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ABSTRACT
Recently, differential privacy (DP) is getting attention as a privacy
definition when publishing statistics of a dataset. However, when
answering a decision problem with a DP mechanism, it causes a
two-sided error. This characteristic of DP is not desirable when pub-
lishing risk information such as concerning COVID-19. This paper
proposes relaxing DP to mitigate the limitation and improve the util-
ity of published information. First, we define a policy that separates
information into sensitive and non-sensitive. Then, we define asym-
metric differential privacy (ADP) that provides the same privacy
guarantee as DP to sensitive information. This partial protection
induces asymmetricity in privacy protection to improve utility and
allow a one-sided error mechanism. Following ADP, we propose two
mechanisms for two tasks based on counting query with utilizing
these characteristics: top-𝑘 query and publishing risk information of
viruses with an accuracy guarantee. Finally, we conducted experi-
ments to evaluate proposed algorithms using real-world datasets and
show their practicality and improvement of the utility, comparing
state-of-the-art algorithms.
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1 INTRODUCTION
Differential privacy (DP) [12] is becoming a gold standard privacy
notion so that the US census announced that they adopted DP when
publishing the ’2020 Census results [4] and IT companies such as
Google [16], Apple [31], Microsoft [9], and Uber [21] are using DP
to protect privacy while collecting data. The flourish is from the
mathematical rigorousness under the assumption that an adversary
has any knowledge about individuals in the dataset.

This paper considers error on a decision problem that is a query
where we can answer by yes or no: one-sided error and two-sided
error, which occur when solving a decision problem by a random-
ized algorithm such as Monte Carlo algorithm [24]. For example,
suppose we answer yes to a decision problem based on Warner’s
randomized response [33] which satisfies DP. In that case, observers
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cannot know the true answer is whether yes or no due to the pos-
sible error (i.e., two-sided error). A one-sided error means that the
randomized mechanism correctly answers for a one-sided answer
(e.g., yes), but the opposite answer may include error. If we answer
yes using Mangat’s randomized response [26], we can know the true
answer is yes because the output of the algorithm has the one-sided
characteristic.

As an example of a problem of the two-sided characteristic, we
consider publishing risky location information for epidemic disease
monitoring. Specifically, we want to publish each location is safe or
not safe, which means whether it has been visited by many infected
people (i.e., counting query). Actually, Korea has succeeded in con-
trol of COVID-19 by measures including publishing information of
infected people’s moving trajectories [30]. Despite its effectiveness,
this measure was criticized as an invasion of privacy [30]. One may
think to release a DP histogram about "how many infected people
visited each location". However, it must include two-sided errors due
to the nature of DP. That means, even if published information says
safe, it may not be true due to the noise of DP. Without a guarantee
of accuracy (one-sided error), published information is not useful to
take an appropriate approach.

DP is mathematically defined, so we can induce the theoretical
limitations on the error on a decision problem. This paper proves
that there is no one-sided error mechanism that satisfies 𝜖-DP (i.e.,
the error of all DP mechanisms must be two-sided). Therefore, we
cannot construct a mechanism that satisfies DP with one-sided error.
We note that Mangat’s randomized response is not following DP.

This paper proposes a new relaxed definition of DP to overcome
the limitation, called Asymmetric Differential Privacy (ADP). We
introduce a policy which defines whether a value is sensitive or non-
sensitive. Then, we define ADP on the given policy. ADP protects
privacy following the given policy so that ADP will protect individu-
als’ sensitive values and not protect non-sensitive values. Concretely,
ADP guarantees the indistinguishability of sensitive values from
non-sensitive values, but ADP does not guarantee non-sensitive val-
ues from sensitive values1. The asymmetricity enables constructing
a one-sided error mechanism. Then, we propose one-sided error
mechanisms to publish the safety information about viruses with a
trajectory dataset.

The asymmetricity not only allows a one-sided error mechanism
but also improves the existing DP mechanisms. First, we consider
a single-dimensional counting query. The Euclidean distance error
(i.e., E𝑧 [|𝑥 − 𝑧 |] where 𝑧 is the output and 𝑥 is the true count) has the
lower bound

√
2/𝜖 and the Laplace mechanism [13] is optimal, which

was proved by Koufogiannis et al. [23]. Then, we show that ADP
allows the Euclidean distance error 1/𝜖 due to the asymmetricity.
Second, this paper considers two representative DP mechanisms

1When DP guarantees the indistinguishability of A from B, DP also guarantees the
indistinguishability of B from A, which is the symmetricity of DP.
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using the Laplace mechanism: report noisy arg-max and sparse
vector technique [10, 25]. The algorithms aim to make the histogram
of top-𝑘 counts (i.e., set of counting query). We propose replacing
DP of the two algorithms with ADP. The asymmetricity improves
the accuracy of output histogram with the same privacy guarantee to
the sensitive values.

Finally, we conducted two types of experiments to evaluate our
proposed mechanisms using two kinds of real-world datasets, respec-
tively: click-streaming data and trajectory data. First, we show with
click-streaming data that the output histogram of top-𝑘 items from
our ADP mechanisms is more about ten-times accurate w.r.t. the
mean squared error than a state-of-the-art mechanism [10] due to the
relaxation. Second, we show with trajectory data that our proposed
mechanisms are practical to publish safety information of viruses.
ADP can guarantee the accuracy of safety, but cannot guarantee
the one about dangerousness (i.e., false-negative occurs). Our ex-
periments show that the false-negative ratio is practically small. In
almost the case, that is smaller than 0.01 at 𝜖 = 1.

Our contribution in this paper is threefold.

• We derive the theorem that shows there are no DP algorithms
with one-sided error. Then, we introduce a policy and pro-
pose a new privacy definition, called Asymmetric Differential
Privacy (ADP), following a policy to allow one-sided error,
and we derive the theorems that show improved utility about
the one-sided error.

• We introduce a primitive mechanism that satisfies ADP. Then,
we propose a policy and mechanisms that follow ADP on the
policy for top-𝑘 query and monitoring locations’ safety for
avoiding viruses with an accuracy guarantee.

• We show the improvements from the state-of-the-art mecha-
nism [10] and the practicality for publishing risk information
of viruses by the experiments using real-world datasets.

1.1 Related Work
Chen et al. [7] proposed a way of constructing a COVID-19 vulner-
ability map with geo-indistinguishability. Geo-indistinguishability
is a local model so that noise is much larger, so their granularity of
the map is needed to be large. Our model is central, so we need a
trusted third party, but our map can be any granularity due to the
low sensitivity. Contact tracing is now widely used [3, 18] such as
BlueTrace in Singapore, Cocoa in Japan, etc., but the model is said
to require participants more than about half of the population to
decrease infection [29]. Actually, many countries failed due to the
lack of participants [8] because of several concerns [28]. Our model
requires only infected people to participate, so such a problem does
not occur.

As this work proposes, several papers proposed relaxation of DP
by defining a policy to improve utility [5, 20, 22]. Their policy is
based on a discriminative pair, so the asymmetricity that we uti-
lize does not occur. Therefore, their relaxation cannot achieve our
improvement of utility.

To the best of our knowledge, this paper first considers one-sided
error in DP. However, it is noted that several relaxation models
of DP can achieve one-sided error implicitly [1, 11, 17, 27]. One-
sided differential privacy [11] (OSDP) also defines a policy that
separates records to non-sensitive and sensitive records to improve

Symbol Meaning

𝐷 ∈ D A dataset that is a set of records.
𝑟 = (𝑟1, 𝑟2, . . . , 𝑟𝑑 ) A record that is a set of attributes.
𝑟𝑖 ∈ X𝑖 An attribute of record 𝑟 .

This paper assumes X is binary.
𝑧 ∈ Z An output of a mechanism
𝑆 ⊆ Z A subset of outputs.
𝜆 A random variable.
𝐻 = (𝜆1, 𝜆2, . . . , 𝜆𝑑 ) A set of random variables.
𝑚 : D → Z A randomized mechanism.
𝑚𝐻 : D → Z A mechanism using random variables 𝐻 .
R The universe of a real number
N The unuverse of a natural number.
𝜖 ∈ R+ A privacy budget.
𝑓 : D → Z A query. This paper considers that Z is N.
𝑞 : D → {0, 1} A decision problem.

Table 1: Notation table.

the utility of output information by utilizing non-sensitive records.
Therefore, OSDP cannot follow our policy that separates values. If a
record is a value (i.e., data is one-dimensional), OSDP is identical
with ADP, and the asymmetricity in OSDP occurs, but the paper
does not mention and utilize the asymmetricity. Actually, if we use
OSDP in our tasks, the asymmetricity does not occur because we
use multi-dimensional data.

Mangat’s randomized response [26] is following our privacy no-
tion, which we can interpret as asymmetrization of the traditional
randomized response (i.e., Warner’s randomized response [33]). Util-
ity optimized local differential privacy (ULDP) [27] is also a privacy
definition that Mangat’s randomized response follows, so ULDP
also utilizes asymmetricity. However, ULDP is defined on the lo-
cal setting on data with one attribute, so we cannot apply ULDP
to our task (i.e., counting query). Context-aware local differential
privacy [1] and input-discriminative local differential privacy [17]
define a precise privacy level for a combination of data, which are
generalizations of ULDP. Therefore, they can also utilize asym-
metricity in a certain setting (and the papers did not utilize the
asymmetricity), but for the same reason as ULDP, we cannot apply
them to our task.

2 BACKGROUND
Here, we first introduce DP and related techniques, which are the
basis of our proposed notions. Second, we explain counting query
and decision problem, which are our target queries to which we
introduce our privacy notion.

We show the notations used in this paper in Table 1.

2.1 Differential Privacy
Differential privacy (DP) [12] is a mathematical privacy definition,
which quantitatively evaluates the degree of privacy protection when
publishing an output by a randomized mechanism. The definition of
DP is as follows:
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DEFINITION 1 ((𝜀, 𝛿 )-DIFFERENTIAL PRIVACY). A randomized
mechanism𝑚 : D → Z satisfies (𝜀, 𝛿)-DP iff for any two neighbor-
ing datasets 𝐷, 𝐷 ′ ∈ D and any subset of outputs 𝑆 ⊆ Z, it holds
that

Pr[𝑚(𝐷) ∈ 𝑆] ≤ exp(𝜀) Pr[𝑚(𝐷 ′) ∈ 𝑆] + 𝛿. (1)

where D and Z are the universe of a dataset and output, respectively,
and neighboring datasets mean two datasets whose only one record
differs.

