), i.e.,

E

{
I0(t, e)dN(t)

h0(t, e|X)

∣∣∣∣X,W ∗

}
= dN∗

0 (t, e) (E.1)

and

E

{
I01(t, e, r)dN(t)

h01(e, r|X)

∣∣∣∣X,W ∗

}
= dN∗

0 (t, e, r). (E.2)

Demonstration of the other equalities in (21)-(24) follows by analogous arguments.

We first show (E.1). By the consistency assumption (16) in the main paper, the left hand side of

(E.1) is equal to

E

{
I0(t, e)dN

∗
0 (t, e)

h0(t, e|X)

∣∣∣∣X,W ∗

}
=

dN∗
0 (t, e)

h0(t, e|X)
E{I0(t, e)|X, dN

∗
0 (t, e) = 1,W ∗}.

The result follows if we show that

E{I0(t, e)|X, dN
∗
0 (t, e) = 1,W ∗} = h0(t, e|X). (E.3)

By (15) of the main paper, the left hand side of (E.3) is computed as

pr{E = e|X, dN∗
0 (t, e) = 1,W ∗} (E.4)

× pr{A = 0|X,E, dN∗
0 (t, e) = 1,W ∗} (E.5)

× pr{R > t|X,A = 0, dN∗
0 (t, e) = 1,W ∗}, (E.6)

where we have used the assumption discussed above (19) in the main paper in (E.6). By (17) of the

main paper, (E.5) is equal to pr(A = 0) = 1− pA. By (17) and (18) of the main paper, (E.4) is equal to

fE|X(e|X). The proof will be complete by showing that (E.6) is equal to KR(t|X,A = 0).

To demonstrate this, we consider t < TP , Tp ≤ t < TU , TU ≤ t < TC , and t ≥ TC in turn. Clearly

(E.6) is equal to 1 for t < TP . Because the estimating function using I0(t, e) is defined only for t < TC ,
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we need not consider t ≥ TC . Thus, we need only consider the cases Tp ≤ t < TU and TU ≤ t < TC . For

Tp ≤ t < TU , we write (E.6) as a product integral as in Anderson et al. (1993) and use an argument

similar to that in (8.72)-(8.77) of Tsiatis et al. (2020):

∏

TP≤w<t

[1− pr{w ≤ R < w + dw|R ≥ w,X,A = 0, dN∗
0 (t, e) = 1,W ∗}]

=
∏

TP≤w<t

[1− pr{w ≤ R < w + dw,Γ = 1|R ≥ w,X,A = 0, dN∗
0 (t, e) = 1,W ∗}] (E.7)

=
∏

TP≤w<t

[1− λR,1{w|X,A = 0, dN∗
0 (t, e) = 1,W ∗}dw]

=
∏

TP≤w<t

{1− λR,1(w|X,A = 0) dw} (E.8)

= exp

{
−

∫ t

TP

λR,1(w|X,A = 0) dw

}
= KR,1(t|X,A = 0) = KR(t|X,A = 0),

where (E.7) follows because, if dN∗
0 (t, e) = 1 and A = 0, then the individual could not have been infected

before time t, and thus for TP ≤ t < TU , the only way R could fall between w and w+ dw is if s/he were

unblinded during this period, in which case Γ = 1. (E.8) holds because of assumption (19) of the main

paper. Thus, (E.6) holds for TP ≤ t < TU . Finally, for TU ≤ t < TC , write (E.6) as

pr{R ≥ TU |X,A = 0, dN∗
0 (t, e) = 1,W ∗} (E.9)

× pr{R > t|R ≥ TU ,X,A = 0, dN∗
0 (t, e) = 1,W ∗}. (E.10)

From the previous argument, (E.9) is equal to KR,1(TU |X,A = 0), and (E.10) can be written as a product

integral, namely,

∏

TU≤w<t

[1− pr{w ≤ R < w + dw|R ≥ w,X,A = 0, dN∗
0 (t, e) = 1,W ∗}],

where, using an argument analogous to that above, (E.10) can be shown to be equal to KR,2(t|X,A = 0).

Thus the product of (E.9) and (E.10) is equal to KR,1(TU |X,A = 0)KR,2(t|X,A = 0) = KR(t|X,A = 0)

for TU ≤ t < TC , completing the proof.

We now show (E.2). By the consistency assumption (16) in the main paper, the left hand side of

(E.2) is

E

{
I01(t, e, r)dN

∗
0 (t, e, r)

h01(e, r|X)

∣∣∣∣X,W ∗

}
=
dN∗

0 (t, e, r)

h01(e, r|X)
E{I01(t, e, r)|X, dN

∗
0 (t, e, r) = 1,W ∗}.

