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Abstract

Speeding up testing and vaccination is essential to controlling the coronavirus disease 2019

(COVID-19) pandemic that has become a global health crisis. In this paper, we develop math-

ematical frameworks for optimizing locations of distribution centers and plans for distributing

resources such as test kits and vaccines under spatiotemporal uncertainties of disease infections

and demand for the resources. The goal is to balance between operational cost (including costs of

deploying facilities, shipping, and storage) and quality of service (reflected by delivery speed and

demand coverage), while ensuring equity and fairness of resource distribution across multiple

populations. We compare solutions of a stochastic integer program with robust solutions under

the distributional ambiguity of demand. For the latter, we propose a distributionally robust

optimization model using a moment ambiguity set. We conduct numerical studies by solving

instances of distributing COVID vaccines in the United States and test kits in the State of

Michigan and compare our solutions with the ones implemented in real world. We demonstrate

results over distinct phases of the pandemic to estimate cost and speed of resource distribution

depending on the scales and coverage.

Keywords: COVID-19 pandemic; vaccine distribution; resource allocation; stochastic integer pro-

gramming; distributionally robust optimization; multi-objective optimization

1 Introduction

With the rapid spread of the coronavirus disease 2019 (COVID-19), testing is central to planning

response activities in all countries during and post the pandemic. Effective and efficient testing

can lead to early outbreak detection, to quickly isolate and treat infected patients, guide people

consciously performing social distancing, and also lock down certain areas/activities if needed.

Hence, to keep the pandemic under control or prepare for the next wave, well-planned, strategic

testing is necessary for both disease prevention and intervention (CDC, 2020). Establishing such a
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system involves distributing test kits to test centers while considering potential demand uncertainty

for testing (see, e.g., Lampariello and Sagratella, 2021; Santini, 2021). Such a resource distribution

problem also arises in the production and distribution of COVID-19 vaccines that recently became

available – That is, upon needs and orders from different regions, a central government sends

limited amounts of vaccines to local agents using the information of regional infection status.

This problem was solved in the United States (US) during the first four months of Year 2021 for

distributing the COVID vaccines and is widely applicable when vaccines become available globally,

or for distributing resources to respond to future outbreaks of other diseases.

The literature in vaccine operations mainly consider designing vaccine allocation policies target-

ing on specific population groups or regions (Westerink-Duijzer, 2017) for responding to outbreaks

of various types of diseases including influenza and Ebola (see, e.g., Medlock and Galvani, 2009;

Long et al., 2018; Li et al., 2018). For COVID-19 specifically, Bubar et al. (2020) discuss strate-

gies for vaccine prioritization among different population groups; Babus et al. (2020) estimate

occupation-based infection risks and use age-based infection fatality rates in a model to assign

priorities over populations with different occupations and ages; Bertsimas et al. (2020) capture

vaccine effects and the variability in mortality rates across sub-populations, and then integrate a

predictive model into a prescriptive model to optimize vaccine allocation; Chen et al. (2020) focus

on how priority and population groups should be identified over time under limited supply.

In the US, with the Biden Administration pledging “100 million vaccine shorts in 100 days,”

policymakers seek the most efficient way to distribute vaccines to states and jurisdictions, and

then to local hospitals, clinics, pharmacies, schools, communities and so on. Given certain vaccine

allocation policies, how to distribute vaccines from production sites or DCs to downstream demand

is challenging and emergent. However, it is hard to quantify the cost and speed trade-off for

distributing vaccines or test kits, as there exist hidden costs associated with unsatisfied demand

that may come from high-risk groups. It is also challenging to locate DCs and make shipping plans

optimally to achieve the best trade-off, given the evolving pandemic and rapidly changing demand.

Moreover, the scale of the problem can be enormous, involving millions of vaccines (or test kits)

and large-scale distributed demand for operating the system for the whole country. A scientific way

to conduct vaccine and test kit distribution needs to rely on mathematical models and algorithms

for processing and utilizing information from large datasets about the COVID-19 infection trends

and demand for testing/vaccination.