Practically, we employ a randomized mechanism𝑚 that ensures
DP for a query 𝑓 : D → Z. The mechanism𝑚 perturbs the output
of 𝑓 to cover 𝑓 ’s sensitivity that is the maximum degree of change
over any pairs of neighboring datasets 𝐷 and 𝐷 ′.

DEFINITION 2 (SENSITIVITY). The sensitivity of a query 𝑓 is:

Δ𝑓 = sup
𝐷,𝐷′∈D

��𝑓 (𝐷) − 𝑓 (𝐷 ′)
�� .

where | · | is a norm function defined on 𝑓 ’s output domain and 𝐷

and 𝐷 ′ are neighboring datasets.

Based on the sensitivity of 𝑓 , we design the degree of noise to
ensure DP.

2.1.1 Laplace Mechanism. The Laplace mechanism [13] is the
most standard mechanism for DP, so many kinds of literature are
using the Laplace mechanism. This mechanism adds noise following
the Laplace distribution to the answer 𝑓 as follows.

𝐿𝑎𝑝𝜖 (𝑓 , 𝐷) = 𝑓 (𝐷) + 𝜆

where 𝜆 is a random variable following the Laplace distribution
𝜖

2Δ𝑓
exp |𝜆 |𝜖

Δ𝑓
. The Laplace mechanism satisfies 𝜖-DP.

2.1.2 Composition Theorem. The composition theorem [15]
shows that a mechanism that sequentially applies DP mechanisms
satisfies DP. Informally, the composition theorem is as follows.

THEOREM 1. Let𝑚𝑖 be 𝜖𝑖 -DP mechanism for 𝑖 ∈ [𝑘]. Then the
sequential mechanism𝑚 [𝑘 ] (i.e.,𝑚 [𝑘 ] (𝑥) = (𝑚1 (𝑥),𝑚2 (𝑥), . . . ,𝑚𝑘 (𝑥)))
satisfies

∑
𝑖∈[𝑘 ] 𝜖𝑖 -DP

2.1.3 Randomness Alignment. A DP mechanism can be so com-
plicated (e.g., the sparse vector technique described in the following
section) that the wrong proofs appear [25]. Then, many verification
tools using a proof syntax [2, 32, 34] are proposed to verify the
correctness of proof for DP. The idea of the proof syntax is called
randomness alignment. Here, we explain randomness alignment
using pure DP (i.e., 𝛿 = 0).

In general, we need to prove that Inequality (1) holds for any out-
put and any pair of neighboring datasets. 𝐻 denotes a set of random
variables used in a mechanism, and let𝑚𝐻 (𝐷) denote the output of
𝑚 using 𝐻 . Then, we introduce randomness alignment 𝜙𝐷,𝐷′ , which
is a function that maps noise vectors 𝐻 into noise vectors 𝐻 ′ so that
𝑚𝐻 (𝐷) = 𝑚𝐻 ′ (𝐷 ′). Here, let 𝐷,𝐷 ′ be two neighboring datasets.
We follow Ding’s formulation about the definitions and notations for
randomness alignment [10].

DEFINITION 3 (RANDOMNESS ALIGNMENT [10]). A random-
ness alignment is a function 𝜙𝐷,𝐷′ such that for all 𝐻 , 𝑚𝐻 (𝐷) =

𝑚𝜙𝐷,𝐷′ (𝐻 ) (𝐷 ′).

DEFINITION 4 (LOCAL ALIGNMENT [10]). A local alignment
for𝑚 is a function 𝜙𝐷,𝐷′,𝑧 : 𝑆𝐷 :𝑧 → 𝑆𝐷′:𝑧 such that for all 𝐻 ∈ 𝑆𝐷 :𝑧 ,
we have 𝑚𝐻 (𝐷) =𝑚𝜙𝐷,𝐷′,𝑧 (𝐻 ) (𝐷 ′) where 𝑆𝐷 :𝑧 = {𝐻 |𝑚𝐻 (𝐷) = 𝑧}
and 𝑧 is a possible output of𝑚.

DEFINITION 5 (ACYCLIC [10]). For any 𝐻 = (𝜆1, 𝜆2, . . . ), let
𝐻 ′ = (𝜆′1, 𝜆

′
2, . . . ) denote 𝜙𝐷,𝐷′,𝑧 (𝐻 ). We say that 𝜙𝐷,𝐷′,𝑧 is acyclic

if there exists a permutation 𝜋 and piecewise differentiable functions
𝜓
( 𝑗)
𝐷,𝐷′,𝑧 such that

𝜆′
𝜋 (1) = 𝜆𝜋 (1) + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑡ℎ𝑎𝑡 𝑜𝑛𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝐷, 𝐷 ′, 𝑧

𝜆′
𝜋 ( 𝑗) = 𝜆𝜋 ( 𝑗) +𝜓

( 𝑗)
𝐷,𝐷′,𝑧 (𝜆𝜋 (1) , . . . , 𝜆𝜋 ( 𝑗−1) ) 𝑓 𝑜𝑟 𝑗 ≥ 2

DEFINITION 6 (ALIGNMENT COST [10]). Suppose each 𝜆𝑖 is
generated independently from a distribution 𝑓𝑖 with the property that
log(𝑓𝑖 (𝑥)/𝑓𝑖 (𝑦)) ≤ |𝑥 − 𝑦 | /𝛼𝑖 for all 𝑥,𝑦 in the domain of 𝑓𝑖 . Then
the cost of 𝜙𝐷,𝐷′,𝑧 is defined as:

𝑐𝑜𝑠𝑡 (𝜙𝐷,𝐷′,𝑧) =
∑︁
𝑖

��𝜆𝑖 − 𝜆′𝑖
�� /𝛼𝑖

Using these formulations, we can derive the following theorem.

THEOREM 2. If the following conditions are satisfied, then 𝑚

satisfies 𝜖-DP [10].
(1) 𝑚 terminates with probability 1.
(2) The number of random variables used by𝑚 can be determined

from its output.
(3) Each 𝜆𝑖 is generated independently from a distribution 𝑓𝑖 with

the property that log(𝑓𝑖 (𝑥)/𝑓𝑖 (𝑦)) ≤ |𝑥 − 𝑦 | /𝛼𝑖 for all 𝑥,𝑦 in
the domain of 𝑓𝑖 .

(4) For every neighboring dataset 𝐷,𝐷 ′ and 𝑧 there exists a local
alignment 𝜙𝐷,𝐷′,𝑧 that is acyclic with 𝑐𝑜𝑠𝑡 (𝜙𝐷,𝐷′,𝑧) ≤ 𝜖.

(5) For each neighboring dataset 𝐷, 𝐷 ′ the number of distinct
local alignments is countable. That is, the set {𝜙𝐷,𝐷′,𝑧 |𝑧 ∈ Z}
is countable.

Following this theorem, we can prove that a mechanism satisfies
DP. We refer the reader to [10] for detail.

2.2 Counting Query
Counting query is the most basic statistic query. Counting query
appears in fractional form, with weights (linear query) or more
complex form, but this paper considers the most simple counting
query 𝑓 : D → N, which counts the number of records satisfying
a condition. In this case, the theoretical bound of the Euclidean
distance error (i.e., E𝑧 [|𝑥 −𝑧 |] where 𝑧 is the output and 𝑥 is the true
count) is as follows

THEOREM 3 (LOWER BOUND ON THE COUNTING QUERY ON

DP [23]). Let 𝜖 < 0, every 𝜖-DP mechanism must have the Eu-
clidean distance error more than

√
2/𝜖.

The Laplace mechanism 2.1.1 has error
√
2/𝜖, which means opti-

mal on the counting query.
When the number of counting queries is small, the Laplace mech-

anism is enough. However, multiple counting queries require much
noise due to the composition theorem (Section 2.1.2). Then, the
sparse vector technique and the report noisy arg-max algorithm are
useful for answering multiple counting queries.
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2.2.1 Sparse Vector Technique. Dwork et al. first proposed the
sparse vector technique to handle high-sensitive counting query [14].
Then, successors proposed many applications [25]. Recently, Ding
et al. found an accuracy-improved version of the sparse vector tech-
nique [10].

Here, we explain the most standard sparse vector technique [14].
In nature, if we use sequentially a DP mechanism (e.g., Laplace
mechanism) to answer queries (𝑓0, 𝑓1, . . . , 𝑓𝑡 ), the privacy guarantee
is 𝑡𝜖-DP from the composition theorem (see Section 3.3.3 for detail).
This sequential composition is a problem when the number of queries
is large, and the sparse vector technique solves this problem.

The sparse vector technique returns a threshold answer (i.e.,
whether a query answer is above the threshold or not) instead of a
noisy count. The algorithm does not consume the privacy budget
when outputting a below-the-threshold answer by adding noise to
the threshold and query answer using the Laplace mechanism with
𝜖/2 and 𝜖/(2𝑐), respectively. It consumes the privacy budget only
when outputting an above-the-threshold answer. In other words, the
sparse vector technique can find 𝑐 queries of an above-the-threshold
answer. This algorithm satisfies 𝜖-DP.

2.2.2 Report Noisy Arg-max. Here, we consider a maximum
query (i.e., finding the maximum answer in a set of queries). By
counting all attributes, we can find the argument with maximum
counts, but this manipulation causes high-sensitivity. Then, a re-
port noisy arg-max algorithm was proposed to handle this high-
sensitivity [15]. The algorithm first uses the Laplace mechanism
with 𝜖/2 for all counts. Then, the algorithms output the argument of
the maximum noisy answer. This algorithm satisfies 𝜖-DP.

2.3 Decision Problem
A decision problem is a query that returns yes or no. In this paper,
we handle the query which answers whether the number of counts is
below the threshold or not.

