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Abstract

We develop a fully automatic Bayesian Lasso via variational inference. This is a scalable procedure for

approximating the posterior distribution. Special attention is driven to the knot selection in regression spline.

In order to carry through our proposal, a full automatic variational Bayesian Lasso, a Jefferey’s prior is proposed

for the hyperparameters and a decision theoretical approach is introduced to decide if a knot is selected or

not. Extensive simulation studies were developed to ensure the effectiveness of the proposed algorithms. The

performance of the algorithms were also tested in some real data sets, including data from the world pandemic

Covid-19. Again, the algorithms showed a very good performance in capturing the data structure.

1 Introduction

In the recent literature one finds many alternative proposals for modeling and estimating a smooth function.

In this article we focus on variants of smoothing splines, called penalized regression splines (Montoya et al. [2014],

Eilers and Marx [1996]). This is an attractive approach for modeling the nonlinear smoothing effect of covariates.

This work discusses the selection of knots given a fixed maximum number of knots. A roughness penalty is

introduced to control the selection of knots and consequently to balance the two conflicting goals, goodness of

fit and smoothness. Our approach will be through a full Bayesian Lasso with variational inference. It is related

to the work of Osborne et al. [1998] where an efficient algorithm to calculate the classical Lasso estimator was

presented. Our contribution, therefore, includes the application of the mean field variational inference (Blei et al.

[2017], Ormerod and Wand [2010]) for the complete Bayesian lasso penalty (Park and Casella [2008] and Mallick

and Yi [2014])). Choosing the ideal number of knots and their position is a difficult problem. We propose a

two-step procedure related to the work of Ruppert [2002]. For regularization and model selection, the proposed

procedure starts with a fixed maximum number of knots and then uses a full Bayesian lasso, which combines

characteristics of shrinkage and variable selection, to obtain the most significant knots to recover the unknown

smooth function. The number of knots is chosen based on an approximation of the predictive distribution in a

grid of knots values.

The original formulation of the Bayesian Lasso is based on a hierarchical representation of the Laplace dis-

tribution, as a mixture of scale normal based on exponential (Park and Casella [2008]) and more recently as a

mixture of uniform with exponential (Mallick and Yi [2014]).
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of the research, to the analysis of the results and to the writing of the manuscript. Corresponding author. E-mail addresses:
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Alternative procedures for selecting the effective number of knots involving least squares and penalized splines

regression has been proposed in the recent literature, see (Spiriti et al. [2013], Montoya et al. [2014]).

It is well known that MCMC often takes a great deal of computational time and is not scalable. Therefore,

our proposal is to use variational inference (VI) integrated with a decision theoretical approach to knot selection

in regression splines. Both are discussed in detail and have shown to be comparatively better than the alternatives

presented in the current literature.

The remainder of the paper is organized as follows. In Section 2 presents a review the Bayesian linear model,

the variational inference and the hierarchical formulation of the Laplace distribution. In Section 3, shows the

full Bayesian Lasso, including the Jeffrey’s prior for the hyperparameters and the Bayes factor criterion for knots

selection. Section 4 states the knot selection procedure for regression spline in an almost fully automatic algorithm.

Section 5 shows a comparative numerical simulation of the performance of the proposed method and other existing

approaches in the literature. A data analysis of real datasets is presented in Section 6.

2 A review of the Methodology

In order to set the notation to be used later, this section presents a brief summary of Bayesian regression

models and variational inference techniques and also establishes the framework for our proposal to select knots in

regression spline models to be developed in Section 4.

We summarize the conjugate Bayesian analysis of a linear model. In addition, we present an introduction

to variational inference and the hierarchical representation of the Laplace distribution. For more details see,

Drugowitsch [2019], Denison et al. [1998], Berry et al. [2002], Goepp et al. [2018] and Lang and Brezger [2004].

2.1 Bayesian estimation in linear models

Following the notation of Migon et al. [2015] let the linear model be

y |β, φ ∼ N(Xβ, φ−1In)

where y is n-vector of observed quantities, X is a known n × p matrix, β is a p-vector of parameters and φ is

the precision associated with each one of the independent observations. The conjugate prior, a Normal-Gamma,

is defined as:

β|φ ∼ N(m0, φ
−1C−1

0 )

φ ∼ Ga(a0, b0)

where m0 and (φC0)−1 are, respectively, the prior mean and covariance matrix and a0, b0 are the parameters of

the precision prior distribution. The posterior distribution is

β|φ,y, X ∼ N(m1, φ
−1C−1

1 )

φ|y, X ∼ Ga(a1, b1)

m1 = C−1
1 (C0m0 +XTy) and C1 = C0 +XTX

a1 = a0 +
n

2
and b1 = b0 +

1

2
[(y −Xm1)Ty + (m0 −m1)T C0m0]

A very useful extension of the above regression model is the Bayesian hierarchical regression models, which
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will be extensively used latter. It was proposed in the seminal paper of Lindley and Smith [1972] and a dynamic

version was introduced in Gamerman and Migon [1993].

2.2 Variational Inference - main aspects

It is well known that Bayesian inference regarding unknown quantities is entirely based on their probabilistic

description. Therefore, variational inference (VI), a method to deal with the approximation of probability densities

is very useful for Bayesian inference. In fact, these techniques can be traced back to the field of machine

learning (Jordan et al. [1999]). Loosely speaking, they basically exchange sampling, as in MCMC procedures, for

optimization. By choosing a flexible family of approximate densities, an attempt is made to find a member of

this family, which minimizes some optimal criterion, for example Kulback-Leibner divergence (KL). Variational

inference is useful for quickly comparing alternative models and also for dealing with large data sets. Blei et al.

[2017] pointed out that the accuracy of variational inference has not yet been thoroughly studied and many open

questions are still there to be answered.

The basic ideas about variational inference can be easily followed in Blei et al. [2017] and in Ormerod and

Wand [2010]. Many examples are presented in the Bishop [2006] book. Let y be a vector of n independent

identically distributed observations and z a vector including latent variables and the parameters as well. The log

marginal data distribution, also known as evidence integral, is denoted by p(y). Evidence integrals that are often

unavailable in closed form require exponential time to be evaluated and present difficulties in making the inference

for a model such as this. To avoid calculating the evidence integral, one tries to find a lower bound, which is

known as ELBO(q) - Evidence Lower Bound and will be denoted by L(q). It is easy to verify that:

log p(y) = L(q) +KL(q||p),

where L(q) =
∫
q(z) log p(y,z)

q(z) dz and KL(q||p) = −
∫
q(z) log p(z|y)

q(z) dz, since p(y) = p(y,z)/q(z)
p(z|y)/q(z) .

It is clear that maxq L(q) ' minqKL(q||p) and also that KL(q||p) ≥ 0 with equality if and only if p(z|y) =

q(z). In general, it is difficult to obtain this posterior distribution, therefore, the approach is to choose a family

of tractable densities. Let’s assume the following:

q(z) =

m∏
l=1

ql(zl)

where a partition of the z into m disjoint groups is denoted as zl. It is worth pointing out that there is no

restriction on the functional forms of the variational densities ql(zl).

The central idea is to maximize each factor (blocks of z’s) of q(z) in turn. We keep ql 6=h fixed and maximize

L(q). Note that:

L(q) =

∫ m∏
l=1

ql(zl)[log p(y, z)− log ql(zl)]dz

=

∫
qh(zh) [

∫
log p(y, z)

∏
l 6=h

ql(zl) dzl] dzh −
∫
qh(zh) log qh(zh) dzh + const

=

∫
qh(zh) log p̃(y, zh) dzh −

∫
qh(zh) log qh(zh) dzh + const (1)

where p̃(y, zh) = El 6=h log p(y, z)+const. The L(q) will be presented for the specific case of Lasso in subsection
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3.3. Note that it depends on the variational parameters.

Worth emphasizing that the problem of approximating the posterior distribution for the parameters of interest

was replaced for a maximization problem. The algorithm to solve the optimization problem was introduced by

Bishop [2006] and denoted by CAVI - coordinate ascent variational inference. The CAVI optimizes one factor of

the mean field variational density at a time.

Since (1) is equal to −KL(·||·), maximizing it is equivalent to minimizing KL. Therefore, the optimal solution

is:

log q∗(zl) = El 6=h[log p(y, z)] + const

As one can see, q∗(zl) depends on the full conditional distributions, as usually denoted in the MCMC literature

(Casella and George [1992]). Therefore, there is a natural link with Gibbs Sampling but the proposed approach

leads to tractable solutions involving only local operations.