Duijzer et al. (2018) present a comprehensive review of the literature on vaccine supply chain

management, covering both methodologies and applications. Golan et al. (2020) conduct a review

of the literature that focuses on the resilience of vaccine supply chains, and point out that the

lack of network-based, modeling-based, quantitative analysis is a major gap in the literature that

needs to be bridged in order to create methods of real-time analysis and decision tools for the

COVID-19 vaccine supply chain. Indeed, as the majority of the literature focusing on COVID-

19 vaccine allocation, few studies develop mathematical approaches for solving the operational

problems related to vaccine distribution. Among them, Bertsimas et al. (2021b) optimize vaccine

site selection and the assignment of population to different sites while ensuring optimal subsequent
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vaccine allocation. They show that the proposed solution achieves critical fairness objectives and is

also highly robust to uncertainties and forecasting errors. Other types of vaccine-related operational

problems involve locating facilities to produce or store vaccines and shipping them to demand in a

daily basis, which are investigated in this paper.

There has been a large body of research studies on how to site retail stores, optimize inventory

and production, manage stock levels as demand for products fluctuates by season (Daskin, 2011;

Shen et al., 2011; Snyder, 2006; Basciftci et al., 2020). Among them, many focus on the resilience

and reliability of facility locations under uncertain demand and disruptions, using stochastic or

robust optimization approaches. Establishing an operational system for COVID-19 resource distri-

bution presents a very similar set of challenges but under disease spread and demand uncertainties.

In this study, we present a mathematical framework that encapsulates allocation and distribu-

tion stages of disease-control resources (e.g., vaccines and test kits) by considering spatiotemporal

uncertainty in their demand and ambiguity of the demand distribution over a multi-period plan-

ning horizon. We optimize the locations of resource DCs, their capacities, shipment amounts and

inventory levels. As the provided framework is presented in a generic form, it aims to address

various resource allocation problems during different phases of a pandemic by comparing determin-

istic, stochastic and distributionally robust decision-making approaches for different scenarios in

practice.

The main contributions of the paper are threefold. First, we combine mathematical program-

ming and statistical learning, for optimally locating DCs for disease-control resources and deriving

shipping plans, customized for counties and states with diverse demographics and disease spread

patterns. Our research can be utilized at the national level to balance the distribution, or at the

state or county level to facilitate local operations. Second, through data-informed location opti-

mization, we can effectively identify the most critical and vulnerable groups to prioritize testing

or receiving vaccines under constrained amounts of resources and as a result, can protect other

population groups. Third, we conduct extensive numerical studies using real COVID-19 infection

data in the US and in the State of Michigan, to compare different approaches under demand un-

certainty. We compare the operational cost and speed of resource distribution based on a diverse

set of instances having different scales and parameter settings.

The rest of the paper is organized as follows. In Section 2, we review the most relevant literature

in disease control, and its related facility location and supply chain management. In Section 3, we

present the stochastic optimization model based on a set of demand samples generated from a

given probability distribution and in Section 4, we consider that the exact demand distribution

is unknown and optimize decisions against the distributional ambiguity. In Section 5, we conduct

numerical studies using COVID-19 infection data to demonstrate results of distributing vaccines and

test kits, and compare our solutions with what were implemented by the Center of Disease Control

(CDC) in the US. In Section 6, we conclude the paper and present future research directions.
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2 Literature Review

Resource distribution is of vital importance in many applications, in particular the ones related to

disease control and disaster relief, as the resources are usually scarce (Cao and Huang, 2012). In

post disaster relief, the time efficiency for distributing resources is an important concern (Gupta

et al., 2016), e.g., in ambulances dispatch (see, e.g., Gong and Batta, 2007) and allocating medical

resources to patients with deteriorating health conditions (see, e.g., Xiang and Zhuang, 2016). For

COVID-19, personal protective equipment (PPE), test kits, hospital beds and ventilators, and, most

recently, vaccines are among the resources that need to be effectively distributed at all levels (see,

Emanuel et al., 2020). For example, Bertsimas et al. (2021a) formulate a deterministic optimization

model to improve ventilator allocation by allowing sharing of ventilators between hospitals from

different states. Billingham et al. (2020) study a similar problem to optimize ventilator sharing.

Furthermore, hospital bed allocation has been considered by Zachary A. Collier et al. (2020) through

identifying “hot spot” regions that have spikes in the number of infected cases and using a value-

based optimization model that measures the value based on the usage of marginal medical resources.