One-sided and Two-sided error. Here, we introduce one-sided
error and two-sided error, mainly used in Monte Carlo algorithms
to answer a decision problem. In a deterministic algorithm, an error
does not occur, but a randomized algorithm such as a Monte Carlo
algorithm causes the error.

If a randomized algorithm is always correct when it returns True
(False), we call it a true-biased (false-biased) algorithm. We say
that if an algorithm is a true-biased (false-biased) algorithm, the
algorithm is one-sided. If a randomized algorithm has no-biased, we
say that the algorithm is two-sided.

In Section 4.2, we show that the error of any 𝜖-DP mechanisms
must be two-sided, which means that true-biased (false-biased) pub-
lishing is impossible due to the constraint of traditional 𝜖-DP.

3 NEW PRIVACY DEFINITION
In this section, we propose a new privacy definition, called Asym-
metric Differential Privacy (ADP), which relaxes DP.

3.1 Asymmetric Differential Privacy
Here, we propose the relaxation of DP, called Asymmetric Differ-
ential Privacy (ADP). To explain ADP, we use Table 2 as a dataset
for an example. Each data represents whether the user has visited

location 1 location 2

Bob 1 0
Tom 0 0
Alice 1 1
Ema 0 1

Table 2: Example of a dataset.

locations or not. E.g., this table shows that Bob has visited location
1 and has not visited location 2.

We first introduce a policy function 𝑃𝑖 : X𝑖 → {0, 1} where X𝑖 is
the universe of 𝑖th attribute. This paper assumes that an attribute’s
universe is binary (i.e., {0, 1}).

DEFINITION 7 (POLICY FUNCTION). A policy function 𝑃𝑖 :
X𝑖 → {0, 1}, which takes a value of an attribute 𝑖 as an input,
returns 1 when the input is sensitive and returns 0 otherwise2. 𝑃
denotes the set of policy functions 𝑃1, 𝑃2, . . . , 𝑃𝑑 for all attributes,
where 𝑑 is the number of attributes of a dataset. Here, we assume
that all individuals in the dataset use the same policy function (i.e.,
a used policy is public information).

EXAMPLE 1 (POLICY FUNCTION). Let us suppose that users
compromise to publish that they have not visited an area but want
to hide their visited areas to protect their privacy. Then, the policy
function in Table 2 can be defined as follows:

𝑃𝑖 (𝑥) =
{

1 (𝑥 = 1)
0 (𝑥 = 0)

where 𝑖 = 0, 1.

EXAMPLE 2 (POLICY FUNCTION OF DIFFERENTIAL PRIVACY).
DP does not use a policy function but we can interpret that DP uses
the following policy function for all attributes.

𝑃𝐷𝑃 (𝑥) = 1

In other words, DP considers that all data is sensitive.

We note that simply publishing non-sensitive information causes
a privacy leak because we assume that a policy function is published.
For example, if Bob only publishes location 2, an adversary knows
Bob has visited location 1 because Bob does not publish the infor-
mation. Our relaxation is based on this policy function. We relax
DP by allowing leakage of non-sensitive value. ADP guarantees that
a mechanism hides a record in 𝑃-neighboring records defined as
follows.

DEFINITION 8 (𝑃 -NEIGHBORING OF A RECORD). We say that
a record 𝑟 = (𝑟1, 𝑟2, . . . , 𝑟𝑑 ) is 𝑃-neighboring to a record 𝑟 ′ =

(𝑟 ′1, 𝑟
′
2, . . . , 𝑟

′
𝑑
) iff it holds that:

∀𝑖, 𝑟𝑖 = 𝑟 ′𝑖 𝑖 𝑓 𝑃𝑖 (𝑟𝑖 ) = 0

where 𝑟𝑖 and 𝑟 ′
𝑖

are 𝑖th attributes of 𝑟 and 𝑟 ′, respectively.

2Our policy is different from OSDP’s policy [11] in that our policy discriminates values
but OSDP’s policy discriminates records.
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EXAMPLE 3 (𝑃 -NEIGHBORING OF A RECORD). Bob’s record
in Table 2 is 𝑃-neighboring to [0, 0], [1, 0]. Alice’s record is 𝑃-
neighboring to [1, 0], [0, 1], [0, 0]. Tom’s record is not 𝑃-neighboring
to any record.

In DP, there is no notion corresponding to neighboring record.
Still, we can consider that DP implicitly uses a neighboring record
as all records.

Then, we can define the notion of 𝑃-neighboring dataset.

DEFINITION 9 (𝑃 -NEIGHBORING OF A DATASET). We say that
a dataset 𝐷 is 𝑃-neighboring to a dataset 𝐷 ′ iff only one record of 𝐷
differs from 𝐷 ′ and the differing record is 𝑃-neighboring. Let 𝑁𝑃 (𝐷)
denote the set of datasets, each of which is 𝑃-neighboring dataset of
𝐷 .

Note that the neighboring relationship in DP is symmetric, but
the 𝑃-neighboring relationship can be asymmetric. In other words,
if dataset 𝐷 is neighboring to 𝐷 ′, 𝐷 ′ is neighboring to 𝐷 . However,
even if 𝐷 is 𝑃-neighboring to 𝐷 ′, 𝐷 ′ is not always 𝑃-neighboring to
𝐷 . The name asymmetric is given by this fact.

Using the 𝑃-neighboring relationship, we can define our new
privacy notion, called Asymmetric Differential Privacy (ADP).

DEFINITION 10 ((𝑃, 𝜖)-ASYMMETRIC DIFFERENTIAL PRIVACY).
A randomized mechanism 𝑚 satisfies (𝑃, 𝜖)-Asymmetric Differential
Privacy (ADP) iff ∀𝑆 ⊆ Z and ∀𝐷, 𝐷 ′ ∈ 𝑁𝑃 (𝐷)

Pr[𝑚(𝐷) ∈ 𝑆] ≤ e𝜖 Pr[𝑚(𝐷 ′) ∈ 𝑆] (2)

The only difference from DP is in the neighboring relationship.
Our privacy definition guarantees that it is difficult for an adversary
to distinguish 𝐷 from 𝐷 ′ ∈ 𝑁𝑃 (𝐷) to the degree of 𝜖. From an
individual’s point of view, the own record has indistinguishability
from neighboring records. In other words, an ADP algorithm protects
a sensitive value (i.e., 𝑃 (𝑟𝑖 ) = 1) by hiding in other values. However,
a non-sensitive value defined by a policy function (i.e., 𝑃 (𝑟𝑖 ) = 0)
can leak due to the policy.

EXAMPLE 4 (A PRIVACY GUARANTEE). Bob in Table 2 has vis-
ited location 1 and the information is protected because 𝑃𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1 (1) =
1. However, the information that Bob has not visited location 2 can
leak because 𝑃𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 2 (0) = 0. Tom’s record has no 𝑃-neighboring
record, so Tom’s record can leak.

3.2 P-sensitivity
The asymmetric characteristic on the 𝑃-neighboring relationship
(see Section 3.1 for detail) can induce monotonicity of sensitivity.
Monotonicity enables us to construct a more accurate and one-sided
error algorithm. We note that the sensitivity of DP has a character-
istic of not monotonicity since DP uses the symmetric neighboring
relationship, which is the main motivation to introduce ADP instead
of DP.

3.2.1 Definition. We define 𝑃-sensitivity instead of sensitivity of
DP by changing the neighboring relationship.

DEFINITION 11 (𝑃 -SENSITIVITY).

Δ𝑓 ,𝑃 = sup
𝐷∈D,𝐷′∈𝑁𝑃 (𝐷)

��𝑓 (𝐷 ′) − 𝑓 (𝐷)
��

where 𝑓 and 𝑃 are a query and a policy function, respectively.

3.2.2 Monotonicity. We define monotonicity in sensitivity as fol-
lows:

DEFINITION 12 (MONOTONICITY IN 𝑃 -SENSITIVITY). 𝑃-sensitivity
of 𝑓 is called monotonically increasing (decreasing) iff ∀𝐷 ∈
D, 𝐷 ′ ∈ 𝑁𝑃 (𝐷)

𝑓 (𝐷) ≤ 𝑓 (𝐷 ′) (𝑓 (𝐷) ≥ 𝑓 (𝐷 ′)).

As described above, DP requires that sensitivity is not monotonic
due to the symmetric neighboring relationship.

THEOREM 4. Sensitivity in DP (i.e., 𝑃𝐷𝑃 -sensitivity) is not mono-
tonic except the query where ∀𝐷, 𝐷 ′, 𝑓 (𝐷) = 𝑓 (𝐷 ′)3.

PROOF. The neighboring relationship of DP is symmetric, so
if 𝑓 (𝐷) − 𝑓 (𝐷 ′) > 0, it holds that 𝑓 (𝐷 ′) − 𝑓 (𝐷) < 0. Therefore,
sensitivity is not monotonic except the case where ∀𝐷, 𝐷 ′, 𝑓 (𝐷) =
𝑓 (𝐷 ′).

Q.E.D. □

EXAMPLE 5 (MONOTONICALLY DECREASING). Assume a count-
ing query 𝑓 that counts the number of people who have visited a
location. Then, 𝑃-sensitivity of 𝑓 where 𝑃 is the policy in Example 1
is monotonically decreasing since a change of a sensitive value only
decreases the count.

3.3 Characteristics of ADP
First, we describe the privacy guarantees of ADP against a strong
adversary. Second, we analyze a relationship between ADP and DP.
Third, we derive the composition theorem for ADP. Here, we con-
sider that a dataset 𝐷 consists of only one record for simplicity (i.e.,
the setting of local differential privacy) without losing generality.