The result will follow if we can show that

E{I01(t, e, r)|X, dN
∗
0 (t, e, r) = 1,W ∗} = h01(e, r|X). (E.11)

28



By (15) of the main paper, the left hand side of (E.11) is computed as

pr{E = e|X, dN∗
0 (t, e, r) = 1,W ∗} (E.12)

× pr{A = 0|X,E, dN∗
0 (t, e, r) = 1,W ∗} (E.13)

×
[
pr{R = r,Γ = 1|X,A = 0, dN∗

0 (t, e, r) = 1,W ∗} (E.14)

× pr{Ψ = 1|X,A = 0,Γ = 1, dN∗
0 (t, e, r) = 1,W ∗} (E.15)

+ pr{R = r,Γ = 2|X,A = 0, dN∗
0 (t, e, r) = 1,W ∗} (E.16)

× pr{Ψ = 1|X,A = 0,Γ = 2, dN∗
0 (t, e, r) = 1,W ∗}

]
. (E.17)

As in the proof of (E.1), (E.13) is equal to (1− pA), and (E.12) is equal to fE|X(e|X). By definition, R

is only defined for values of r between TP and TC . For TP ≤ r < TU , Γ must be equal to 1, in which case

the product of (E.16) and (E.17) is equal to zero. For TU ≤ r < TC , Γ must equal to 2, in which case the

product of (E.14) and (E.15) is equal to zero. By assumption (20) of the main paper, (E.15) is equal to

pΨ(X,A = 0,Γ = 1), whereas (E.14) can be written as a product integral

∏

TP≤w<r

[1− pr{w ≤ R < w + dw|R ≥ w,X,A = 0, dN∗
0 (t, e, r) = 1,W ∗}]

× pr{r ≤ R ≤ r + dr,Γ = 1|R ≥ r,X,A = 0, dN∗
0 (t, e, r) = 1,W ∗}

=
∏

TP≤w<r

[1− pr{w ≤ R < w + dw,Γ = 1|R ≥ w,X,A = 0, dN∗
0 (t, e, r) = 1,W ∗}]

× pr{r ≤ R ≤ r + dr,Γ = 1|R ≥ r,X,A = 0, dN∗
0 (t, e, r) = 1,W ∗} (E.18)

=
∏

TP≤w<r

[1− λR,1{w|X,A = 0, dN∗
0 (t, e, r) = 1,W ∗}dw]

× λR,1{r|X,A = 0, dN∗
0 (t, e, r) = 1,W ∗}dr

=
∏

TP≤w<r

{1− λR,1(w|X,A = 0) dw}λR,1(r|X,A = 0) dr (E.19)

= exp

{
−

∫ r

TP

λR,1(w|X,A = 0) dw

}
λR,1(r|X,A = 0) dr = fR,1(r|X,A = 0),

where (E.18) follows because, if dN∗
0 (t, e, r) = 1 and A = 0, then the individual could not have been

infected before time r. This implies that the only way R could fall between w and w + dw, for w < r,

is if unblinding occurred in this period, in which case Γ = 1. (E.19) holds because of assumption (19) of

the main paper. Thus, (E.11) holds for TP ≤ r < TU . Analogous arguments can be used to show that,

when TU ≤ t < TC , the product of (E.16) and (E.17) is equal to fR,2(r|X,A = 0)pΨ(X,A = 0,Γ = 2),

thus demonstrating that (E.11) holds for TU ≤ r < TC , completing the proof.
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Appendix F: Implementation and Large Sample Properties

We present a heuristic argument to establish the large-sample properties of the estimator θ̂ solving (30)

of the main paper, namely,

n∑

i=1

[∫ TC

0
{Zb

i (t)− Z
b
(t)}dÑ b

i (t) +

∫ L

TP

{Zu
i (t)− Z

u
(t)}dÑu

i (t)

]
= 0, (F.1)

Z
b
(t) =

{
n∑

i=1

Ỹ b
i (t)

}−1 n∑

i=1

Zb
i (t)Ỹ

b
i (t), Z

u
(t) =

{
n∑

i=1

Ỹ u
i (t)

}−1 n∑

i=1

Zu
i (t)Ỹ

u
i (t).

The estimating equation (F.1) can be written equivalently as

n∑

i=1

[∫ TC

0
{Zb

i (t)− Z
b
(t)}{dÑ b

i (t)− dΛb(t)Ỹ b
i (t)}

+

∫ L

TP

{Zu
i (t)− Z

u
(t)}{dÑu

i (t)− dΛu(t)Ỹ u
i (t)}

]
= 0,

(F.2)

which follows because
n∑

i=1

{Zk
i (t)− Z

k
(t)}Ỹ k

i (t) = 0, k = b, u.