2.3 Hierarchical representation of the Laplace distribution

It is well known that the original Lasso formulation (Tibshirani [1996]) is related to the Laplace distribution

which can be represented as hierarchical mixture of distributions and is relevant to a hierarchical modeling, which

in turn is important for the implementation of Gibbs Sampling.

One of these forms of representation is a scale mixture of a Normal distribution with an Exponential distribution

(West [1987]) and the other is a mixture of a Uniform distribution with a Gamma distribution (Mallick and Yi

[2014]).

Specifically, following Andrews [1974], it is easy to verify that the hierarchical representation: β|τ ∼ N [0, τ ]

and τ |λ ∼ exp
(
λ2

2

)
leads, by marginalizing on τ , to the standard Laplace distribution, whose density is:

λ

2
exp(−λ |β|) =

∫ ∞
0

[
τ−1/2

√
2π

exp

(
−β

2

2τ

)] [
λ2

2
exp

(
−λ

2

2
τ

)]
dτ. (2)

The above hierarchical representation of the Laplace distribution is important to introduce the full Bayesian

Lasso. The penalty term in the classical Lasso can be interpreted as independent Laplace prior distribution over

the regression parameters. Moreover, the posterior mode can be seen as the Lasso estimates.

3 The full Bayesian Lasso

Following the hierarchical representation for the Laplace distributions in Subsection 2.3, Park and Casella

[2008] shows a Bayesian formulation of the Lasso regression model. The hierarchical model is defined as:

y|X,β, φ ∼ N [Xβ, φ−1In]

β|φ, τ ∼ N [0, φ−1Dτ ]

τj |λ ∼ Exp(λ) with j = 1, . . . , p

where Dτ = diag(τ1, . . . , τp) and τj |λ are conditionally independent for all j. The model can be completed

with the hyperparameters of the priors φ ∼ Ga(a0, b0) and λ ∼ Ga(g0, h0). In Subsection 3.1 we propose an

independent Jeffreys prior for φ and λ to automate the Lasso, and this implies supposing a0, b0, g0 and h0 tending

to zero.
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Let θ = (β, φ, τ , λ) be the vector of the parameters and the latent variables of the model. The posterior dis-

tribution is obtained as proportional to the model distribution times the prior distribution for the latent component

and the parameters:

p(θ|y, X) ∝ p(y|X,β, φ) p(β|φ, τ ) p(τ |λ) p(φ) p(λ).

For instance, the above joint posterior is often intractable. An almost obvious numerical approach, since the

breakthrough paper of Gelfand and Smith [1990], is to use stochastic simulation.

3.1 Jeffreys prior using Fisher decomposition

In order to develop an automatic Bayesian Lasso procedure it is worth to introduce non informative priors

for the hyperparameters involved. Following Fonseca et al. [2019] and exploring the conditional independence

involved in the Lasso model, the Fisher information decomposition for Lasso follows as:

Iy(λ) = Iτ (λ)− Ey [Iβ,τ (λ|y)], (3)

where Iβ,τ (λ|y) is the information obtained from the full conditional distribution p(β, τ |y, λ). We also are using

the conditional independence described by the graph that represents the Bayesian Lasso model.

We will develop, in turn, each of the components in the expression (3). The quantity Iτ (λ) is based on the

independent marginal distribution of τj , leading directly to Iτ (λ) = p
λ2 .

In order to obtain Iβ,τ (λ|y), we take advantage of the known full conditional distribution of (β, τ |λ,y) (see

(4)). Since (β|τ , λ,y) does not depend on λ, then it is easy to obtain Ey [Iβ,τ (λ|y)] = p
λ .

Then substituting in (3), it follows Iy(λ) = p
λ2 + p

λ2 and so the prior for λ is p(λ) ∝ λ−1. This result is

similar to the one reported in Fonseca et al. [2019], using the Uniform Gamma mixture.

It is well known that the Jeffrey’s prior of φ is proportional of φ−1.

3.2 The MCMC formulation

Considering the model and the prior distribution already specified, we know that the posterior distribution in

this case has an unknown form. Therefore, we can use the MCMC to obtain a sample of the posterior distribution

through the complete conditional distributions (Gibbs Sampler). Calculations of complete conditionals are as

follows.

(β|y,θ−β) ∼ N

(
(XTX + D−1

τ )−1XTy,
1

φ
(XTX + D−1

τ )−1

)
(τj |y,θ−τj ) ∼ GIG

(
1

2
, 2λ,β2

jφ

)
(φ|y,θ−φ) ∼ Ga

(
n

2
+
p

2
+ a0, b0 +

1

2
[(y −Xβ)T (y −Xβ) + βTD−1

τ β]

)

(λ|y,θ−λ) ∼ Ga

g0 + p, h0 +

p∑
j=1

τj

 (4)

where θ− stands for the entire vector θ without the parameter followed by symbol ” ”, and GIG denotes the

generalized inverse Gaussian distribution. See appendix.
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3.3 The variational approximation applied to Lasso

In order to obtain a scalable inference procedure, we introduce an alternative methodology.

To make the notation consistent, the vector including latent variables and parameters denoted by z in the

subsection 2.2 is represented in this section by the vector θ. Let the independent Jeffrey’s prior be p(φ) ∝ 1
φ and

p(λ) ∝ 1
λ . The joint distribution of the observations, latent components and parameters can easily be followed

from the Figure 1 which in turn summarizes the model.

𝜙

λ

τ𝑗

β𝑗

𝑦𝑖

1: 𝑝

1: 𝑛
𝑥𝑖

Figure 1: Directed acyclic graph

It is worth remembering the expression of the mean field posterior approximation for the latent components

and parameters:

log(q(θ)) = log(q1(β, φ)) + log(q2(τ |λ)) + log(q3(λ))

After quoting Blei et al. [2017] the optimal ql(θl) is proportional to the exponential of the log of the complete

conditional distribution that is calculated in (4)

q∗l (θl) ∝ exp{E−l[log p(θl|θ−l,y)]}, l = 1, 2, 3.

In the first step, the variational posterior for β and φ, that maximizes the variational bound L(q) while holding

q2(τ |λ) and q3(λ) fixed, is given by

log q∗1(β, φ) = log(p(y|β, φ)) + Eτ [log(p(β, φ|τ ))] + const

= logN(β|mβ , φ
−1Cβ)×Ga(φ|aφ, bφ)

It is easy to see that this is a normal-gamma distribution with parameters:
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C−1
β = Eτ (D−1

τ ) +XTX, and mβ = CβX
Ty,

aφ = a0 + n/2, and bφ = b0 +
1

2
(yTy −mT

βC
−1
β mβ).

Next, the variational distribution of τ , that maximizes the variational bound L(q) while holding q3(λ) fixed is

given by

log q∗2(τj) = Eλ[log(p(τj |λ))] + Eβ,φ[log(p(βj , φ|τj))] + const

= logGIG(τj |cτ , dτ , fτj )

with GIG being generalized inverse Gaussian distribution, where

cτ =
1

2
; dτ = 2Eλ[λ] ; fτj = Eβ,φ[φβ2

j ].

Therefore,

log q∗2(τ ) = log

p∏
j=1

GIG(τj |cτ , dτ , fτj ).

Finally, we will identify the variational distribution of λ:

log q∗3(λ) = log(p(λ)) + Eτ [log(p(τ |λ))] + const

= logGa(λ|gλ, hλ)

which is a gamma distribution with parameters

gλ = g0 + p ; hλ = h0 +

p∑
j=1

Eτ (τj).

The expected values involved in the definition of the above variational distributions are computed as follows

(see the appendix for details and Jørgensen [1982]).

Eτ (τj) =

√
fτjκcτ+1(

√
dτfτj )√

dτκcτ (
√
dτfτj )

, (5)

V arτ (τj) =
fτj
dτ

Kcτ+2(
√
dτfτj )

Kcτ (
√
dτfτj )

−

(
Kcτ+1(

√
dτfτj )

Kcτ (
√
dτfτj )

)2
 , (6)

Eτ [D−1
τ ] = diag(Eτ (τ−1

1 ), . . . , Eτ (τ−1
p )), where Eτ (τ−1

j ) =

√
dτκcτ+1(

√
dτfτj )√

fτjκcτ (
√
dτfτj )

− 2cτ
fτj

,

Eβ,φ[φβ2
j ] = m2

βjaφ/bφ + (Cβ)jj ,

Eλ(λ) =
gλ
hλ

7



where κp(·) is the Bessel modified function of the second kind.