3.3.1 Privacy Guarantee Against a Strong Adversary. A strong
adversary is knowledgeable about a target individual so that the ad-
versary knows non-sensitive values but does not know sensitive
values. In other words, the adversary knows that a true record is
in 𝑁𝑃 (𝐷) (note that here 𝑁𝑃 (𝐷) is the set of records due to the
assumption of |𝐷 | = 1). Then, from Definition 10,

Pr[𝑟 |𝑧]
Pr[𝑟 ′ |𝑧] ≤ e𝜖

Pr[𝑟 ]
Pr[𝑟 ′]

where 𝑟 is a true record and {𝑟 ′} ∈ 𝑁𝑃 ({𝑟 }). Here, the strong ad-
versary knows that the true record is in 𝑁𝑃 ({𝑟 }), so the privacy
guarantee against the strong adversary is the same as DP. In other
words, the strong adversary cannot improve her/his knowledge up to
𝑒𝜖 even if s/he sees 𝑧 output by a mechanism that satisfies (𝑃 ,𝜖)-ADP.
If an adversary is not knowledgeable about a target individual, s/he
can know that a true record is in 𝑁𝑃 ({𝑟 }).

3.3.2 Relationship to Differential Privacy. As a relationship
between ADP and DP, we can prove that ADP is a relaxation of DP.
Informally, the following theorems hold.

THEOREM 5. (1) If a mechanism𝑚 satisfies (𝑃𝐷𝑃 , 𝜖)-ADP,𝑚
satisfies 𝜖-DP.

(2) If a mechanism 𝑚 satisfies 𝜖-DP, 𝑚 satisfies (𝑃, 𝜖)-ADP for
any policy function 𝑃 .

3This query is not sensitive because this always returns the same value regardless of an
input database.
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PROOF. (1) 𝑃𝐷𝑃 -neighboring records are all records. This
means that 𝑃𝐷𝑃 -neighboring datasets are the same as the ones
of the neighboring datasets in DP. Therefore, the theorem
holds.

(2) Neighboring datasets of𝐷 in DP (i.e. 𝑃𝐷𝑃 -neighboring datasets)
include 𝑃-neighboring datasets of 𝐷 for any 𝑃 . Therefore,
if 𝑚 satisfies 𝜖-DP, Inequality (4) holds for any neighbor-
ing datasets, so Inequality (2) also holds for 𝑃-neighboring
datasets.
Q.E.D.

□

3.3.3 Composition Theorem. ADP satisfies the composition
theorem like DP.

THEOREM 6. We consider the sequential mechanism𝑀 , which se-
quentially applies𝑚1,𝑚2, . . . ,𝑚 𝑗 to dataset𝐷 to output 𝑧1, 𝑧2, . . . , 𝑧 𝑗 .
Assume that𝑚1,𝑚2, . . . ,𝑚 𝑗 satisfy (𝑃, 𝜖1), (𝑃, 𝜖2), . . . , (𝑃, 𝜖 𝑗 )-ADP,
respectively. Then, the sequential mechanism𝑀 satisfies (𝑃,∑𝑗

𝑖=1 𝜖𝑖 )-
ADP.

PROOF. From the definition of ADP, it holds that∀𝑆 ⊆ Z, 𝐷, 𝐷 ′ ∈
𝑁𝑃 (𝐷), 𝑖 ∈ [ 𝑗]

Pr[𝑚𝑖 (𝐷) ∈ 𝑆] ≤ e𝜖𝑖 Pr[𝑚𝑖 (𝐷 ′) ∈ 𝑆]
Therefore, the following inequality holds.

Π
𝑗

𝑖=1 Pr[𝑚𝑖 (𝐷) ∈ 𝑆]

Π
𝑗

𝑖=1 Pr[𝑚𝑖 (𝐷 ′) ∈ 𝑆]
=

Π
𝑗

𝑖=1 Pr[𝑀 (𝐷) ∈ 𝑆]

Π
𝑗

𝑖=1 Pr[𝑀 (𝐷 ′) ∈ 𝑆]

≤ e
∑𝑗

𝑖=1 𝜖𝑖

Q.E.D. □

3.3.4 Randomness Alignment in Asymmetric Differential Pri-
vacy. As described above, the difference between ADP and DP is
in neighboring relationships. Therefore, we can apply a randomness
alignment technique to prove that a mechanism satisfies (𝑃, 𝜖)-ADP
as follows.

THEOREM 7. If the following conditions are satisfied, then 𝑚

satisfies (𝑃, 𝜖)-ADP.
(1) 𝑚 terminates with probability 1.
(2) The number of random variables used by𝑚 can be determined

from its output.
(3) Each 𝜆𝑖 is generated independently from a distribution 𝑓𝑖 with

the property that log(𝑓𝑖 (𝑥)/𝑓𝑖 (𝑦)) ≤ |𝑥 − 𝑦 | /𝛼𝑖 for all 𝑥,𝑦 in
the domain of 𝑓𝑖 .

(4) For every 𝐷 ∈ D, 𝐷 ′ ∈ 𝑁𝑃 (𝐷) and 𝑧 there exists a local
alignment 𝜙𝐷,𝐷′,𝑧 that is acyclic with 𝑐𝑜𝑠𝑡 (𝜙𝐷,𝐷′,𝑧) ≤ 𝜖.

(5) For each 𝐷 ∈ D, 𝐷 ′ ∈ 𝑁𝑃 (𝐷) the number of distinct local
alignments is countable. That is, the set {𝜙𝐷,𝐷′,𝑧 |𝑧 ∈ Z} is
countable.

PROOF. Theorem 2 means that if a mechanism satisfies the con-
ditions in Theorem 2 it holds that

Pr[𝑚(𝐷) ∈ 𝑆] ≤ e𝜖 Pr[𝑚(𝐷 ′) ∈ 𝑆] (3)

for any 𝐷, 𝐷 ′, and 𝑆 ∈ Z. Here, we instead use 𝑃-neighboring
datasets 𝐷 ∈ D, 𝐷 ′ ∈ 𝑁𝑃 (𝐷). Therefore, for any 𝐷,𝐷 ′ ∈ 𝑁𝑃 (𝐷),
Inequality (3) holds, which is the definition of ADP.

Q.E.D. □

4 THEORETICAL BOUND OF ONE-SIDED
ERROR

Here, we first analyze a true-biased (false-biased) algorithm in DP
(i.e., an algorithm with one-sided error). Then, we prove that there
is no true-biased (false-biased) algorithm that satisfies 𝜖-DP. Finally,
we show that ADP allows a true-biased (false-biased) algorithm and
the theoretical bound of one-sided error.

4.1 One-sided True Positive
We call the output of True by a true-biased algorithm (i.e., true
positive) one-sided true positive (OTP). From here, the boolean is
denoted by {0, 1}. We consider a decision problem 𝑞 : D → {0, 1}
that takes a dataset as input and returns a boolean. To answer a
query with privacy protection, we use a randomized mechanism𝑚 :
D → {0, 1} instead of 𝑞(𝐷), which causes an error. We say that the
output is true positive (negative) iff 𝑚(𝐷) = 1(0) and 𝑞(𝐷) = 1(0),
respectively. Then, the definition of OTP is as follows.

DEFINITION 13 (ONE-SIDED TRUE POSITIVE (OTP)). OTP is
output 1 of a true-biased algorithm. That is, OTP is output 1 of 𝑚
where:

Pr[𝑚(𝐷) = 1;𝑞(𝐷) = 1] > 0 ∧ Pr[𝑚(𝐷) = 1;𝑞(𝐷) = 0] = 0

If we see output 1 of𝑚(𝐷), we can validate 𝑞(𝐷) = 1.

We omit the notation of one-sided true negative to make it easy
to read, but it will be identical to OTP by replacing 1 with 0.

4.2 OTP in DP
From here, we consider a mechanism𝑚, which satisfies (𝜖, 𝛿)-DP.
From the conclusion as the following theorem, the mechanism
achieves OTP with the probability of the proportional to 𝛿 , which
means pure DP (i.e., 𝜖 = 0) does not achieve OTP.

THEOREM 8 (OTP IN (𝜖, 𝛿 )-DIFFERENTIAL PRIVACY). Let us
suppose that 𝑚 satisfies (𝜖, 𝛿)-DP and the minimum hamming dis-
tance to change the query answer of 𝐷 is 𝑘 (i.e., ∀𝐷 ′, 𝑑ℎ (𝐷,𝐷 ′) ≥ 𝑘

where 𝑞(𝐷) = 1 and 𝑞(𝐷 ′) = 0)4. Then, it holds that:

Pr[𝑂𝑇𝑃 ;𝑞(𝐷) = 1] ≤ 𝛿

𝑘∑︁
𝑖=1

e(𝑖−1)𝜖

where Pr[𝑂𝑇𝑃 ;𝑞(𝐷) = 1] is the probability that 𝑧 is OTP when
𝑞(𝐷) = 1.

PROOF. Since𝑚 satisfies (𝜖, 𝛿)-DP,

Pr[𝑚(𝐷) ∈ 𝑆] ≤ e𝜖 Pr[𝑚(𝐷 ′) ∈ 𝑆] + 𝛿 (4)

where 𝐷 and 𝐷 ′ are neighboring datasets, and 𝑆 is any subset in out-
put domain. Here, we assume 𝑞(𝐷) = 1 and 𝑆 to consist of all outputs
that are OTP. Then, Pr[𝑚(𝐷) ∈ 𝑆] is the same as Pr[𝑂𝑇𝑃 ;𝑞(𝐷) = 1].
Since the minimum hamming distance to change the query answer

4Here, 𝐷 and 𝐷′ are not limited to neighboring datasets.
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is 𝑘, we can derive the following inequality by iteratively applying
Inequality (4).

Pr[𝑚(𝐷) ∈ 𝑆] ≤ e𝑘𝜖 Pr[𝑚(𝐷𝑘 ) ∈ 𝑆] + 𝛿

𝑘∑︁
𝑖=1

e(𝑖−1)𝜖

where 𝐷𝑘 is a dataset such that 𝑑ℎ (𝐷,𝐷𝑘 ) = 𝑘 and 𝑞(𝐷𝑘 ) = 0. From
the definition of OTP (Definition 13), we have Pr[𝑚(𝐷 ′) ∈ 𝑆] = 0.
Therefore:

Pr[𝑚(𝐷) ∈ 𝑆] = Pr[𝑂𝑇𝑃 ;𝑞(𝐷) = 1] ≤ 𝛿

𝑘∑︁
𝑖=1

e(𝑖−1)𝜖

Q.E.D. □

In general, 𝛿 should be small (conventionally, 𝛿 is set as 1/𝑛 where
𝑛 is the number of data) because 𝛿 means the probability that DP
breaks. We note that 𝛿 of 𝜖-DP is 0, which means that 𝜖-DP cannot
achieve OTP. If 𝑘 = 1 and 𝛿 = 1/𝑛, we achieve OTP with only the
probability 1/𝑛. Therefore, DP is not suited for our setting where
OTP is required.