However, the above studies predict the number of patients in critical conditions using forecasting,

and the inherent uncertainty is not explicitly considered within planning. Mehrotra et al. (2020);

Blanco et al. (2020) propose stochastic programming approaches to address this issue by generating

scenarios with different patterns to represent patient amount uncertainty, to re-allocate and share

medical resources among different hospitals. Recently, Parker et al. (2020) use robust optimization

by assuming an unknown number of patients for each specific day within a certain range from a

nominal value, e.g., the average across a certain period.

Lampariello and Sagratella (2021) consider a single-period COVID test kit allocation problem

by maximizing utility functions corresponding to disease detection capabilities in different regions

while determining the amount of test kits to be allocated in each region given a certain budget.

Santini (2021) considers the distribution of swabs and reagent to laboratories for maximizing the

number of COVID tests processed. The author formulates the problem as a deterministic integer

programming model by considering sharing of swabs and reagent among different laboratories over

a multi-period planing horizon. Although the above studies focus on different stages of the testing-

related resource planning problems, the infection uncertainty in different regions and periods, is not

incorporated to obtain reliable solutions over expected or worst-case performances. Moreover, the

probability distribution of the uncertain demand for resources may be ambiguous during emergency

or disaster relief operations due to the inherent and abrupt nature of these events (see, e.g., Liu

et al., 2019; Wang and Chen, 2020). This motivates the development of a distributionally robust

optimization approach in our paper for robustly allocating resources in an unprecedented event

setting such as the COVID-19 pandemic.

The supply chain operations of vaccines for infectious disease control involve production, al-

location and distribution stages, with decisions on which vaccines to produce, how many doses

to produce, who should be vaccinated, how the vaccines can be distributed, and so on (see Dui-

jzer et al., 2018). Özaltın et al. (2011) present a multi-stage stochastic programming approach to
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determine vaccine composition and timing of these decisions in preparation for annual influenza.

The production phase takes into account objectives from both vaccine manufacturers and govern-

ment agencies while considering uncertainties in both sides of supply and demand (Chick et al.,

2008). Equitable and timely allocation of vaccines to different population groups becomes neces-

sary in order to eliminate infectious diseases worldwide (Tebbens and Thompson, 2009). In that

regard, Huang et al. (2017) provide a retrospective study over 2009 H1N1 pandemic by develop-

ing deterministic optimization models to ensure fair and equitable allocation of vaccines through

first determining coverage levels of each region and then finding an allocation plan within certain

tolerance from the targeted levels. In addition to the vaccine-allocation studies, Jacobson et al.

(2006) point out that vaccine doses need to be distributed to end-users through determining which

locations these resources should be kept and how many units should be stored as inventory.

3 A Stochastic Optimization Approach

In this paper, we consider the distribution of vaccines or test kits in a given region as a capacitated

facility location problem involving multiple periods of shipment planning. A decision maker may

need to solve the problem for either national- or state-level operations, to distribute manufactured

vaccines and test kits to different states or counties from located DCs. Here, the DCs could also be

the manufacturing sites, as manufactures can dispatch productions to states or to counties directly,

given their demand. In addition, the federal or state governments can act to open up new DCs to

improve the efficiency of operations and increase demand coverage.

We denote I, J , T as the sets of potential sites for locating DCs, demand locations and

finite periods, respectively. Let coi , c
h
i , csijt, c

u
jt, c

I
jt be the cost of operating DC i, unit cost of

installing capacities in DC i, unit shipping cost from DC i to demand site j in period t, unit

penalty cost of unsatisfied demand and unit cost of inventory at demand site j in period t, for

all i ∈ I, j ∈ J , t ∈ T , respectively. (Varying cost parameter cujt can help ensure fair resource

distribution to prioritized demand locations based on their demographics and infection status over

time.) We denote Bt as the total capacity of manufacturing resources across all DCs in period t

for all t ∈ T , determined by the total amount of raw materials, space, workers, etc., needed for

manufacturing the resources during each period. Let d denote the vector of uncertain demand (i.e.,

the number of people who need to be vaccinated or tested) and let P be its probability distribution.

We use the Monte Carlo sampling approach (Kleywegt et al., 2002) to replace P with an empirical

distribution constructed by |Ω| scenarios with each scenario ω ∈ Ω having an equal probability

pω = 1/|Ω|. In this regard, we consider a finite set Ω of realizations of the random vector d.