The evidence lower bound (ELBO) for this model consists of:

L(q) = Eβ,φ(log p(y|X,β, φ)) + Eβ,φ,τ (log p(β, φ|τ )) + Eτ,λ(log p(τ |λ)) +

+Eλ(log p(λ))− Eβ,φ(log q1(β, φ))− Eτ,λ(log q2(τ |λ))− Eλ(log q3(λ))

Each of the above terms are evaluated as function of the variational parameters, as follows:

Eβ,φ(log p(y|X,β, φ)) =
n

2
(ψ(aφ)− log bφ − log 2π) +

−1

2

[
aφ
bφ

(y −Xmβ)T (y −Xmβ) + tr(XTXCβ)

]
Eβ,φ,τ (log p(β, φ|τ )) =

p

2
(ψ(aφ)− log bφ − log 2π) + (a0 − 1)(ψ(aφ)− log bφ)− b0

aφ
bφ

+

+
1

2

p∑
j=1

Eτ (log τj)−
1

2

p∑
j=1

[
mβj

aφ
bφ

+ (Cβ)jj

]
Eτ

(
1

τj

)

Eτ,λ(log p(τ |λ)) = p(ψ(gλ)− log hλ)− gλ
hλ

p∑
j=1

Eτ (τj)

Eλ(log p(λ)) = g0 log h0 − log Γ(g0) + (g0 − 1)(ψ(gλ)− log hλ)− h0
gλ
hλ

Eβ,φ(log q1(β, φ)) =
p

2
(ψ(aφ)− log bφ − log 2π)− 1

2
log |Cβ |+ aφ log bφ − log Γ(aφ) +

+(aφ − 1)(ψ(aφ)− log bφ)− aφ

Eτ,λ(log q2(τ |λ)) =

p∑
j=1

[
cτ
2

log
dτ
fτj
− log 2− logKcτ (

√
dτfτj ) + (cτ − 1)Eτ (log τj) +

−
[
dτ
2
Eτ (τj)−

fτj
2
Eτ

(
1

τj

)]
Eλ(log q3(λ)) = − log Γ(gλ) + (gλ − 1)ψ(gλ) + log hλ − gλ

The second order Taylor expansion for log τj at E(τj) is used to obtain the approximation for its expected

value: E(log τj) ≈ logE(τj)− V ar(τj)
2E2(τj)

where the mean and the variance of τj are in equations (5) and (6).

Note that the variational bound depends on the quantities mβ , Cβ , bφ, dτ , fτj e hλ. The algorithm updates

these quantities in each iteration. The ELBO is maximized and hence L(q) reaches a plateau with stabilization

of those quantities. The algorithm consists of the following steps:

Algorithm 1 Variational Inference

Step 1. Initialize the variational hyperparameters: mβ , Cβ , aφ, bφ, gλ, hλ, cτ , dτ , fτj .
Step 2.
while ELBO does not reach convergence do

for l = 1, 2, 3 do
Compute q∗l (θl) ∝ exp{E−l[log p(θl|θ−l,y)]}
Step 3. Update the variational hyperparameters based on the expected values.

Calculate ELBO
end for

end while
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Convergence can be achieved by analyzing changes to ELBO in consecutive iterations or by analyzing the

quantities on which it depends.

We end this section by showing the predictive distribution. Let yo e yp be the observed and the predicted

vectors, respectively. Finally, let p(β, φ|yo) be its variational component. Then, after some algebraic calculations,

we have a Student’s t-distribution (St) as follows:

p(yp|yo, Xp) =

∫ ∫
p(yp|β, φ)p(β, φ|yo)dβdφ ≈

∫ ∫
p(yp|β, φ)q1(β, φ)dβdφ

= St

(
yp|XTmβ , (1 +XTCβX)

bφ
(aφ − 1)

, 2aφ

)
,

where q1(β, φ) is the variational approximation of the posterior distribution, a normal-gamma distribution.

3.4 Variable selection

We will discuss, from a Bayesian point of view, three alternative procedures for selecting knots (variables) in

penalized regression splines (linear regression). In this work, we propose a new decision criterion based on the

Bayes factor. This proposed criterion is fully described below in 3.4.1

3.4.1 Bayes Factor decision criteria

In general, the selection of predictors/knots in a penalized regression/penalized regression splines () can be

seen as a decision problem. Consider the general case where it is necessary to decide for one of the following models

M0 : θ ∈ Θ0 orM1 : θ ∈ Θ1 based on some observations (D). An optimal decision will be based on the posterior

probabilities, p(M0|D) and p(M1|D) and, also on the cost of the wrong decisions. Denote by a the cost associate

for the choice of the modelM0 when, in fact, the true model isM1 and let b be the cost of choosing modelM1

when the true model is M0. Therefore, if b p(M0|D) > a p(M1|D) then M0 should be chosen as the most

plausible model for θ. By Bayes’ theorem, the posterior odds are given by the product of the prior odds times the

Bayes factor, FB(M0,M1) = p(D|M0)/p(D|M1), where p(D|Mi) =
∫

Θi
p(D|θ,Mi)p(θ|Mi)dθ, i = 0, 1.

Hereafter, we will assume that the prior odds is equal one.

Particularly, we consider two alternatives: M0 : βj = 0 and M1 : βj = δ, where δ 6= 0 is a constant

to be defined. Under M0, let us assume that βj |D ∼ N(0, s2
j ) and under M1 we have βj |D ∼ N(δ, s2

j ),

where s2
j = var(βj |D). Hence, it is straightforward to get log(FB(M0,M1)) = log(exp{− 1

2β
2
j }/ exp{− 1

2 (βj−
δ)2}) = 1

2δ
2 − βjδ.

Assuming that at least a moderate evidence againstM1 corresponds to FB(M0,M1) ≥ 3 and β is considered

to be significantly distant from the M0, if and only if it is greater or equal to the third quartile of the standard

normal distribution, that is β0.75 = 0.67, then a quadratic equation must be solved whose root is δ = 2.3. Thus,

our proposal to select knots in spline regression is described in the following algorithm:
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Algorithm 2 Bayes Factor decision criteria

Step 1. Take β∗j = mj/sj , a standardized point estimate of βj , mj = E[βj |D] and s2j = var(βj |D).

Step 2. Compute the Bayes factor at β̂?j : BF (M0,M1) =
exp{− 1

2
(β̂?j )

2}
exp{− 1

2
(β̂?j−δ)

2}
, δ = 2.3.

Step 3. Compute π? = BF (M0,M1)/(1 +BF (M0,M1)).
Step 4. Define BF evidence
Choose two positive numbers a and b, (with a = 1 and b = 3, corresponding to a Bayes factor equal to 3)
if π? < a

a+b
then

M0 is rejected and jth predictor is excluded from the model
else

the jth predictor is not excluded from the model.
end if

3.4.2 Other criteria

One procedure, due to (Li and Lin [2010]), is based on a 50% credible interval. That is, if the credible

interval of a given coefficient contains zero, the explanatory variable associated with it must be removed from the

model. A second criterion, named scaled neighborhood (Li and Lin [2010]) corresponds to evaluate the posterior

probability of [−sj , sj ], where s2
j = var(βj |y) and decide the exclusion of a predictor if this probability exceeds a

certain threshold, for instance Li and Lin [2010] suggests 1/2 as this limit.

4 Knots Selection in Regression Spline

We start with the standard setup for nonparametric regression models. Let’s suppose we have a collection of

observations (yi, xi) for i = 1, . . . , n such that

yi = f(xi) + εi, (7)

where f(xi) = E[yi|xi] are the values obtained by a unknown smooth function f that takes values on the interval

[a, b] ⊂ R and εi is a sequence of random variables that are uncorrelated with mean zero and unknown precision

φ. A possible approach to estimate f is to assume that the regression curve f can be well approximated by

a spline function. See details in Dias [1999]. That this, given a sequence of knots κ = (κ1, . . . , κK) so that

κ1 < κ2 . . . < κK−1 < κK , a spline regression model can be written as:

f(x,β) = β0 +

p∑
j=1

βjx
j +

K∑
k=1

βp+k(x− κk)p+, (8)

where p is the degree of the polynomial spline and β is the vector of coefficients of dimension K + p + 1. The

functions (u)+ are the well known truncated power basis, (u)p+ = max(0, up). Note that, for a fixed K, the

vector of knots κ and the set of basis functions {1, x, x2, . . . , xp, (x − κ1)p+, . . . (x − κK)p+}, an estimate of f ,

say f̂ , can be obtained by estimating the vector β. Such that,

f̂ = f(x, β̂) = β̂0 +

p∑
j=1

β̂jx
j +

K∑
k=1

β̂p+k(x− κk)p+.