4.3 OTP in ADP
Here, we derive the upper bound of a probability that ADP achieves
OTP, which means that there are one-sided error mechanisms. Our
neighboring notion is asymmetric as described above, so the ham-
ming distance in DP is not defined. Then, instead of the hamming
distance, we use the minimum step.

DEFINITION 14 (THE MINIMUM STEP). The minimum step from
𝐷 to 𝐷 ′ is the minimum number of steps to take to change 𝐷 to 𝐷 ′

via 𝑃-neighboring datasets.

If the minimum step from 𝐷0 to 𝐷𝑘 is 𝑘, there are datasets
𝐷0, 𝐷1, . . . , 𝐷𝑘 such that 𝐷𝑖 ∈ 𝑁𝑃 (𝐷𝑖−1) for all 1 ≤ 𝑖 ≤ 𝑘 .

THEOREM 9 (OTP IN (𝑃, 𝜖)-ADP). Let us assume that𝑚 satis-
fies (𝑃, 𝜖)-ADP, and the minimum step to change the query answer
from 𝐷 is 𝑘 . Then, the following inequalities hold:

Pr[𝑂𝑇𝑃 ;𝑞(𝐷) = 1] ≤ 1 − 1
e𝑘𝜖

PROOF. Let 𝑆 denote the set consisting of all outputs that are OTP.
Then, we let 𝑆 ′ denote the complement set of 𝑆 . Since 𝑚 satisfies
(𝑃, 𝜖)-ADP, iteratively using inequality (2),

Pr[𝑚(𝐷) ∈ 𝑆 ′] ≤ e𝑘𝜖 Pr[𝑚(𝐷𝑘 ) ∈ 𝑆 ′]

where 𝐷𝑘 is a dataset such that the minimum step from 𝐷 is 𝑘 . Here,
assuming 𝑞(𝐷) = 0 and 𝑞(𝐷𝑘 ) = 1, we can reformulate the above
inequality as follows:

1 ≤ e𝑘𝜖 (1 − Pr[𝑚(𝐷𝑘 ) ∈ 𝑆]) (5)

because Pr[𝑚(𝐷𝑘 ) ∈ 𝑆] + Pr[𝑚(𝐷𝑘 ) ∈ 𝑆 ′] = 1 and 𝑆 is the set of
OTP. Since 𝑞(𝐷𝑘 ) = 1, Pr[𝑚(𝐷𝑘 ) ∈ 𝑆] is the probability that we
achieve OTP. Therefore, by reformulating (5),

Pr[𝑂𝑇𝑃 ;𝑞(𝐷) = 1] ≤ 1 − 1
e𝑘𝜖

Q.E.D. □

5 MECHANISMS
Here, we propose mechanisms that satisfy ADP. First, we introduce
a basic mechanism that can be a component of ADP mechanisms,
called the asymmetric Laplace mechanism. Then, we propose mech-
anisms for two use-cases, respectively: top-𝑘 query and location
monitoring.

5.1 Asymmetric Laplace Mechanism
First, we introduce the asymmetric Laplace mechanism (aLap) that
is an ADP version of the Laplace mechanism5.

DEFINITION 15 (ASYMMETRIC LAPLACE MECHANISM). Let
us assume a counting query 𝑓 : D → N. Then, the asymmetric
Laplace mechanism 𝑎𝐿𝑎𝑝 is

𝑎𝐿𝑎𝑝𝜖 (𝑓 , 𝐷) = 𝑓 (𝐷) + 𝜆

where 𝜆 is following the asymmetric Laplace distribution with 𝜖 as
follows:
if 𝑃-sensitivity of 𝑓 is monotonically decreasing,{

𝜖
Δ𝑓 ,𝑃

exp −𝜆𝜖
Δ𝑓 ,𝑃

(𝜆 ≥ 0)
0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

else if 𝑃-sensitivity of 𝑓 is monotonically increasing,{
𝜖

Δ𝑓 ,𝑃
exp 𝜆𝜖

Δ𝑓 ,𝑃
(𝜆 ≤ 0)

0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

else,

𝜖

2Δ𝑓 ,𝑃

exp
|𝜆 | 𝜖
Δ𝑓 ,𝑃

The distribution in the case where 𝑓 is not monotonic is the
same as the Laplace distribution. When 𝑃-sensitivity is monotonic,
the distribution is the exponential distribution, which has a smaller
variance of 1/𝜖2. Therefore, when the query is monotonic, we can
improve accuracy. We note that the estimator of the answer with
the Laplace noise is the answer itself, but the estimator for the
asymmetric Laplace mechanism is 𝑎𝐿𝑎𝑝𝜖 (𝑓 , 𝐷) − 1/𝜖.

THEOREM 10. aLap satisfies (𝑃, 𝜖)-ADP.

PROOF. When 𝑃-sensitivity of 𝑓 is not monotonic, the asym-
metric Laplace mechanism satisfies (𝑃, 𝜖)-ADP from Theorem 5
because the Laplace mechanism satisfies 𝜖-DP.

When 𝑃-sensitivity of 𝑓 is monotonically decreasing, we need to
show that ∀𝑧 ∈ Z

Pr[𝑎𝐿𝑎𝑝𝜖 (𝑓 , 𝐷) = 𝑧] ≤ e𝜖 Pr[𝑎𝐿𝑎𝑝𝜖 (𝑓 , 𝐷 ′) = 𝑧]

where 𝐷 ′ is a 𝑃-neighboring dataset of 𝐷. We consider the case
where 𝑎𝐿𝑎𝑝𝜖 (𝑓 , 𝐷) = 𝑎𝐿𝑎𝑝𝜖 (𝑓 , 𝐷 ′) (i.e., 𝑓 (𝐷) + 𝜆 = 𝑓 (𝐷 ′) +
𝜆′). The difference is the largest when 𝜆′ = 𝜆 + Δ𝑓 ,𝑃 since 𝑃-
sensitivity is monotonically decreasing. In other words, Pr[𝜆′] is
the smallest when the difference is 𝑃-sensitivity (i.e., Δ𝑓 ,𝑃 ). There-
fore, Pr[𝜆]/Pr[𝜆′] ≤ e𝜖 for all 𝜆, which proves the theorem. When
the sensitivity of 𝑓 is monotonically increasing, we consider 𝜆′ =

5aLap is similar to OsdpLaplace [11], but we can only use OsdpLaplace for the count
of non-sensitive records. However, we can use aLap for any records since aLap utilizes
the asymmetricity.
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𝜆 − Δ𝑓 ,𝑃 and the following proof is the same as when sensitivity is
monotonically decreasing.

Q.E.D. □

When 𝑃-sensitivity is monotonic, the variance is 1/𝜖2, which is
smaller than the Laplace mechanism, but when 𝑃-sensitivity is not
monotonic, the error is the same as the Laplace mechanism. There-
fore, if we can construct a policy function 𝑃 such that 𝑃-sensitivity
is monotonic, we should use ADP to make the output more accurate.
Otherwise, we need not use ADP and should use DP since ADP’s
privacy protection is weaker than DP.

Remark. From the theorem of Hardt and Talwar [19], the lower
bound of the Euclidean distance error is proportional to the volume
of the sensitivity hull (see [19] for detail). Asymmetric neighboring
relationship halves the volume, so the lower bound is also halved,
which means

√
2/(2𝜖). Therefore, the asymmetric Laplace mech-

anism does not reach optimal because the sensitivity hull is not
isotropic. Hardt and Talwar’s isotropic transformation method may
be useful to achieve optimally, but this is beyond this paper’s scope.

5.1.1 Decision Problem with the Asymmetric Laplace Mech-
anism. We can construct a mechanism for a decision problem
with 𝑎𝐿𝑎𝑝. Here, we consider as a decision problem the query
𝑞 : D → {0, 1} which asks whether a counting query 𝑓 (𝐷) is un-
der the threshold or not. By using 𝑎𝐿𝑎𝑝𝜖 (𝑓 , 𝐷) for 𝑓 (𝐷), 𝑞 satisfies
(𝑃, 𝜖)-ADP.

THEOREM 11. When 𝑃-sensitivity of 𝑓 is monotonic, the above
mechanism 𝑞 achieves OTP with the probability of 1 − 1

e𝑘𝜖 where 𝑘
is the minimum step.

PROOF. Here, we consider the case where 𝑃-sensitivity of 𝑓 is
monotonically decreasing. In this case, OTP is the output 1 (i.e.,
below-the-threshold) because the noise of 𝑎𝐿𝑎𝑝 is always positive
so that the noise does not change the above-the-threshold answer,
which means Pr[𝑚(𝐷) = 1;𝑞(𝐷) = 0] = 0 (i.e., the definition of
OTP). The probability of OTP is the probability that the variable of
the exponential distribution is under 𝑘 . Therefore,

1 −
∫ ∞

𝑘

𝜖

Δ𝑓 ,𝑃

exp
−𝜆𝜖
Δ𝑓 ,𝑃

𝑑𝜆

Since the query is counting query (i.e., Δ𝑓 ,𝑃 = 1), the probability is
1 − 1

e𝑘𝜖 .
Q.E.D. □

Therefore, we can output OTP with the highest probability by
using 𝑎𝐿𝑎𝑝 for this decision problem.

5.2 Top-k Query
Here, we propose two ADP mechanisms for a top-𝑘 query: asym-
metric report noisy max algorithm and asymmetric sparse vector
technique, which are based on the popular algorithms for DP [15].
Due to the asymmetricity of ADP, our algorithms can output a more
accurate top-𝑘 histogram than DP.