Specifically, for each scenario ω ∈ Ω, we use djt(ω) to represent the demand realization at site j in

period t for all j ∈ J and t ∈ T , and therefore d = [djt(ω), ω ∈ Ω, j ∈ J , t ∈ T ]T. For notation

convenience, bold letters are used for representing vectors and matrices throughout this paper.

Define binary variables xi ∈ {0, 1}, ∀i ∈ I such that xi = 1 if DC i is built, and xi = 0 otherwise.

For each built DC i and period t ∈ T , we also decide its capacity hit ≥ 0 for manufacturing or

storing the resources. Both variables x and h are planning decisions and their values need to be

5



determined before realizing uncertain demand d. For each scenario ω ∈ Ω, we define variables

sijt(ω) ≥ 0 to be the amounts of resources sent from DC i to demand location j in period t, for

all i ∈ I, j ∈ J , t ∈ T . For each demand site j ∈ J , we allow to keep inventory if the received

resources are more than the total demand or to back order otherwise. In particular, we assume that

people who cannot receive vaccines or test kits in the current period will wait to be administered

in future periods. Accordingly, we define variables Ijt(ω) ≥ 0 and ujt(ω) ≥ 0 as the inventory and

backlog recourse variables for each j ∈ J , t ∈ T , and ω ∈ Ω. Moreover, input parameters Ij0 and

uj0 denote the initial inventory and backlog at demand location j for all j ∈ J , whose values are

the same across all scenarios.

We first employ a two-stage stochastic mixed-integer linear programming (TS-MILP) framework

to formulate the problem, where in the first stage, we decide values of variables xi and hit for all

i ∈ I, t ∈ T . In the second stage, given each demand value djt(ω), we optimize the corresponding

shipping and inventory plans using variables sijt(ω), Ijt(ω) and ujt(ω) for each scenario ω ∈ Ω.

The TS-MILP model is given by:

min
∑
i∈I

coixi +
∑

i∈I,t∈T
chi hit +

∑
ω∈Ω

pω

 ∑
i∈I,j∈J ,t∈T

csijtsijt(ω) +
∑

j∈J ,t∈T

(
cIjtIjt(ω) + cujtujt(ω)

) (1a)

s.t. hit ≤Mixi, ∀i ∈ I, t ∈ T , (1b)∑
i∈I

hit ≤ Bt, ∀t ∈ T , (1c)∑
j∈J

sijt(ω) ≤ hit, ∀i ∈ I, t ∈ T , ω ∈ Ω, (1d)

∑
i∈I

sijt(ω) + Ijt−1(ω) + ujt(ω) = djt(ω) + Ijt(ω) + ujt−1(ω), ∀j ∈ J , t ∈ T , ω ∈ Ω, (1e)

xi ∈ {0, 1}, hit, sijt(ω), Ijt(ω), ujt(ω) ≥ 0, ∀i ∈ I, j ∈ J , t ∈ T , ω ∈ Ω, (1f)

where the objective function (1a) minimizes the total cost of opening DCs, installing their capacities,

and the total expected cost of shipping, holding inventory and back-orders. Constraints (1b)

prohibit assigning any capacity to a DC that is not in use, where Mi is the capacity limit of the

DC i for all i ∈ I. Constraints (1c) impose temporal limitation on the total amount of production

capacities for all DCs. Constraints (1d) link the first-stage variables with the second-stage recourse

decisions such that the total shipment from each DC is no more than its installed capacity during

any period in any scenario. Constraints (1e) are “flow-balance” constraints to reflect the changes

of inventory and back-order levels, depending on the amount of resources received and demand

level at each site j, for each period t in each scenario ω. Constraints (1f) require binary valued

x-variables and set all the other variables to be non-negative.

Constraints (1d) contain bilinear terms hixi for all i ∈ I, which can be reformulated linearly

using McCormick envelopes, as variables xi, ∀i ∈ I are binary-valued. Specifically, we let h̄i be

the upper bounds on variables hi for all i ∈ I, and replace Constraints (1d) with the following
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constraints. ∑
j∈J

sijt(ω) ≤ zi, ∀i ∈ I, t ∈ T , ω ∈ Ω

0 ≤ zi ≤ h̄ixi, ∀i ∈ I,

hi − (1− xi)h̄i ≤ zi ≤ hi, ∀i ∈ I.