Letting µk(t) be the limit in probability of Z
k
(t) k = b, u, then the left hand side of (F.2) can be written

as

n∑

i=1

[∫ TC

0
{Zb

i (t)− µb(t)}{dÑ b
i (t)− dΛb(t)Ỹ b

i (t)}

+

∫ L

TP

{Zu
i (t)− µu(t)}{dÑu

i (t)− dΛu(t)Ỹ u
i (t)}

]
(F.3)

−
n∑

i=1

[∫ TC

0
{Z

b
(t)− µb(t)}{dÑ b

i (t)− dΛb(t)Ỹ b
i (t)}

+

∫ L

TP

{Z
u
(t)− µu(t)}{dÑu

i (t)− dΛu(t)Ỹ u
i (t)}

]
= 0. (F.4)

Because E{dÑk
i (t) − dΛk(t)Ỹ k

i (t)} = 0, and {Z
k
(t) − µk(t)} converges in probability to zero k = b, u,

(F.4) is a small order term that can be ignored in the sense that n−1/2× (F.4) converges in probability to

zero. Thus, solving (F.2) is asymptotically equivalent to setting (F.3) equal to zero. Letting θ(0) denote

the true value of θ under the assumption that the semiparametric model (6) of the main paper is correctly

specified, then (F.3) is a sum of mean-zero independent and identically distributed (iid) terms

ψ(Oi; θ) =

∫ TC

0
{Zb

i (t)− µb(t)}{dÑ b
i (t)− dΛb(t)Ỹ b

i (t)}

+

∫ L

TP

{Zu
i (t)− µu(t)}{dÑu

i (t)− dΛu(t)Ỹ u
i (t)},

(F.5)
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where E{ψ(Oi; θ
(0))} = 0. Thus, the estimator θ̂ solving the asymptotically equivalent estimating equa-

tion
n∑

i=1

ψ(Oi; θ) = 0

satisfies, by a standard Taylor series expansion,

0 =
n∑

i=1

ψ(Oi, θ̂) ≈
n∑

i=1

ψ(Oi, θ
(0)) +

{
n∑

i=1

∂ψ(Oi, θ0)

∂θT

}
(θ̂ − θ(0)).

As a consequence,

n1/2(θ̂ − θ(0)) =

[
−E

{
∂ψ(Oi, θ

(0))

∂θT

}]−1

n−1/2
n∑

i=1

ψ(Oi, θ
(0)) + oP (1), (F.6)

which implies that θ̂ is asymptotically normal with mean zero and covariance matrix

[
−E

{
∂ψ(Oi, θ

(0))

∂θT

}]−1

var{ψ(Oi, θ
(0))}



[
−E

{
∂ψ(Oi, θ

(0))

∂θT

}]−1



T

, (F.7)

where var{ψ(Oi, θ
(0))} = E{ψ(Oi, θ

(0))ψ(Oi, θ
(0))T }.

An estimator for the asymptotic variance (F.7) can be obtained as follows. The term var{ψ(Oi, θ
(0))}

can be estimated by

v̂ar{ψ(Oi, θ
(0))} = n−1

n∑

i=1

ψ̂i(θ̂)ψ̂i(θ̂)
T ,

where ψ̂i(θ̂) is an estimator for ψ(Oi, θ
(0)) obtained by substituting (i) Z

k
(t) for µk(t), k = b, u; (ii) dΛ̂k(t)

in (29) of the main paper for dΛk(t), k = b, u; and (iii) θ̂ for θ(0). An estimator for

E

{
∂ψ(Oi, θ

(0))

∂θT

}

is obtained by substitutions (i)–(iii) in this expression and averaging over i, leading to

Ê

{
∂ψ(Oi, θ

(0))

∂θT

}
= −n−1

n∑

i=1

{∫ TC

0
V b(t) dÑ b

i (t) +

∫ L

TP

V u(t) dÑu
i (t)

}
, (F.8)

where

V k(t) =

∑n
i=1{Z

k
i (t)− Z

k
(t)}{Zk

i (t)− Z
k
(t)}T Ỹ k

i (t)∑n
i=1 Ỹ

k
i (t)

, k = b, u.

The resulting sandwich estimator for the large sample covariance matrix of θ̂ is then given by

[
Ê

{
∂ψ(Oi, θ

(0))

∂θT

}]−1

v̂ar{ψ(Oi, θ
(0))}

[
Ê

{
∂ψ(Oi, θ

(0))

∂θT

}]−1

. (F.9)
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The foregoing developments take the inverse probability weights and thus the stabilized weights to

be known. If models for λR,j(r|X,A), j = 1, 2, fE|X((e|X), and pΨ(X,Γ) are posited and fitted and

substituted in (F.1), then the large sample distribution of n1/2(θ̂ − θ(0)) would be considerably more

complicated. In simulations, we have observed that standard errors and confidence intervals based on

(F.6) and (F.9) reflect the true sampling variation in that their numerical values are consistent with

the Monte Carlo sampling variation and confidence intervals achieve the nominal level of coverage. An

alternative strategy to obtaining approximate standard errors and confidence intervals would be to use a

nonparametric bootstrap.

The result (F.6) suggests a Newton-Raphson iterative scheme for solving the estimating equation

(F.1). Letting θ(0) be an initial value for θ and θ(m) be the value at the mth iteration, compute the

update by

θ(m+1) = θ(m) −

[
Ê

{
∂ψ(Oi, θ(m))

∂θT

}]−1

ψ̂i(θ(m)).

This scheme is iterated until some convergence criterion is satisfied.
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