5.2.1 Asymmetric Report Noisy Max Algorithm. The report
noisy arg-max is an algorithm satisfying DP to answer the argument
of a noisy max value (see Section 2.2.2 for detail). Dwork et al. first
proposed the algorithm [15] outputting only the argument with a

maximum value. Subsequently, Ding et al. proposed an algorithm
that can output more information than Dwork’s one [10]. Ding’s
algorithm can output top-𝑘 arguments with gap-information without
additional privacy leakage. Here, we propose a new algorithm that
satisfies ADP instead of DP. By changing DP to ADP, the algorithm
can output more information than Ding’s algorithm. Precisely, we
can output not the arguments but the top-𝑘 noisy values. Algorithm 1
is the pseudocode.

Algorithm 1 Asymmetric Report Noisy Max Algorithm

Input: 𝐷 : dataset, 𝜖 : privacy budget, 𝐹 : a set of queries whose
𝑃-sensitivity are monotonically decreasing and 1,

Output: Top-𝑘 noisy values.
1: for each query 𝑓𝑖 ∈ 𝐹 do
2: 𝜆 ∼ aLap𝜖/𝑘 (𝑓𝑖 , 𝐷)
3: 𝑓𝑖 (𝐷) ⇐ 𝑓𝑖 (𝐷) + 𝜆

4: end for
5: ( 𝑗1, 𝑗2, . . . , 𝑗𝑘 ) ⇐ 𝑎𝑟𝑔𝑚𝑎𝑥𝑘 {𝑓0, 𝑓1, . . . , 𝑓𝑡 }
6: return (( 𝑗1, 𝑓𝑗1 (𝐷)), ( 𝑗2, 𝑓𝑗2 (𝐷)), . . . , ( 𝑗𝑘 , 𝑓𝑗𝑘 (𝐷))

There is a difference in the assumption from Ding’s algorithm.
We assume that 𝑃-sensitivity of counting queries is monotonically
decreasing due to the policy function. This assumption enables the
mechanism to improve output information for two aspects. First,
the proposed algorithm can use the asymmetric Laplace distribution
with 𝑘/𝜖 instead of the Laplace mechanism with 2𝑘/𝜖, which means
the Euclidean distance error is 1/(2

√
2) times smaller than the one

of the Laplace distribution. Second, the proposed algorithm can
output top-𝑘 noisy values instead of arguments with gap-information.
Gap information is a gap between two neighboring answers (e.g.,
𝑓𝑗1 (𝐷) − 𝑓𝑗2 (𝐷)), so Ding’s method needs to use privacy budget to
measure the top-𝑘 values. Our method does not need to measure
them because it outputs noisy values.

THEOREM 12. Algorithm 1 satisfies (𝑃, 𝜖)-ADP.

PROOF. Let 𝐻 = (𝜆1, 𝜆2, . . . , 𝜆𝑡 ) denote the noise vector whose
each element 𝜆𝑖 is noise for query 𝑓𝑖 used in Algorithm 1. Then, we
consider the following noise vector 𝐻 ′ = (𝜆′1, 𝜆

′
2, . . . , 𝜆

′
𝑡 ).

𝜆′𝑖 =
{

𝜆𝑖 (𝑖 ∈ I𝑐
𝑧 )

𝜆𝑖 + 𝑓𝑖 (𝐷) − 𝑓𝑖 (𝐷 ′) (𝑖 ∈ I𝑧)

where I𝑧 represents top-𝑘 arguments and I𝑐
𝑧 represents other argu-

ments. Since the sensitivity of queries is monotonically decreasing,
the answer of 𝑚𝐻 (𝐷) (i.e., the top-𝑘 arguments and values corre-
sponding to the arguments) is the same as 𝑚𝐻 ′ (𝐷). It holds that
𝑚𝐻 (𝐷) =𝑚𝐻 ′ (𝐷 ′), so we can define 𝜙𝐷,𝐷′,𝑧 (𝐻 ) = 𝐻 ′ as acyclic lo-
cal alignments. Additionally, due to the monotonicity, each variable
is following the exponential distribution, and the cost is 𝜖. Therefore,
the conditions of Theorem 7 hold.

Q.E.D. □

5.2.2 Asymmetric Sparse Vector Technique. Next, we propose
the asymmetric sparse vector technique, which is the ADP version
of the sparse vector technique [14]. We consider a set of count-
ing queries 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑡 } and assume that 𝑃-sensitivity of the
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queries satisfies decreasing monotonicity and Δ𝑓𝑖 ,𝑃 = 1. Naively an-
swering each query with the asymmetric Laplace mechanism using
𝜖 finally consumes privacy budget 𝑡𝜖 due to the sequential compo-
sition (Theorem 6). The asymmetric sparse vector technique uses
a decision problem that asks whether 𝑓𝑖 (𝐷) is under the threshold
𝑇𝑖 or not instead of the counting query (see Section 5.1.1 for detail)
to save the privacy budget. If the query answer is OTP (i.e., the
noisy answer is below-the-threshold), the algorithm answers the de-
cision problem without consuming the privacy budget. If the query
answer is above-the-threshold, the algorithm consumes the privacy
budget, so the algorithm answers the counting query with 𝑎𝐿𝑎𝑝𝜖/𝑐 .
Algorithm 2 is the pseudocode.

Algorithm 2 The asymmetric sparse vector technique

Input: 𝜖, 𝑐: the number of above-the-threshold answers, 𝐹 =

{𝑓0, 𝑓1, . . . , 𝑓𝑡 }: a set of queries whose 𝑃-sensitivity are monoton-
ically decreasing and 1, 𝑇 = {𝑇0,𝑇1, . . . ,𝑇𝑡 }: a set of thresholds

Output: out
1: count= 0
2: for each query 𝑓𝑖 ∈ 𝐹 do
3: 𝑧 ⇐ 𝑎𝐿𝑎𝑝𝜖/𝑐 (𝑓𝑖 , 𝐷)
4: if 𝑧 ≥ 𝑇𝑖 then
5: Output 𝑎𝑖 = 𝑧

6: count=count+1, abort if count≥ 𝑐.
7: else
8: Output 𝑎𝑖 = 0
9: end if

10: end for

THEOREM 13. Algorithm 2 satisfies (𝑃, 𝜖)-ADP.

PROOF. We use the technique of randomness alignment to prove
this theorem. We assume that the algorithm outputs𝐴 = (𝑎0, 𝑎1, . . . , 𝑎𝑡 )
using 𝐻 = (𝜆0, 𝜆1, . . . , 𝜆𝑡 ) as the random variables for 𝑎𝐿𝑎𝑝 (i.e.,
𝑚𝐻 (𝐷) = 𝐴). Then, we consider the following randomness align-
ment 𝐻 ′ = (𝜆′0, 𝜆

′
1, . . . , 𝜆

′
𝑚).

𝜆′𝑖 =
{

𝜆𝑖 (𝑎𝑖 = 0)
𝜆𝑖 + 𝑓𝑖 (𝐷) − 𝑓𝑖 (𝐷 ′) (𝑎𝑖 = 𝑧)

It holds that 𝑚′
𝐻
(𝐷 ′) = 𝐴, which means that 𝜙𝐷,𝐷′,𝑧 (𝐻 ) = 𝐻 ′

is an acyclic local alignment. This is because 𝑓𝑖 is monotonically
decreasing so that the below-the-threshold answer does not change
and 𝜆′ + 𝑓𝑖 (𝐷 ′) = 𝜆 + 𝑓𝑖 (𝐷). Therefore, the cost is 𝑐 ∗ 𝜖/𝑐 = 𝜖, so the
conditions of Theorem 7 hold.

Q.E.D. □

We note that when the query is monotonically increasing, we can
get below-the-threshold answers in the same way.

The asymmetricity improves three aspects from the sparse vec-
tor technique (Section 2.2.1). First, the asymmetric sparse vector
technique does not require noise for the threshold. Second, we can
use the asymmetric Laplace mechanism with 𝜖/𝑐, which has the
1/(2

√
2) times smaller error than the Laplace mechanism. Third, we

can answer a noisy counting query when the algorithm consumes the
privacy budget. These three differences improve accuracy as shown
in Section 6.

The traditional sparse vector technique needs to measure the top-𝑘
values in addition to the sparse vector technique to make a top-𝑘
histogram. Therefore, Ding et al. split the privacy budget in half for
the sparse vector technique and measure. However, our asymmetric
sparse vector technique does not require the measurement because it
can output noisy values.

5.3 Location Monitoring
Since trajectory information is high-sensitive [6], DP requires much
noise to publish a trajectory itself, which also applies to ADP. There-
fore, instead of publishing a trajectory itself, we propose mechanisms
to publish information about a location’s safety using counting query
as a use-case of a decision problem. We define safe as the number
of target people (e.g., infected people) who have visited the location
is under a threshold.

We propose two types of queries to monitor safety.
(1) query whether a location is safe in a range of time or not
(2) query whether locations were safe at a certain time or not

In the first query, we designate a location we want to monitor. In
the second query, we designate a time where we want to monitor
locations. By defining a policy function as Example 1 (i.e., not
visiting is non-sensitive and visiting is sensitive), we can construct
ADP mechanisms with one-sided error. Here, we assume that a
dataset is frequently updated when data come or data is expired
because the risk information change according to updated data.

5.3.1 Monitoring a Location. Here, we consider the query 𝑞 :
D → {0, 1}, which asks whether the target location is safe or not. In
other words, the query answers whether the number of target people
who have recently visited the location is under the threshold or not.
Algorithm 3 is the pseudocode of the mechanism for this query.

Algorithm 3 Monitoring a location

Input: 𝜖, 𝑓 : 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑞𝑢𝑒𝑟𝑦,𝑇 : 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
Output: out

1: initialize Queue
2: while batch at input do
3: initialize data in batch to be False
4: enqueue all data in batch to Queue
5: while Queue.tail is expired do
6: Queue.dequeue()
7: end while
8: if Any data.mark in Queue is True then
9: back to line 2

10: end if
11: if 𝑧 = 𝑎𝐿𝑎𝑝𝜖 (𝑓 ,𝑄𝑢𝑒𝑢𝑒) ≥ 𝑇 then
12: Output 𝑎𝑖 = 𝑧

13: for data in Queue do
14: data.mark = True
15: end for
16: else
17: Output 𝑎𝑖 = 0
18: end if
19: end while

The algorithm outputs whether the location is safe or not every
time a new batch of data comes (Line 2). The dataset is then updated
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by adding a new batch and removing expired data (Line 3-7). We
note that we predefine the expired period of data. E.g., if we predefine
the period as two weeks, the data is expired when two weeks have
passed since the user of the data has visited the location. Using
aLap, we perturb the count and compare the perturbed count with
the given threshold. If the perturbed count is above the threshold, we
output the noisy value and mark all data in Queue (Line 11-15). This
marking represents the consumption of 𝜖, so we cannot continue
to output if the data is marked (Line 8-9). If the perturbed count is
below the threshold, we output 0, which does not consume 𝜖 due to
the asymmetric sparse vector technique (Line 17).