3.1 Model extension I: Inventory at DCs

When the costs of production capacity (chit) and shipment (csijt) are time-independent, it is without

loss of generality to assume that there is no inventory kept in DCs because those additional products

can be shipped to and stored at customer sites. However, if these costs vary over time, it may be

beneficial to keep some products in DCs and ship them in the future. In this case, we define

additional variables IDi,t(ω) as the inventory at DC i in period t with scenario ω for all i ∈ I, t ∈
T , ω ∈ Ω. Accordingly, Constraints (1d) can be modified as follows:∑

j∈J
sijt(ω) + IDi,t(ω) = hit + IDi,t−1(ω), ∀i ∈ I, t ∈ T , ω ∈ Ω,

where IDi,0(ω) = IDi,0, ∀ω ∈ Ω is the (given) initial inventory at DC i. Moreover, the objective

function (1a) can be recast as

∑
i∈I

coixi +
∑

i∈I,t∈T
chithit +

∑
ω∈Ω

pω

 ∑
i∈I,j∈J ,t∈T

csijtsijt(ω) +
∑

i∈I,t∈T
cIDit I

D
i,t(ω) +

∑
j∈J ,t∈T

(
cIjtIj,t(ω) + cujtujt(ω)

)
where cIDit is the unit inventory cost at DC i in period t for all i ∈ I, t ∈ T .

Remark 1. Model (1) assumes that there is no lead time when shipping from DCs to demand

locations. In the case of a constant lead time for every DC and demand-location pairs, we can

simply shift the optimal production and shipment plans accordingly. However, if the lead time

varies by location, it is worthwhile to add lead time into our model. We denote Lij as the lead time

in sending resources from DC i to customer location j for all i ∈ I, j ∈ J . Then, Constraints (1e)

can be adjusted to∑
i∈I:t≥Lij

sijt−Lij (ω) + Ijt−1(ω) + ujt(ω) = djt(ω) + Ijt(ω) + ujt−1(ω), ∀j ∈ J , t ∈ T , ω ∈ Ω. (2)

4 A Distributionally Robust Approach

The two-stage stochastic programming approach introduced in Section 3 assumes that the distribu-

tion of the underlying uncertainty is perfectly known and one can have access to a large amount of

samples from the true distribution. However, these may not be true in practice, specifically during

a pandemic, where the distribution may be misspecified under limited information. To model this

type of distributional ambiguity, we consider a distributionally robust optimization model, in which
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optimal solutions are sought for the worst-case probability distribution within a family of candidate

distributions, called an “ambiguity set” and denoted by P. We denote the random demand vector

by ξ = [djt, j ∈ J , t ∈ T ]> and the unknown probability distribution by P. A distributionally

robust analogous model of the two-stage stochastic program (1) is:

min
∑
i∈I

coixi +
∑

i∈I,t∈T
chi hit + max

P∈P
E[g(h, ξ)] (3a)

s.t. hit ≤Mixi, ∀i ∈ I, t ∈ T , (3b)∑
i∈I

hit ≤ Bt, ∀t ∈ T , (3c)

xi ∈ {0, 1}, hit ≥ 0, ∀i ∈ I, t ∈ T , (3d)

where

g(h, ξ) = min
∑

i∈I,j∈J ,t∈T
csijtsijt +

∑
j∈J ,t∈T

(
cIjtIjt + cujtujt

)
(4a)

s.t.
∑
j∈J

sijt ≤ hit, ∀i ∈ I, t ∈ T , (4b)

∑
i∈I

sijt + Ijt−1 + ujt = ξjt + Ijt + ujt−1, ∀j ∈ J , t ∈ T , (4c)

sijt, Ij,t, ujt ≥ 0, ∀i ∈ I, j ∈ J , t ∈ T . (4d)

The objective function (3a) minimizes the cost of opening DCs, installing their capacities, and the

worst-case expected cost under the set of candidate distributions in the ambiguity set P. The inner

problem (4) corresponds to the second-stage problem and minimizes the total cost of shipping,

holding inventory and backlogging given first-stage decision h.

To express the form of uncertainty in distribution, two main classes of ambiguity sets can be

defined for distributionally robust optimization models. They are (i) statistical distance-based am-

biguity sets that consider distributions within a certain distance to a reference distribution (Jiang

and Guan, 2016; Mohajerin Esfahani and Kuhn, 2018), and (ii) moment-based ambiguity sets that

consider distributions based on moment information (Delage and Ye, 2010; Zhang et al., 2018).