It’s well known (Dias [1998], Dias and Gamerman [2002], Dias and Garcia [2007], Kooperberg and Stone [1991])

when K increases the bias gets smaller causing over-fitting but at the same time substantially increases the
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variance. On the other hand, if K goes to zero then variance might drastically be reduced causing under-fitting

and considerably increases bias. Thus, K acts as the smoothing parameter in regression spline fit and hence it

balances the trade-off between over-fitting and under-fitting. A good procedure should not only provide an ideal

number of knots (or basis functions) but also quantify the uncertainty of adding or removing them. Figure 2

shows the effect of different values of K for a spline regression model.
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Figure 2: Large values of K causes over-fitting.

There are other basis functions that can represent a regression function such as B-splines, wavelets radial basis

etc. For all, it is still necessary to balance between under-fitting and over-fitting. Even in the case of smoothing

splines, the regularization parameter needs to be obtained. Specifically, in this work we are dealing with the

following optimization problem: Find β̂(λ) the minimizer of

n∑
i=1

(yi − f(xi,β))2 + λ

K∑
k=1

|βp+k|, (9)

where λ is the smoothing parameter. For large values of λ the solution of this optimization problem tends to the

polynomial regression fit, that is over-fitting. Note that the penalty term involves only the coefficients associated

to the knots sequence κ1 < κ2 . . . < κK . Consequently, selecting knots is equivalent to selecting the coefficients

that contribute most to the fitting. Under the Bayesian point of view, this work presents a novel and scalable

procedure for selecting knots.

4.1 The variational inference for knots selection

Following the idea of the Lasso procedure for variable selection, under the Bayesian point of view, the selection

of knots in the spline regression models can be made by assuming an independent Laplace prior distribution for the

coefficients associated with the knots. We will denote β =
(
β(1)T ,β(2)T

)T
where β(1) = (β0, β1, . . . , βp)

T is

the polynomial coefficients with dimension p+ 1 and β(2) = (βp+1, . . . , βp+K)T of dimension K is the penalised

coefficients. The hierarchical structure presented in the subsection 2.3 is maintained and in this way we complete

the model defined by the equations (7) and (8):
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β(1)T ∼ N(m0, C0)

β(2)T |φ, τ ∼ N(0, φ−1Dτ )

τj |λ ∼ Exp(λ), j = 1, . . . ,K

φ ∼ Ga(a0, b0)

λ ∼ Ga(g0, h0) (10)

The Bayesian inference procedure in this case must be carried out with caution since the vector of coefficients

contains the coefficients of the polynomial, which will not be penalized, and the coefficients of the basis functions to

which we assume a prior Lasso distribution for knots selection. The design matrix is then partitioned X = (X1, X2)

with X1 of dimension (n× p+ 1) and X2 (n×K). Then, the i-th row of the matrix X is given by:

Xi = {1, xi, x2
i , . . . , x

p
i︸ ︷︷ ︸

X1i

, (xi − κ1)p+, . . . (xi − κK)p+︸ ︷︷ ︸
X2i

}.

and Xβ = X1β
(1) +X2β

(2).

In this context, we have a prior distribution of the vector θ = (β(1), β(2), φ, τ, λ) and the posterior distribution

is given by:

p(θ|y) ∝ p(y|X,β, φ) p(β(1)) p(β(2)|φ, τ ) p(τ |λ) p(φ) p(λ).

Slight adaptations need to be made in the variational inference method and the main one refers to the fact that

we now have 4 partitions of the parametric vector giving rise to the following variational densities:

log(q(θ)) = log(q1(β(2), φ)) + log(q2(τ)) + log(q3(λ)) + log(q4(β(1)))

where log q4(β(1)) = logN(β(1)|mβ1
, Cβ1

). The calculations for this and other variational densities are similar to

those developed for the regression model in subsection 3.3 and can be found in the appendix.

4.2 Algorithm for automatic knot selection

An alternative approach to determine the maximum number of knots K is to consider it as an unknown

parameter and estimate it. However, as in this work, K is not a parameter of direct interest since the selection of

knots is carried out through the Lasso scheme. Despite this, in order to have a good fit, it is important to properly

define the number of knots and their positions. In section 5 presents some exercises involving selecting knots and

shows the importance of the correct specification of the value of K. Thus, an algorithm will be proposed for the

automatic choice of the number of knots K that is based both on the VB algorithm for estimating the Lasso

model and on the criterion for selecting variables (knots).

The algorithm starts by proposing a grid of possible values of K the maximum number knots. Naturally,

the grid of values is an issue to be discussed. Note that it is not necessary to propose a grid that covers all

the natural numbers, since computational time can be excessively high. Moreover, given a maximum number of

knots, the most significant knots will be selected. For instance, start the grid with the maximum number of knots

K = 20. By using Lasso and the selection criteria, it is possible to have 6 among these 20 knots as the most

significant ones. On the other hand, simulations show that starting with a very large maximum number of knots
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may cause problems in the selection, since the penalty criteria acts more severely when the number of knots is

extremely big for the size of the data set. See numerical simulations in Section 5. Therefore, our proposal is to

provide a grid that increases 10 units at a time, so that the knots are placed in the quantiles or evenly spaced in

the explanatory variable domain. This spacing allows us to position knots in different locations before and after

selecting significant knots. In the simulated exercises presented in Section 5, the grid starts with K = 10 knots.

In summary, ELBO is taken as a stopping criterion and the objective is to maximize it. The algorithm consists

of: for fixed grid values, start with the lowest value. The model is adjusted via VB together with the selection

criteria and then calculates the ELBO. Move to the next grid value and repeat the procedure. As long as the

ELBO increases with the grid values, the algorithm continues. The detailed algorithm is given below:

Algorithm 3 Maximum Number of Knots

Step 1. j ← 1. Initialize Kj = 10.
Step 2. Fit model via VB algorithm.
Step 3. Compute ELBO.
Step 4. Apply BF to select the most significant knots.
Step 5. Kj+1 = Kj + 10 and repeat steps 2, 3 and 4.
if ELBO(Kj+1) ≥ ELBO(Kj) then

Set Kj ← Kj+1. Repeat steps 2 to 5.
end if
if ELBO(Kj+1) < ELBO(Kj) then

Stop and deliver ELBO and the most significant knots
end if

5 Simulations Studies

This section proposes 5 exercises with artificial data. The first three based on Lasso for linear regression

models and the last two focused on the use of Lasso to select knots in spline regression.

The inference procedure assumes, for all exercises, the following prior distributions: φ ∼ Ga(0.1, 0.1), λ ∼
Ga(0.1, 0.1) e β1 ∼ N(1, 100) (in case of regression splines). For MCMC, 15,000 iterations were necessary to

achieve convergence. The first 5,000 iterations were discarded as the burn in process and one observation was

taken for every ten observations to remove autocorrelation, ending with a sample size of 10000. These quantities

were obtained by using the criterion found in Lewis and Raftery [1997], that provides the number of iterations

needed to guarantee the convergence in the Gibbs Sampler. The VB algorithm is repeated until the changes in

mβ , Cβ , bφ, dτ , fτj and hλ between two consecutive iterations are less than 0.01%. When applied, the classic

procedure was implemented using the R software glmnet package, which in turn applies 5-fold cross-validation to

estimate the penalty parameter λ.

5.1 Variable Selection for Linear Regression

The goal of these exercises applied to the linear regression models is twofold. Firstly to compare the estimation

methods VB and MCMC (eventually we also use the classic Lasso in the comparison). Secondly, we wish to

compare the CI, SN and BF selection criteria. Moreover, different sparsity scenarios, variations in the sample

size, different correlations between explanatory variables and different values for the accuracy of the model are

considered.