This algorithm satisfies (𝑃, 𝜖)-ADP, and output 0 is OTP (i.e., safe
information is accurate). We can continue to monitor the safety of
the location with the highest probability of OTP due to the property
of aLap described in Section 5.1.1.

We note that to monitor multiple locations, we need to separate
the privacy budget (e.g., if we want to monitor three locations, we
need to use 𝜖/3 for each query).

THEOREM 14. Algorithm 3 satisfies (𝑃, 𝜖)-ADP.

PROOF. We consider all batches used in the algorithm as dataset
𝐷. We assume that output is 𝑚𝐻 (𝐷) = 𝐴 = (𝑎0, 𝑎1, . . . , 𝑎𝑡 ) where
the used noise vector is 𝐻 = (𝜆0, 𝜆1, . . . , 𝜆𝑡 ). Consider the following
randomness alignment.

𝜆′𝑖 =
{

𝜆𝑖 (𝑎𝑖 = 0)
𝜆𝑖 + 𝑓𝑖 (𝐷) − 𝑓𝑖 (𝐷 ′) (𝑎𝑖 = 𝑧)

where 𝑓𝑖 is the query used at 𝑖th update (i.e., 𝑓𝑖 (𝐷) = 𝑓 (𝐷𝑖𝑛𝑝𝑢𝑡𝑖 )
where𝐷𝑖𝑛𝑝𝑢𝑡𝑖 is the input at 𝑖th update). Then, it holds that𝑚𝐻 ′ (𝐷 ′) =
𝐴′ = 𝐴 where 𝐻 ′ = (𝜆′0, 𝜆

′
1, . . . , 𝜆

′
𝑡 ) due to the monotonicity. Since

we stop the output when the above-the-threshold answer appears and
until the corresponding record disappears, a change of one record
only affects one query answer. Therefore, it holds that 𝜆′

𝑖
= 𝜆𝑖 expect

one of the indices. Therefore, the alignment cost is 𝜖, so the con-
ditions of Theorem 7 hold, which means that Algorithm 3 satisfies
(𝑃, 𝜖)-ADP.

Q.E.D.
□

5.3.2 Monitoring Locations at a Designated Time. The first
mechanism adds up the needed privacy budget when locations to
monitor increase. By designating a time, we can monitor the un-
limited number of locations with a fixed privacy budget since each
individual is at one location at a certain time. In other words, the
query answers whether the number of target people who have been
at the location at the time is below the threshold. Algorithm 4 is the
pseudocode of the mechanism for this query.

Like Algorithm 3, the mechanism perturbs the answer of 𝑓𝑙 , which
is the counting query for location 𝑙 using aLap. If the perturbed count
is above the threshold, the mechanism outputs noisy answer 𝑧𝑙𝑖 and
marks the location because the mechanism consumes 𝜖 (Line 9-11).
If the mechanism consumed 𝜖 for location 𝑙 , we would skip the
output for 𝑙 (Line 6-8). If the perturbed count is below the threshold,
we output 0 without consuming 𝜖 due to the asymmetric property
(Line 13).

Algorithm 4 Monitoring locations at a certain time

Input: 𝜖, 𝐿,𝑇 , {𝑓𝑙 }𝑙 ∈𝐿
Output: out

1: initialize Array
2: initialize marks of all locations to be False
3: while batch at input do
4: append all data in batch to Array
5: for each location 𝑙 ∈ 𝐿 do
6: if 𝑙 .mark = True then
7: back to Line 4
8: end if
9: if 𝑧𝑙𝑖 = 𝑎𝐿𝑎𝑝𝜖 (𝑓𝑙 , 𝐴𝑟𝑟𝑎𝑦) ≥ 𝑇 then

10: 𝑙 .mark = True
11: Output 𝑎𝑙𝑖 = 𝑧𝑙𝑖
12: else
13: Output 𝑎𝑙𝑖 = 0
14: end if
15: end for
16: end while

We note that to monitor multiple times, we need to separate the
privacy budget (e.g., if we monitor three designated times, we need
to use 𝜖/3 for each query).

THEOREM 15. Algorithm 4 satisfies (𝑃, 𝜖)-ADP

PROOF. We consider all batches used in the algorithm as dataset
𝐷. We assume that output is 𝑚𝐻 (𝐷) = 𝐴 = (𝑎𝑙00, 𝑎𝑙01, . . . , 𝑎𝑙 |𝐿 |𝑡 )
where the used noise vector is 𝐻 = (𝜆𝑙00, 𝜆𝑙01, . . . , 𝜆𝑙 |𝐿 |𝑡 ). Consider
the following randomness alignment.

𝜆′
𝑙𝑖
=

{
𝜆𝑙𝑖 (𝑎𝑙𝑖 = 0)
𝜆𝑙𝑖 + 𝑓𝑙𝑖 (𝐷) − 𝑓𝑙𝑖 (𝐷 ′) (𝑎𝑙𝑖 = 𝑧)

where 𝑓𝑙𝑖 is the query used at 𝑖th update (i.e., 𝑓𝑙𝑖 (𝐷) = 𝑓𝑙 (𝐷𝑖𝑛𝑝𝑢𝑡𝑖 )
where𝐷𝑖𝑛𝑝𝑢𝑡𝑖 is the input at 𝑖th update). Then, it holds that𝑚𝐻 ′ (𝐷 ′) =
𝐴′ = 𝐴 where 𝐻 ′ = (𝜆′

𝑙00
, 𝜆′

𝑙01
, . . . , 𝜆′

𝑙 |𝐿 |𝑡
) due to the monotonicity.

Since an individual can be one place at a certain time and we stop
the output when the above-the-threshold answer appears and until
the corresponding record disappears, the change of one record only
affects one query answer. Therefore, it holds that 𝜆′

𝑙𝑖
= 𝜆𝑙𝑖 expect

one of the indices. Therefore, the alignment cost is 𝜖, so the con-
ditions of Theorem 7 hold, which means that Algorithm 4 satisfies
(𝑃, 𝜖)-ADP.

Q.E.D. □

6 EXPERIMENTS
We conducted simulations of the two use-cases using real-world
datasets and evaluate their performance. We open the source code
used in these experiments on https://github.com/tkgsn/adp-algorithms.

6.1 Datasets and a Policy
First, we explain the datasets used for our experiments. We use
different datasets for each use-case.

Top-𝑘 Query. For evaluating the asymmetric sparse vector tech-
nique and the asymmetric report noisy max algorithm, we use two
real-world datasets from [25] and a synthetic dataset created by the
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Dataset # Records # Unique Items

BMS-POS 515,597 1,657
Kosarak 990,002 41,270
T40I10D100K 100,000 942

Table 3: Statistics of datasets

Figure 1: The number of locations with respect to the counts of
visited people.

generator from the IBM Almaden Quest research group: BMS-POS,
Kosarak, and T40I10D100K. These datasets are collections of click-
stream, and each record is a stream of items. In this paper, we show
the results of only BMS-POS due to space limitation. We refer the
readers to the full version for other datasets, but the results have the
same tendency as BMS-POS. We show the statistics of each dataset
in Table 3.

Location Monitoring. For evaluating our proposed location mon-
itoring mechanisms, we use the Peopleflow dataset6 as trajectory
data of infected people. Trajectory data in the Peopleflow dataset
includes location_id, which represents the category of the location
(e.g., restaurant or amusement facility). There are 5835 locations
in the Peopleflow dataset, and we assume that if a point includes
a location_id, the individual has visited the location. We randomly
separate individuals into a batch with the size of 500. We plot the
number of locations according to the counts of visited people using
a randomly chosen batch in Figure 1. We can see that most locations
are not visited. Counts concentrate on locations such as a station.

Policy. Here, we use the policy in Example 1. That is, we assume
that the fact that a user has clicked an item is sensitive, and the
fact that a user has not clicked an item is non-sensitive for the click
datasets. For the trajectory dataset, we assume that the fact that
a user has visited a location is sensitive, and the fact that a user
has not visited a location is non-sensitive. This policy induces the
monotonically decreasing at 𝑃-sensitivity when counting the fact
that a user has clicked an item (visited a location) for the same reason
as Example 5.

6.2 Top-k Query
We here compare our algorithms with the state-of-the-art algorithms
satisfying DP [10], which we call the free-gap algorithm. To see
how the parameters impact the results, we show the results varying 𝜖

and 𝑘 . Here, we use two measurements: the mean squared error and
accuracy of top-𝑘 items. I.e., we evaluate how accurate the published
6http://pflow.csis.u-tokyo.ac.jp/

histogram is and top-𝑘 items are. We iterated this evaluation 10000
times, and we show the average of them in a solid line and its 95%
bootstrapped confidential interval in the shade.

6.2.1 Asymmetric Report Noisy Max Algorithm.

Varying 𝜖 value. Here, we fix 𝑘 as 100 and plot the results in
above Figure 2 with varying the value of 𝜖. We can see that our
algorithm can achieve nearly 1 at accuracy for any dataset in 𝜖 = 0.5
although the free-gap algorithm cannot achieve 1 at even 𝜖 = 1. The
histogram from our algorithm is about ten-times more accurate than
the one from the free-gap algorithm.

Varying 𝑘 value. Here, we fix 𝜖 as 0.5 and plot the results in below
Figure 2 with varying the value of 𝑘. We can see that the free-gap
algorithm more shapely decreases accuracy as 𝑘 increases than our
algorithm.