Since a reference distribution is essential in constructing the former class of ambiguity sets, such a

distribution might be misleading in the case of a pandemic with abrupt and unprecedented changes

in events and requires further data points to ensure its accuracy with a high level of confidence.

Therefore, we focus on the moment-based ambiguity sets for describing possible distributions cor-

responding to the underlying demand uncertainty.

To construct our ambiguity set, we bound a set of moment functions of ξ by certain parameters.

Specifically, we consider m different moment functions f := (f1(ξ), . . . , fm(ξ))T. Assuming that

the random vector ξ has a finite support set S containing possible realizations S = {ξ1, · · · , ξK},
for a given distribution P, we reformulate E[g(h, ξ)] as

∑
k∈[K] pkg(h, ξk). Consequently, the inner

problem (4) can be represented for each realization from the set {ξ1, · · · , ξK}. Then for each

s = 1, . . . ,m, the corresponding moment function fs(ξ) =
∏
j∈J ,t∈T ξ

ksjt
jt , where ksjt is a non-

negative integer indicating the power of ξjt for the s-th moment function. The lower and upper
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bounds are defined by l := (l1, . . . , lm)T and u := (u1, . . . , um)T, respectively. Correspondingly, we

specify the ambiguity set P as follows.

P :=

p ∈ RK+ | l ≤
∑
k∈[K]

pkf(ξk) ≤ u

 . (5)

Note that to guarantee that the ambiguity set (5) defines a set of probability distributions, one

of the moment functions of f and its corresponding lower and upper bound values ls, us, can be

set as
∑

k∈[K] pk = 1. The following theorem demonstrates a reformulation of Model (3) given the

moment-based ambiguity set in (5).

Theorem 1. If the ambiguity set defined in (5) is non-empty, then Model (3) can be reformulated

as a monolithic problem:

min
∑
i∈I

coixi +
∑

i∈I,t∈T
chi hit −αTl+ βTu (6a)

s.t. (3b)–(3d)

(−α+ β)Tf(ξk) ≥ g(h, ξk), ∀k ∈ [K], (6b)

α, β ≥ 0. (6c)

Proof. Explicitly stating the constraints in the ambiguity set P, we first express the inner maxi-

mization problem as

max
∑
k∈[K]

pkg(h, ξk) (7a)

s.t.
∑
k∈[K]

pkf(ξk) ≥ l, (7b)

∑
k∈[K]

pkf(ξk) ≤ u, (7c)

pk ≥ 0, ∀k ∈ [K]. (7d)

Letting α, β be the dual variables associated with the lower- and upper-bound constraints in (7),

respectively, we obtain its dual formulation as

min
α,β

−αTl+ βTu (8a)

s.t. (−α+ β)Tf(ξk) ≥ g(h, ξk), ∀k ∈ [K], (8b)

α, β ≥ 0. (8c)

Following the strong duality between (7) and (8), and replacing maxp∈P
∑

k∈[K] pkg(h, ξk) with (8)

in the outer optimization problem (3), we obtain the desired result.
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Next we examine a special form of ambiguity set (5), where for the first and second moments

of each demand parameter, we consider their lower and upper bounds as follows:

P =

{
p ∈ RK+ |

∑
k∈[K]

pk = 1, (9a)

µjt − εµjt ≤
∑
k∈[K]

pkξ
k
jt ≤ µjt + εµjt, ∀j ∈ J , t ∈ T , (9b)

Sjtε
S
jt ≤

∑
k∈[K]

pk(ξ
k
jt)

2 ≤ Sjtε̄Sjt, ∀j ∈ J , t ∈ T

}
. (9c)

Here, the empirical first and second moments of the uncertain demand parameter at location j and

period t are denoted by µjt and Sjt, respectively. Constraint (9a) is a normalization constraint

to ensure that {pk}k∈[K] form a probability distribution. Constraints (9b) bound the mean of

parameter ξjt in an εµjt-interval of the empirical mean µjt, and constraints (9c) bound the second

moment of parameter ξjt via scaling the empirical second moment Sjt with parameters 0 ≤ εSjt ≤
1 ≤ ε̄Sjt for all j ∈ J , t ∈ T . We note that under the perfect knowledge assumption of first and

second moment information, the robustness parameters can be set as εµjt = 0, and εσjt = εσjt = 1, for

all j ∈ J , t ∈ T . Under the uncertainty of a pandemic, adjusting these parameters helps decision

makers make inferences for representing spatiotemporal demand by considering different phases of

the pandemic and taking into account potential deviations from predictive results.