Specifically, exercise 1 aims to estimate Lasso hyperparameters via VB and MCMC. Only one data set is

simulated from which the real values of all parameters and hyperparameters of the model are known. VB presents
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results similar to MCMC and computational time 14 times shorter. Exercise 2 is based on a simulation study with

100 replicates that presents a lesser sparsity structure. Variations in the sample size and in the correlation among

the explanatory variables are considered. Again, VB and MCMC present similar and superior results to the classic

Lasso. When the CI, SN and BF selection criteria are compared, BF gives the best results, with high proportions

of exclusion for coefficients that are zero and low exclusion proportions for coefficients that are different from

zero. Exercise 3 is designed for scenarios with 100 replicates and with greater sparsity when compared to exercise

2. This exercise takes into account cases where n < p and different values for the model’s precision. The results

are similar of those obtained in simulation 2

5.1.1 Exercise 1: MCMC vs. VB

The purpose of simulation 1 is to compare the MCMC and VB methods to curve fitting and computational

time. For this study we considered n = 100, p = 10 and each column of the matrix X was generated from a

distribution N(0, In). For the parameters, were taken φ = 0.4, λ = 5 and τj |λ ∼ Exp(λ), ∀j. The regression

coefficients and observations were generated considering the Lasso regression model.

Table 1 shows us a posterior summary of the model parameters. There, one can see the mean and the standard

deviation of the approximate posterior obtained by using VB. Also, the posterior mean, the posterior standard

deviation via MCMC and the true value of the parameters. Note that the point estimates obtained by the VB are

close to those obtained by the MCMC. In addition, for both methods, the results are close to the real values with

small standard deviation. This same conclusion can be seen in Figure 3. In fact, Figure 3 exhibits a graphical

comparison between MCMC and VB. The histogram represents the sample of the posterior distribution obtained

via MCMC and the curve in red the approximate posterior density obtained by the VB. The green dot indicates

the true value of the parameters. Note that the curves approximated by the VB are close to the histograms and

both centered on the actual values. The remaining parameters τj show similar results.
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Table 1: Posterior summary.

Parameters Real Mean VB Sd VB Mean MCMC Sd MCMC
β1 0.463 0.557 0.132 0.558 0.139
β2 0.116 -0.046 0.136 -0.048 0.138
β3 -1.251 -1.316 0.153 -1.315 0.160
β4 0.250 0.396 0.161 0.383 0.171
β5 -0.319 -0.078 0.137 -0.079 0.142
β6 0.826 0.844 0.140 0.845 0.148
β7 -0.036 0.091 0.142 0.096 0.149
β8 0.144 0.074 0.136 0.081 0.143
β9 0.064 -0.090 0.131 -0.081 0.134
β10 -0.298 -0.370 0.150 -0.369 0.163
φ 0.4 0.473 0.066 0.473 0.070
τ1 0.340 0.233 0.188 0.265 0.326
τ2 0.088 0.137 0.159 0.162 0.250
τ3 0.148 0.401 0.231 0.453 0.398
τ4 0.470 0.201 0.179 0.234 0.359
τ5 0.048 0.140 0.160 0.152 0.209
τ6 0.162 0.296 0.205 0.345 0.333
τ7 0.120 0.142 0.161 0.164 0.266
τ8 0.069 0.139 0.160 0.173 0.365
τ9 0.027 0.140 0.161 0.148 0.244
τ10 0.275 0.194 0.177 0.212 0.278
λ 5 4.745 1.493 5.600 3.776

Since MCMC and VB present similar results, it is worth to point out the main difference between these

estimation methods, which is computational time. For exercise 1, the computational time of the VB was 0.72

seconds while that of the MCMC was 10.15 seconds. In the following exercises these computational times become

even more discrepant as we will be dealing with simulations with replicates.

5.1.2 Exercise 2: High correlation

In this exercise a simulation was developed based on 100 replicates p = 8, β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and the

design matrix is generated from a multivariate normal distribution with zero mean, variance 1 and two different

correlation structures between xi e xj : 0 e 0.7|i−j|, ∀i e j. Let’s consider φ = 1/9 and 3 nested scenarios varying

the sample size with {nT , nV } = {20, 10}, {100, 50} e {200, 100}, where nT e nV denote the size of the training

set and the size of the validation set, respectively. Therefore, we have a total of 6 different scenarios. Note that

the explanatory variables are standardized to have mean 0 and variance 1

A Tabela 2 summarize the results of exercise 2.

Table 2: Simulation 2 with 100 replicates, p = 8 explanatory variables and the vector of coefficients β =
(3, 1.5, 0, 0, 2, 0, 0, 0)T .

Simulation nT nV cov(Xi, Xj)
S2.1 20 10 0
S2.2 100 50 −
S2.3 200 100 −
S2.4 20 10 0.7|i−j|

S2.5 100 50 −
S2.6 200 100 −

The comparison of the MCMC and VB methods is our main objective in this simulation, however, frequentist

Lasso is also considered through the glmnet package of the R software. For the frequentist Lasso, a 5-fold cross-
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Figure 3: Comparison MCMC (histogram) versus VB (solid line). The dot marks the actual value of the parameter
used to generate the data.
.

validation is used to select the parameter λ. In addition, different variable selection criteria will be compared as

described in 5: credible interval (CI), scaled neighborhood (SN) and Bayes factor (BF).

In order to compare Lasso’s predictive power from the different estimation techniques, MCMC, VB and

frequentist Lasso, the mean absolute error (MAE) was calculated for each replicate of the validation set using the

following expression:
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MAE =
1

nV

nV∑
i=1

|yPi − yVi | (11)

where yPi are the predicted values in the validation set, obtained from the fitted model after the selection of the

coefficients. yVi are the observed values in the validation set and nV is the size of the validation set. Note that

MCMC generates a sample of the predictive distribution from each iteration of the method. Then, yPi is obtained

as follows:

p(yPi |y) =
1

AM

AM∑
j=1

p(yPi |θ
(j)),

where AM is MCMC number of iterations and θ is the vector of coefficients.

Figure 4 shows the box-plots of the mean absolute errors for each of the six proposed scenarios. As the sample

size increases, we observe a smaller difference between the three estimation methods. When the sample is small,

similar results are obtained between MCMC and VB. These have the median MAE and the lowest dispersion when

compared to the frequentist Lasso. Next, we will detail the performance of the selection criteria for each βj .
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Figure 4: Mean absolute error (MAE) using (5.1.2) for the 6 scenarios of the simulation 2. Estimation methods:
MCMC, VB and frequentist Lasso.
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The Table 3 shows the frequency of times that the predictor xj , j = 1, . . . , 8 was excluded in the 100

replicates, considering the three variables selection methods and all six scenarios built in Simulation 2. We present

the proportions only for the VB because so far its results are similar to those of the MCMC. Note that for this

simulation exercise the BF presents the best results in all scenarios, with a greater proportion of exclusion when

the actual values of βj are zero and a small proportion when the β ’s are different from zero. In addition, it is

noted that as the sample size increases, the three criteria tend to correctly choose coefficients that are zero and

the coefficients that are different from zero. From exercises 1 and 2, one may notice that the approximations of

the VB are as good as the results obtained by the MCMC. Nevertheless, the gain in computational time provided

by VB is far superior than MCMC. In addition, we saw that BF is a variable selection criterion that presents

superior results when compared with CI and SN. In the following subsection we show the performance of the VB

estimation method and the BF selection criterion for a more complex numerical experiment with greater sparsity.

Table 3: Comparison of the three methods on variable selection accuracy using VB for the six scenarios (the
frequency of exclusions for the predictor xj , j = 1, . . . , 8) with β = (3, 1.5, 0, 0, 2, 0, 0, 0)T .