6.2.2 Asymmetric Sparse Vector Technique. The sparse vector
technique requires a threshold. However, we cannot know the thresh-
old for the top-𝑘 query. We took the same measure for this problem
as the one of Ding et al. [10]. We randomly choose an integer 𝑖 from
[𝑘, 2𝑘] and we use the value indexed by the chosen integer (i.e., 𝑖th
from the top) as the threshold.

Varying 𝜖 value. We fix 𝑘 as 100 and plot the results in above
Figure 3. We can see that our algorithm is about ten-times more
accurate than the free-gap algorithm. When 𝜖 = 1, accuracy is
almost the same. This is because the sparse vector technique requires
the threshold, which is sensitive information so that the maximum
accuracy is limited. Our algorithm reaches the maximum accuracy
at lower 𝜖 than the free-gap algorithm.

Varying 𝑘 value. Here, we fix 𝜖 as 0.5 and plot the results in below
Figure 3 with varying the value of 𝑘 . The same as the above results,
when 𝑘 is small, accuracy is almost the same, and our algorithm
achieves similar results on large 𝑘 although the free-gap algorithm
sharply decreases accuracy.

6.2.3 Remark. Our algorithms output a more accurate answer
to a top-𝑘 query for any dataset, 𝑘, and 𝜖 than Ding’s algorithm
by providing the privacy guarantee of DP to only sensitive values
defined by the policy. Therefore, if a user wants to hide non-click
information, these algorithms are not appropriate. Still, if a user can
compromise the policy, we can improve the accuracy.

The asymmetric report noisy 𝑘-max algorithm is more accurate
than the asymmetric sparse vector technique for the top-𝑘 query.
However, we note that the asymmetric sparse vector technique out-
puts more information: noisy values of above-the-threshold answers
and arguments of below-the-threshold answers. Additionally, since
the decision problem in the asymmetric sparse vector technique is
one-sided, arguments of below-the-threshold answers are accurate.

6.3 Location Monitoring
Here, the goal is to publish one-sided safety information. In other
words, the algorithm outputs whether the number of target people
who have visited the location is under the threshold or not. Therefore,
we guarantee that the false-positive ratio = 0. However, we cannot
guarantee that the false-negative ratio = 0 due to the constraint of
ADP. Then, we use the false-negative ratio as the utility measure.
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Figure 2: The results of the asymmetric report noisy 𝑘-max al-
gorithm for BMS-POS, Kosarak, and T40I10D100K varying 𝜖

and 𝑘 .

6.3.1 Monitoring a Location. Here, we evaluate Algorithm 3.
Algorithm 3 continues to output until infected people do not appear.
Then, we evaluate the output for each update and plot the result in
Figure 4. The false-negative ratio increases when the true counts
(i.e., 𝑓 (𝐷)) or the threshold decreases. If the true count is 0, the
false negative ratio is less than 0.01 for 𝜖 = 1 and threshold= 5. This
means that we can publish accurate information with more than 99%
for each update.

Figure 3: The results of the asymmetric sparse vector technique
for BMS-POS, Kosarak, and T40I10D100K varying 𝜖 and 𝑘 .

6.3.2 Monitoring Locations at a Designated Time. Here, we
evaluate Algorithm 4. First, we visualize the outputs for each case
of the ground truth (𝜖 = ∞), 𝜖 = 0.5, 𝜖 = 1 and 𝜖 = 2 in Figure 5.
The threshold 𝑇 is set as 10. In this simulation, we fix the batch size
as 500 and update 5 times to add 5 batches, which means that the
dataset’s final size is 2500. The blue dots represent safe locations,
and orange dots are the hot spots. Comparing with the ground truth,
we can see that the orange dots increase. These additional orange
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Figure 4: False negative ratio for each update when varying the
counts. The left figure is for threshold= 5 and the right figure is
for threshold= 10.

Figure 5: The monitored locations and hot spots (counts ≥ 10).
From left, ground truth, 𝜖 = 0.5, 𝜖 = 1 and 𝜖 = 2.

Figure 6: The false negative ra-
tio at each update.

Figure 7: The false negative ra-
tio varying the threshold.

dots are the error (i.e., false negative), and the blue dots represent
OTP (i.e., accurate safe information). The smaller 𝜖 is, the more
orange dots exits due to the stronger requirement ADP.

Next, we evaluate the false negative ratio. Here, the false-negative
ratio is the ratio of the number of wrong orange dots to the number
of all right blue dots in Figure 5. We plot the false negative ratio at
each update in Figure 6. From this figure, the false-negative ratio is
at most 0.01. This means that we can publish 99% safe areas with the
guarantee of accuracy.

Finally, we evaluate the false negative ratio varying the threshold.
When the threshold is small (e.g., 2), the false-negative ratio is very
high. By setting the smaller threshold, we can know the precise
information, but the output includes many errors. Setting the bigger
threshold obscures the published information but the number of

errors decreases. The threshold is an important key to adjust this
trade-off.

7 CONCLUSION
We proposed asymmetric differential privacy, which is the relaxation
of differential privacy to mitigate the constraints of differential pri-
vacy. We proved that ADP improves the Euclidean error and allows
one-sided error. Then, we proposed practical algorithms satisfying
ADP. We show by experiments with real-world datasets that we
can get a more accurate top-𝑘 histogram and one-sided information
about the safety of locations using our proposed algorithms.

In this paper, we consider the single-dimensional counting query
as the use case of ADP. However, ADP is the general definition
so that we may introduce ADP to other queries to improve utility,
which is one of the future directions.

REFERENCES
[1] Jayadev Acharya, Kallista Bonawitz, Peter Kairouz, Daniel Ramage, and Ziteng

Sun. 2020. Context Aware Local Differential Privacy. In International Conference
on Machine Learning. PMLR, 52–62.

[2] Aws Albarghouthi and Justin Hsu. 2017. Synthesizing Coupling Proofs of Dif-
ferential Privacy. Proc. ACM Program. Lang. 2, POPL, Article 58 (Dec. 2017),
30 pages. https://doi.org/10.1145/3158146

[3] Johannes K Becker, David Li, and David Starobinski. 2019. Tracking anonymized
bluetooth devices. Proceedings on Privacy Enhancing Technologies 2019, 3
(2019), 50–65.

[4] USC Bureau. [n.d.]. On the map: Longitudinal employer-household dynamics,
https://lehd.ces.census.gov/applications/help/onthemap.html#confidentiality
_protection.

[5] Yang Cao, Yonghui Xiao, Shun Takagi, Li Xiong, Masatoshi Yoshikawa, Yilin
Shen, Jinfei Liu, Hongxia Jin, and Xiaofeng Xu. 2020. PGLP: Customizable and
Rigorous Location Privacy Through Policy Graph. In European Symposium on
Research in Computer Security. Springer, 655–676.

[6] Rui Chen, Benjamin CM Fung, Noman Mohammed, Bipin C Desai, and Ke
Wang. 2013. Privacy-preserving trajectory data publishing by local suppression.
Information Sciences 231 (2013), 83–97.

[7] Rui Chen, Liang Li, Jeffrey Jiarui Chen, Ronghui Hou, Yanmin Gong, Yuanxiong
Guo, and Miao Pan. 2020. COVID-19 Vulnerability Map Construction via Loca-
tion Privacy Preserving Mobile Crowdsourcing. In GLOBECOM 2020-2020 IEEE
Global Communications Conference. IEEE, 1–6.

[8] Eva Clark, Elizabeth Y Chiao, and E Susan Amirian. 2020. Why contact tracing
efforts have failed to curb coronavirus disease 2019 (covid-19) transmission in
much of the united states. Clinical Infectious Diseases (2020).

[9] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting telemetry
data privately. In Advances in Neural Information Processing Systems. 3571–3580.

[10] Zeyu Ding, Yuxin Wang, Danfeng Zhang, and Daniel Kifer. 2020. Free gap infor-
mation from the differentially private sparse vector and noisy max mechanisms.
Proceedings of the VLDB Endowment (2020).

[11] Stelios Doudalis, Ios Kotsogiannis, Samuel Haney, Ashwin Machanavajjhala, and
Sharad Mehrotra. 2020. One-sided differential privacy. ICDE (2020).

[12] Cynthia Dwork. 2006. Differential privacy. In Proceedings of the 33rd interna-
tional conference on Automata, Languages and Programming-Volume Part II.
Springer-Verlag, 1–12.

[13] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cal-
ibrating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[14] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Rothblum, and Salil Vadhan.
2009. On the complexity of differentially private data release: efficient algorithms
and hardness results. In Proceedings of the forty-first annual ACM symposium on
Theory of computing. 381–390.

[15] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4
(2014), 211–407.

[16] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Random-
ized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security. 1054–1067.

[17] Xiaolan Gu, Ming Li, Li Xiong, and Yang Cao. 2020. Providing input-
discriminative protection for local differential privacy. In 2020 IEEE 36th In-
ternational Conference on Data Engineering (ICDE). IEEE, 505–516.

[18] Yaron Gvili. 2020. Security analysis of the COVID-19 contact tracing specifi-
cations by Apple Inc. and Google Inc. IACR Cryptol. ePrint Arch. 2020 (2020),

13

https://doi.org/10.1145/3158146


428.
[19] Moritz Hardt and Kunal Talwar. 2010. On the geometry of differential privacy.

In Proceedings of the forty-second ACM symposium on Theory of computing.
705–714.

[20] Xi He, Ashwin Machanavajjhala, and Bolin Ding. 2014. Blowfish privacy: Tuning
privacy-utility trade-offs using policies. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. 1447–1458.

[21] Noah Johnson, Joseph P Near, and Dawn Song. 2018. Towards practical differen-
tial privacy for SQL queries. Proceedings of the VLDB Endowment 11, 5 (2018),
526–539.

[22] Daniel Kifer and Ashwin Machanavajjhala. 2014. Pufferfish: A framework for
mathematical privacy definitions. ACM Transactions on Database Systems (TODS)
39, 1 (2014), 1–36.

[23] Fragkiskos Koufogiannis, Shuo Han, and George J Pappas. 2015. Optimality of
the laplace mechanism in differential privacy. arXiv preprint arXiv:1504.00065
(2015).
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