To obtain a mixed-integer linear programming reformulation of the monolithic formulation (6)

given ambiguity set (9), we first describe some intermediate steps and results. In this regard, we

analyze certain properties of the function g(h, ξk).

Proposition 1. Function g(h, ξk) is a convex piecewise linear function in h for every k ∈ [K].

Proof. First, note that problem (4) is always feasible as it has complete recourse. Letting θit, γjt

be the dual variables, we obtain the dual of problem (4) as follows.

max
∑
i∈I

∑
t∈T

hitθit +
∑
j∈J

T∑
t=2

ξkjtγjt +
∑
j∈J

(ξkj1 + uj0 − Ij0)γj1 (10a)

s.t. θit + γjt ≤ csijt, ∀i ∈ I, j ∈ J , t ∈ T , (10b)

− γjt + γjt+1 ≤ cIjt, ∀j ∈ J , t ∈ {1, · · · , T − 1}, (10c)

− γjT ≤ cIjT ∀j ∈ J , (10d)

γjt − γjt+1 ≤ cujt, ∀j ∈ J , t ∈ {1, · · · , T − 1}, (10e)

γjT ≤ cujT ∀j ∈ J , (10f)

θit ≤ 0 ∀i ∈ I, t ∈ T . (10g)

As the dual problem (10) is feasible, at least one of the optimal solutions of this problem is at one

of its extreme points. Considering the fact that objective function of this problem is linear in h, the
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resulting optimal objective value can be represented as the maximum of the extreme-point-based

function values. Hence, g(h, ξk) becomes a convex piecewise linear function in h.

Lemma 1. Denote g(h, ξk) by a compact form miny{c>y : Ay ≥ h,Dy ≥ f}. Then, set

Υ1 := {(h,m) : g(h, ξk) ≤ m} for each ξk ∈ S has a polyhedral representation Υ2 := {(h,m) :

∃ y s.t. c>y ≤ m, Ay ≥ h, Dy ≥ f}.

Proof. Demonstrated in Proposition 1, g(h, ξk) is a convex function. Consider any (h,m) ∈ Υ1.

The optimal solution of g(h, ξk), say y1, satisfies c>y1 ≤ m,Ay1 ≥ h,Dy1 ≥ f , proving that

(h,m) ∈ Υ2. For the other direction of the proof, consider any (h,m) ∈ Υ2. Then, there exists a

vector y2 such that it satisfies c>y2 ≤ m,Ay2 ≥ h,Dy2 ≥ f . As y2 is a feasible solution of the

problem miny{c>y : Ay ≥ h,Dy ≥ f}, g(h, ξk) ≤ c>y2 ≤ m, and therefore, (h,m) ∈ Υ1.

Combining Lemma 1 with the monolithic formulation (6), we propose a mixed-integer linear

programming reformulation of Model (3) as follows.

Theorem 2. Using the ambiguity set defined in (9), Model (3) is equivalent to the following

mixed-integer linear program:

min
∑
i∈I

coixi +
∑

i∈I,t∈T
chi hit − α1 −

∑
j∈J ,t∈T

α2jt(µjt − εµjt)−
∑

j∈J ,t∈T
α3jt(µ

2
jt + σ2jt)ε

S
jt

+ β1 +
∑

j∈J ,t∈T
β2jt(µjt + εµjt) +

∑
j∈J ,t∈T

β3jt(µ
2
jt + σ2jt)ε̄

S
jt (11a)

s.t. (3b)–(3d)

− α1 + β1 +
∑

j∈J ,t∈T
ξkjt(−α2jt + β2jt) +

∑
j∈J ,t∈T

(ξkjt)
2(−α3jt + β3jt) ≥ Φk, ∀k ∈ [K], (11b)

Φk =
∑

i∈I,j∈J ,t∈T
csijts

k
ijt +

∑
j∈J ,t∈T

(
cIjtI

k
jt + cujtu

k
jt

)
, ∀k ∈ [K], (11c)

(4b)–(4d)

α, β ≥ 0. (11d)

Proof. To obtain the mixed-integer linear programming reformulation, we first revise the monolithic

formulation (6) under the ambiguity set defined in (9). Then, we derive a polyhedral representation

of the set {(h,m) : g(h, ξk) ≤ m} where m is the left-hand side of constraint (6b). Using Lemma

1 and the definition of the function g(h, ξk), we derive the resulting formulation (11).