Simulation Method β1 β2 β3 β4 β5 β6 β7 β8

S2.1
VB + CI 0.01 0.09 0.64 0.57 0.13 0.66 0.65 0.62
VB + SN 0.02 0.15 0.73 0.71 0.20 0.77 0.75 0.71
VB + BF 0.00 0.09 0.88 0.70 0.13 0.82 0.75 0.92

S2.2
VB + CI 0.00 0.00 0.47 0.51 0.00 0.57 0.67 0.56
VB + SN 0.00 0.00 0.70 0.62 0.00 0.71 0.78 0.72
VB + BF 0.00 0.00 0.73 0.78 0.00 0.73 0.84 0.72

S2.3
VB + CI 0.00 0.00 0.50 0.47 0.00 0.67 0.60 0.58
VB + SN 0.00 0.00 0.71 0.62 0.00 0.71 0.73 0.76
VB + BF 0.00 0.00 0.72 0.73 0.00 0.77 0.80 0.77

S2.4
VB + CI 0.02 0.09 0.53 0.53 0.19 0.71 0.60 0.64
VB + SN 0.06 0.11 0.70 0.62 0.24 0.75 0.73 0.74
VB + BF 0.02 0.09 0.65 0.80 0.18 0.85 0.81 0.88

S2.5
VB + CI 0.00 0.00 0.57 0.49 0.00 0.60 0.51 0.57
VB + SN 0.00 0.00 0.73 0.68 0.00 0.75 0.70 0.75
VB + BF 0.00 0.00 0.78 0.77 0.00 0.76 0.80 0.82

S2.6
VB + CI 0.00 0.00 0.55 0.47 0.00 0.60 0.46 0.57
VB + SN 0.00 0.00 0.70 0.66 0.00 0.77 0.64 0.75
VB + BF 0.00 0.00 0.77 0.75 0.00 0.79 0.72 0.77

5.1.3 Exercise 3: High sparsity with small n and large p

In this exercise we consider a situation with sparsity given by p = 40 e β = (0T,3T,0T,3T)T , where 0 e 3

are vectors of dimension 10 and each of their entries are 0 and 3 respectively. The design matrix X is generated

from a multivariate normal distribution with mean zero, variance 1 and the correlation between the columns xi e

xj is equal to 0.5, ∀i 6= j. We analyze 4 different scenarios by varying the sample size and the precision parameter

φ. The simulated data were analyzed as follows, {nT , nV } = {20, 10} e {200, 100} where nT e nV are the size

of the training set and the size of the validation set respectively. In addition, we set the precision parameter as

φ = 1/9 and φ = 1/225. For each scenario we consider 100 replicates. Table 4 summarizes all the scenarios

considered in this simulation exercise 3. It is worth mentioning that in scenarios S3.1 and S3.3 we have n < p

Similarly to exercise 2, the MAE was calculated for each replicate as a predictive measure. Figure 5 shows the

box-plots of each scenario for MCMC, VB and Lasso. One may see that the MCMC and VB present similar and
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Table 4: Scenarios in Simulation 3

Simulation nT nV φ
S3.1 20 10 1/9
S3.2 200 100 -
S3.3 20 10 1/225
S3.4 200 100 -

superior results to the Lasso when the sample size is small. As the sample increases the results become similar in

the 3 approaches.
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Figure 5: Mean absolute error (MAE) obtained by using (5.1.2) for the 4 scenarios in exercise 3, comparing the
estimation methods MCMC, VB and Lasso.

Figure 6 shows the proportions of exclusions (gray bars) and selections (black bars) for each of the 40

coefficients in the 100 replicates, when comparing the estimation methods, VB and Lasso. MCMC was omitted

for presenting results similar to VB. In the Bayesian context, the selection criterion used in all scenarios was the

BF. It is expected that the black bars will be larger when the true coefficients are different from zero and that the

gray bars will be large when the true coefficients are equal to zero. The proportions of the errors are represented
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by the black bars when the coefficients are zero (type I error) and by the gray bars when the coefficients are

different from zero (type II error Thus, it can be seen for n < p, both VB and Lasso do not have a good selection

and exclusion performance, with a slight advantage of VB. On the other hand, as the sample increases, the VB

presents good results, better than those presented by Lasso. Also note that when n > p both VB and Lasso have

the same type II error. However, for all coefficients, the type I error is considerably less in VB than in MCMC

5.2 Knots selection

As the VB presents results similar to the MCMC, but with considerably less computational time, therefore, in

the two exercises applied to the spline regression models, only the VB is used. The goal is to define the maximum

number of knots from a grid of values and, in turn, to select the most significant knots and their positions.

Exercises 4 and 5 consist of a simulation study of the penalized spline regression model defined in equations (7),

(8) and (10). What differs in the two simulation studies consists of the number of bumps in the smooth function

f . In exercise 4, shows an example with 1 bump, while exercise 5 analyzes 2 bumps.

In both exercises we have 100 replicates with n = 100, variance equals to 0.3 ( φ = 1/0.3) and xi taking

equally spaced values in the interval [0, 1]. In addition, Cubic Splines (p = 3) are used, the interior knots of the

truncated power basis are positioned in the quantiles of the variable xi. The maximum number of knots varies in

the grid K = 10, 20, 30, 40 and 50.

The ELBO is used to indicate the maximum number of knots and for the both exercises we have an optimal

initial guess of K = 30 knots. The BF and CI selection criteria indicate that around 8 of these 30 initial knots

have a higher frequency of being selected as the most significant ones.

5.2.1 Exercise 4: Single structure/One bump

In exercise 4 we use the smooth function f called ”Bump” given by f(x) = x+ 2 exp{−(16 ∗ (x− 0.5))2}.
Figures 7, 8 and 9 show some results for K = 10, 30 and 50 knots, respectively. In the first line of graphics

there are the plots of the data generated for one of the replicates (dots), the true curve (solid line) and the

average of the fittings of the 100 replicates for the three selection criteria (dashed lines). The second line shows

the proportion of excluded knots, also for the three selection criteria CI, SN and BF.

Observe that the positions of the knots most selected as significant are in the rise and fall of the bump. In

addition, it should also be noted that as K increases, the three selection criteria tend to be more rigorous in the

penalty, hence, excluding more knots. This occurs more severely in the SN criterion, which presents an average

of fittings worse when K = 50. The results of the CI and BF criteria are similar in all cases. The results for

exercises where the maximum number of knots are 20 and 40 have been omitted as they are similar, for K = 10

and K = 50, respectively

Figure 10 exhibits the 100 fitted models for each of the replicates considering K = 10, 30 and 50, and the

BF selection criterion. One can see that the variability increases as the value of K increases. The same occurs

when considering the other selection criteria.

Figure 11 shows the frequency of the number of knots selected in the 100 replicates for each of the selection

criteria (CI, SN and BF) and maximum number of knots (K = 10, 30 and 50). Note that CI and BF criteria,

when K = 10, select between 5 and 6 knots as the most frequent ones. On the other hand, when K = 30 knots

7 knots among them are selected more frequently. In the case where the maximum number of knots is K = 50

we have a bimodal behavior for the frequency of the number of selected knots and one can see that the penalty
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is more severe as K grows.

ELBO as a model comparison measure can be used to propose the maximum number of knots. It is worth

mentioning that the larger the ELBO the more that model is preferable. From the Table 5, which presents the

average ELBO for each value of K, we have that the model proposed with K = 30 knots which selects more

frequently 7 of these knots as significant, is preferable.

Table 5: Average ELBO

Criterion k = 10 k = 20 k = 30 k = 40 k = 50
FB -32.24 -16.10 -2.55 -19.59 -22.23
IC -32.24 -16.37 -2.55 -20.91 -46.14
SN -37.15 -39.14 -69.16 -244.80 -390.80
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Figure 7: Proportion of excluded knots and the average of the fittings (dashed line), K=10.
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Figure 8: Proportion of excluded knots and the average of the fittings (dashed line), K=30.
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Figure 9: Proportion of excluded knots and the average of the fittings (dashed line), K=50.
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5.2.2 Exercise 5: Double structure/Two bumps

Similar to exercise 4, we proposed exercise 5, however, now considering a curve with 2 bumps. The curve f

is a mixing two normal distributions:

f(x) = 0.3N(x|0.4, 0.01) + 0.7N(x|0.8, 0.01),

where N(x|a, b) is a normal distribution with mean a and variance b. In this exercise we assume n = 300 and the

other conditions of simulation 4 were kept. That is, 100 replicates, φ = 1/0.3, xi equally space in [0, 1], p = 3,

knots placed at the xi quantiles and maximum number of knots K = 10, 20, 30, 40, 50. We omitted the graphics

for K = 20 and K = 40, as they are similar.

The results obtained for the case of 1 bump are similar to those obtained here. Once again, it is possible to

see in the Figures 12, 13 and 14 the average of the fittings of the 100 replicates for the three selection criteria in

the dashed lines (first row of plots) and the proportion of excluded knots (second row of plots) for different values

of K. In the three figures one may notice that the knots that are most selected as significant are positioned in the

ups and downs of the bumps. For the case of 2 bumps, the higher the value of K, the more severe the exclusion

of knots is. The SN criterion does not show good results as the maximum number of knots increases and the

performance of the CI and BF criteria are similar in all cases.
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Figure 12: Proportion of excluded knots and the average of the fittings - K=10.

In Figure 15 shows the fittings of 100 replicates according to the BF criterion for different numbers of knots.
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Figure 13: Proportion of excluded knots and the average of the fittings - K=30.

It can be seen that there is less variability than in the case of 1 bump, possibly due to the increase in the sample

size to n = 300 . Nonetheless, it is possible to see that the when the maximum number of knots increases , the

variability between the fitted models also increases.

Our analysis shows that the SN criterion does not provide a good fit for K = 50 and in Figure 16 we see that

this criterion tends to underestimate the number of significant knots as K increases. We will analyze in more

detail the frequency of the number of knots selected in the 100 replicates using the CI and BF criteria. Note that

both criteria present similar results. In Figure 16 we observed that when the maximum number of knots is 10,

both the CI and BF criteria indicate more frequently that 7 out of 10 knots are significant. When K = 30 or

K = 50, the criteria CI and BF most frequently indicate 8 knots as significant.

In order to define the maximum number of knot, the average ELBO was calculated for each value of K in a

fixed grid. For the FB criterion we have that the average ELBO is -74.36 when K = 10. This value increases

(-68.67 when K = 20) until it reaches the maximum value of -67.15 when K = 30. The average ELBO value

for K = 40 is -70.44. Thus, for BF criterion K = 30 is the initial guess for the maximum number of knots.The

same can be seen in the CI criterion. This result coincides with that obtained in exercise 4.
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Figure 14: Proportion of excluded knots and the average of the fitted models - K=50 nós.
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Figure 15: Fit of 100 replicates for different values of knots.
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6 Applications to real data

In this section, two applications with real data will be analyzed. The first is considered more usual in the

literature in the area and the second addresses a current issue related to the world pandemic of Covid-19. In

both cases, the Penalized Spline Regression model with polynomials of degrees 2 and 3 is fiited to the data. In

addition, the maximum number varies between 10, 20 and 30. It is noteworthy that in the first example the knots

are equally spaced positioned. Lasso, through variational inference (VB), is used in both applications together

with the Bayes Factor (BF) criterion for the selection of the most significant knots. ELBO will be the measure

considered for comparing models

6.1 Age and Income data

The first data set considers the income and age of 205 Canadians (Ullah and Zinde-Walsh [1985]. These data

have been widely used in applications of non-parametric regression models. See for example Ruppert [2002]. A

logarithmic transformation was applied to income, as can be seen in the data represented by black dots in the

two plot in Figure 17. Table 6 shows the ELBO measure computed for each fitted model by varying the degree

of the polynomial (p) and the maximum number of knots (k). For both p = 2 and p = 3, ELBO achieves its

maximum value at K = 10. Comparing these two quantities, the largest ELBO occurs for p = 3 and K = 10.

The graph on the left of Figure 17 shows the fitting of the penalized spline regression model (solid black line) and

its credible interval of 95% (gray shaded area). Note that the credible interval covers a large part of the observed

points. At the bottom of the graph we have the symbol ”x” representing the 10 knots positioned and in black

the only knot considered significant among the 10, according to the FB criterion. At the level of comparison, the

graph on the right of Figure 17 shows the fitted model obtained with the R function ”smooth.spline” (solid line

in red) and the fitting of the proposed model (black solid line). In this application, the results of these two fitted

models are similar.

Table 6: ELBO - Age and income data

k = 10 k = 20 k = 30
p = 2 -221.49 -225.45 -237.22
p = 3 -220.77 -227.03 -223.93

6.1.1 Covid-19 data

In order to observe the trend of the daily cases of Covid-19 in the USA and Brazil, the penalized spline

regression model was fitted to the data (logarithmic scale). United States data ranges from March 1, 2020 to

November 30, 2020, while data from Brazil ranges from March 10, 2020 to November 30, 2020.

Figure 18 shows the number of daily cases of Covid-19 in the USA (left) and Brazil (right) on the original

scale. The black dots in the Figures 19 and 20 show the same data set in logarithmic scale.

In this example, analyzing real data, we consider models with splines of degrees 2 and 3. The maximum

number of knots varies every 10 knots. To find the maximum number of knots, we use the ELBO measure by

starting the grid with K = 10 knots. After obtaining the optimal K value BF criterion is applied to select which

knots are the most significant and their positions.

The inference procedure was performed from the Bayesian point of view through variational inference. The

prior distribution remains the same as for studies with artificial data.
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Figure 17: Left: The fit of the spline regression model (black solid line) with p = 3 and one significant knot among
K = 10 knots and the log-income and age data (black dots) with the credible interval of 95% (shaded area).
Right: The fit of the proposed model (solid black line) and a fitted model using the R function ”smooth.spline”
(solid red line) to the log-income and age data (dots).
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Figure 18: Daily cases of Covid-19 in US (left) and in Brazil (right).

Table 7 exhibits the results of ELBO for different values of p and K, for data from the USA and Brazil.

Marked in bold are the cases in which ELBO achieves the highest values for p = 2 and p = 3. In the North

American case, ELBO is maximum when p = 3 and K = 20. It is worth mentioning that among the 20 knots,

9 were significant according to the BF criterion. Considering the Brazil data, one can see that the largest ELBO

occurs when p = 2 and K = 10, and only 6 of these 10 knots are significant, according to the BF. The following

results are presented only for models with the largest ELBO.
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Table 7: ELBO - US and Brazil Covid-19 data.

US Brazil
k = 10 k = 20 k = 30 k = 10 k = 20 k = 30

p = 2 57.25 108.96 95.25 -145.32 -168.23 -164.55
p = 3 18.89 116.10 24.53 -181.52 -179.88 -197.66

The plot to the left of the Figure 19 shows the fit (solid green line) of the penalized spline regression model

with 3 polynomial of degree 3 and 9 significant knots(out of a total of 20 knots) for the US Covid-19 data. The

shaded area represents the 95% credible interval and it contains most of the observed data (black dots). Note

that significant knots (black asterisks) are located such that they cover the bumps of the curve. The ”x” in red

are the excluded knots that were not considered in the fit. The plot on the right compares the fits of the proposed

model (solid green line) with the R function ”smooth .spline” (red solid line). Note that the second fit captures,

in addition to the signal, the noise contained in the data.
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Figure 19: Left: The fit of the penalized spline regression model (solid green line) with p = 3 and 9 significant
knots (black asterisks) out of K = 20 knots (x red) with the 95% credible interval (shaded area) and the fit for
the logarithm of the number of daily cases of Covid-19 in the USA (black dots). Right: The fit of the proposed
model (solid green line) and the fit of a model using the R function ”smooth.spline” (solid red line) to the log
data of the number of daily cases of Covid-19 in the USA (dots).

Figure 20 shows the fit (solid green line) of the proposed model with p = 2 and 6 significant knots (black

asterisks at the bottom of the graph). The excluded knots are represented by ”x” in red. The 95% credible

interval (gray shadow) covers much of the observed data points. The plot on the right makes a comparison

between the fit of the proposed model and the R function ”smooth.spline” (red solid line). As in the case of the

U.S. data, we observed that the fit by using ”smooth.spline” does not smooth the data as the proposed model

and follows the series random noise more closely.
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Figure 20: Left: the fit of the penalized regression spline model (solid green line) with p = 2 and 6 significant
knots (black asterisks) out of K = 10 knots (x in red) with the 95% credible interval (shaded area) and the fit
of the logarithm of the number of daily cases of Covid-19 in Brazil (black dots). Right: The curve fitting of the
proposed model (solid green line) and the fit using R function ”smooth.spline” (solid red line) to the logarithm
of the number of daily cases of Covid-19 in Brazil (dot).

7 Conclusions

This article proposes a new scalable procedure for selecting the number of knots in regression splines: A

fully automatic Bayesian Lasso through variational inference. Simulation studies have shown effectiveness of this

procedure in modeling different types of data sets. In addition, the numerical exercises show that this approach

is much faster than the traditional one that is based on MCMC type algorithms. In real data sets the procedure

was able to capture the trend existing in them. Thus providing a better understanding of the data dynamic.
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Appendix 1: The variational distributions for Lasso

The variational posterior for β and φ while holding q2(τ |λ) and q3(λ) fixed, is given by

log q∗1(β, φ) = log(p(y|β, φ)) + Eτ [log(p(β, φ|τ ))] + const

= log

[
(2π)−n/2|φ−1In|−1/2 exp

{
−1

2
(y −Xβ)T (φIn)(y −Xβ)

}]
+

+Eτ

{
log

[
(2π)−p/2|φ−1Dτ |−1/2 exp

{
−1

2
βTφD−1

τ β

}]}
+

+Eτ{log[φa0−1 exp{−φb0}]}+ const

=
(n

2
+
p

2
+ a0 − 1

)
log φ− φ

2
{βT [Eτ (D−1

τ ) +XTX]β + yTy − 2yTXβ + 2b0}+ const

= logN(β|mβ , φ
−1Cβ)×Ga(φ|aφ, bφ)

It is easy to see that this is a normal-gamma distribution with parameters:

C−1
β = Eτ (D−1

τ ) +XTX, and mβ = CβX
Ty,

aφ = a0 + n/2, and bφ = b0 +
1

2
(yTy −mT

βC
−1
β mβ).

The variational distribution of τ while holding q3(λ) fixed is given by

log q∗2(τj) = Eλ[log(p(τj |λ))] + Eβ,φ[log(p(βj , φ|τj))] + const

= Eλ{log[exp{−λτj}]}+ Eβ,φ

{
log

[
(φ−1τj)

−1/2 exp

{
− φ

2τj
β2
j

}]}
+ const

= −1

2
log τj −

1

2

(
2Eλ[λ]τj +

1

τj
Eβ,φ[φβ2

j ]

)
+ const

= logGIG(τj |cτ , dτ , fτj )

with GIG being generalized inverse Gaussian distribution, where

cτ =
1

2
; dτ = 2Eλ[λ] ; fτj = Eβ,φ[φβ2

j ].

Therefore,

log q∗2(τ ) = log

p∏
j=1

GIG(τj |cτ , dτ , fτj ).

The variational distribution of λ is:
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log q∗3(λ) = log(p(λ)) + Eτ [log(p(τ |λ))] + const

= log[λg0−1 exp{−h0λ}] + Eτ

log

 p∏
j=1

λ exp{−τjλ}

+ const

= (g0 + p− 1) log λ− λ[h0 +

p∑
j=1

Eτ (τj)] + const

= logGa(λ|gλ, hλ)

which is a gamma distribution with parameters

gλ = g0 + p ; hλ = h0 +

p∑
j=1

Eτ (τj).

The expected values can be computed as follows:

It is worth pointing out that if X ∼ GIG(p, a, b), then its density is

f(x|p, a, b) =
(ab )

p
2

2κp(
√
ab)

xp−1 exp{−(ax+ b/x)/2}, x > 0,

where κp(·) is a modified Bessel function of the second kind, with

E[X] =

√
b

a

κp+1(
√
ab)

κp(
√
ab)

and V ar[X] =

(
b

a

)κp+2(
√
ab)

κp(
√
ab)

−

(
κp+1(

√
ab)

κp(
√
ab)

)2


E[X−1] =

√
a

b

κp+1(
√
ab)

κp(
√
ab)

− 2p

b

Therefore,

Eτ [D−1
τ ] = diag(Eτ (τ−1

1 ), . . . , Eτ (τ−1
p )),

Eτ (τ−1
j ) =

√
dτκcτ+1(

√
dτfτj )√

fτjκcτ (
√
dτfτj )

− 2cτ
fτj

,

Eτ (τj) =

√
fτjκcτ+1(

√
dτfτj )√

dτκcτ (
√
dτfτj )

,

Eλ(λ) =
gλ
hλ
.

For the calculus of Eβ,φ[φβ2
j ], let x|y ∼ N(µx, y

−1σx) and y ∼ Ga(a, b), so

E[X2Y ] = E[E(X2Y |Y )] = E[Y E(X2|Y )] = E[Y (E2(X|Y ) + V ar(X|Y ))] = µ2
xE(Y ) + σx =

aµ2
x

b
+ σx.

Thus,
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Eβ,φ[φβ2
j ] = m2

βjaφ/bφ + (Cβ)jj .
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Appendix 2: The variational distributions for Regression Spline

The variational posterior for β(2) and φ while holding q2(τ |λ), q3(λ) and q4(β(1)) fixed, is given by

log q∗1(β(2), φ) = Eβ(1) [log(p(y|β, φ))] + Eτ [log(p(β(2), φ|τ ))] + const

= Eβ(1)

{
log
[
(2π)−n/2|φ−1In|−1/2 ×

× exp

{
−1

2
(y −X1β

(1) −X2β
(2))T (φIn)(y −X1β

(1) −X2β
(2))

}]}
+

+Eτ

{
log

[
(2π)−K/2|φ−1Dτ |−1/2 exp

{
−1

2
β(2)TφD−1

τ β(2)

}]}
+

+ log[φa0−1 exp{−φb0}] + const

=

(
n

2
+
K

2
+ a0 − 1

)
log φ+

−φ
2

{
β(2)T [Eτ (D−1

τ ) +XT
2 X2]β(2) − 2β(2)T [XT

2 y −XT
2 X1E

(1)
β (β(1))]

}
+

−φ
{
b0 +

1

2
[yTy − 2Eβ(1)(β(1)T )XT

1 y + Eβ(1)(β(1)TXT
1 X1β

(1))]

}
+ const

= logN(β(2)|mβ(2) , φ−1Cβ(2))×Ga(φ|aφ, bφ)

It is easy to see that this is a normal-gamma distribution with parameters:

C−1
β(2) = Eτ (D−1

τ ) +XT
2 X2, and mβ(2) = Cβ(2) [XT

2 y −XT
2 X1E

(1)
β (β(1))],

aφ = a0 + n/2 and

bφ =

{
b0 +

1

2
[yTy − 2Eβ(1)(β(1)T )XT

1 y + Eβ(1)(β(1)TXT
1 X1β

(1))]−mT
β(2)C

−1
β(2)mβ(2)

}
.

The variational distribution of τ while holding q3(λ) fixed is given by

log q∗2(τj) = Eλ[log(p(τj |λ))] + Eβ,φ[log(p(βj , φ|τj))] + const

= Eλ{log[exp{−λτj}]}+ Eβ,φ

{
log

[
(φ−1τj)

−1/2 exp

{
− φ

2τj
β2
j

}]}
+ const

= −1

2
log τj −

1

2

(
2Eλ[λ]τj +

1

τj
Eβ,φ[φβ2

j ]

)
+ const

= logGIG(τj |cτ , dτ , fτj )

with GIG being generalized inverse Gaussian distribution, where

cτ =
1

2
; dτ = 2Eλ[λ] ; fτj = Eβ,φ[φβ2

j ].

Therefore,

log q∗2(τ ) = log

p∏
j=1

GIG(τj |cτ , dτ , fτj ).
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The variational distribution of λ is:

log q∗3(λ) = log(p(λ)) + Eτ [log(p(τ |λ))] + const

= log[λg0−1 exp{−h0λ}] + Eτ

log

 p∏
j=1

λ exp{−τjλ}

+ const

= (g0 + p− 1) log λ− λ[h0 +

p∑
j=1

Eτ (τj)] + const

= logGa(λ|gλ, hλ)

which is a gamma distribution with parameters

gλ = g0 + p ; hλ = h0 +

p∑
j=1

Eτ (τj).

The expected values can be computed as follow:

It is worth pointing out that if X ∼ GIG(p, a, b), then its density is

f(x|p, a, b) =
(ab )

p
2

2κp(
√
ab)

xp−1 exp{−(ax+ b/x)/2}, x > 0,

where κp(·) is a modified Bessel function of the second kind, with

E[X] =

√
b

a

κp+1(
√
ab)

κp(
√
ab)

and V ar[X] =

(
b

a

)κp+2(
√
ab)

κp(
√
ab)

−

(
κp+1(

√
ab)

κp(
√
ab)

)2


E[X−1] =

√
a

b

κp+1(
√
ab)

κp(
√
ab)

− 2p

b

Therefore,

Eτ [D−1
τ ] = diag(Eτ (τ−1

1 ), . . . , Eτ (τ−1
p )),

Eτ (τ−1
j ) =

√
dτκcτ+1(

√
dτfτj )√

fτjκcτ (
√
dτfτj )

− 2cτ
fτj

,

Eτ (τj) =

√
fτjκcτ+1(

√
dτfτj )√

dτκcτ (
√
dτfτj )

,

Eλ(λ) =
gλ
hλ
.

For the calculus of Eβ,φ[φβ2
j ], let x|y ∼ N(µx, y

−1σx) and y ∼ Ga(a, b), so

E[X2Y ] = E[E(X2Y |Y )] = E[Y E(X2|Y )] = E[Y (E2(X|Y ) + V ar(X|Y ))] = µ2
xE(Y ) + σx =

aµ2
x

b
+ σx.
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Thus,

Eβ,φ[φβ2
j ] = m2

βjaφ/bφ + (Cβ)jj .
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