5 Case Studies of COVID-19 Vaccine and Test Kit Distribution

In this section, we present two comprehensive case studies of the presented optimization frameworks

to conduct resource distribution under uncertain spatiotemporal demand for COVID-19 testing and

vaccination. In Section 5.1, we consider COVID-19 vaccine distribution in the US, and in Section

5.2, we consider COVID-19 test kit distribution in the State of Michigan. We use Gurobi 9.0.3
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coded in Python 3.6.8 for solving all mixed-integer programming models. Our numerical tests are

conducted on a Windows 2012 Server with 128 GB RAM and an Intel 2.2 GHz processor.

5.1 Vaccine Distribution in the US

5.1.1 Experimental design and setup

First, we consider different vaccine allocation phases following the government and CDC’s guide-

lines, where in the earlier phases only healthcare workers and prioritized population groups (e.g.,

seniors more than 65 years old) are targeted for vaccination and in the later phases, larger segments

of the population are recommended for vaccination to stop virus transmission. Specifically, we fol-

low a recent epidemiological study by Wang et al. (2020) and consider three phases to distribute

the vaccines, aiming to vaccinate 6.18%, 41.97%, 51.85% of the overall adult population in the US,

respectively. We also take into account certain levels of vaccine hesitancy in the population during

each phase, and follow the results by Malik et al. (2020) who surveyed the US adult population

to understand the acceptance of COVID-19 vaccines, among 10 Department of Health and Human

Services (DHHS) regions listed below. (We exclude remote islands from these regions and only

focus on the mainland US, Alaska, Hawaii and Puerto Rico.)

• Region 1 – Boston (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and

Vermont);

• Region 2 – New York (New Jersey, New York, and Puerto Rico);

• Region 3 – Philadelphia (Delaware, District of Columbia, Maryland, Pennsylvania, Virginia,

and West Virginia);

• Region 4 – Atlanta (Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South

Carolina, and Tennessee);

• Region 5 – Chicago (Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin);

• Region 6 – Dallas (Arkansas, Louisiana, New Mexico, Oklahoma, and Texas);

• Region 7 – Kansas City (Iowa, Kansas, Missouri, and Nebraska);

• Region 8 – Denver (Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming);

• Region 9 – San Francisco (Arizona, California, Hawaii, Nevada);

• Region 10 – Seattle (Alaska, Idaho, Oregon, and Washington).

We select the representative cities in the DHHS regions as our demand sites and obtain the adult

population in each region from the US Census Data. Based on the acceptance rate estimates and

sample sizes of the surveys conducted by Malik et al. (2020), we compute a 90% confidence interval

of the acceptance rate for each region, depicted in Table 1. We then multiply these values by the
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total adult population in each region to obtain lower and upper bounds on the number of people

to be vaccinated. As each person needs to get two doses of vaccines, we multiply these bounds

by 2 to determine the number of doses needed (i.e., potential demand). To represent the demand

uncertainty, we sample scenarios following uniform distributions between the demand lower and

upper bounds. Table 2 summarizes the mean values of the estimated demand during the three

phases for each DHHS region.

Table 1: Confidence intervals of COVID-19 vaccines’ acceptance rates in 10 DHHS regions

Regions Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 Region 10

Acceptance 68.06% 43.14% 72.04% 59.76% 39.13% 74.42% 72.22% 80.00% 67.61% 70.00%
90% CI LB 59.02% 31.73% 64.39% 50.85% 22.39% 68.95% 54.86% 65.29% 58.47% 60.99%
90% CI UB 77.09% 54.55% 79.70% 68.66% 55.87% 79.89% 89.59% 94.71% 76.74% 79.01%

Table 2: Estimated demand mean values during the three phases in 10 DHHS regions

Regions Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 Region 10 Total

Phase 1 1.0M 1.3M 2.2M 3.9M 2.0M 3.0M 970.0K 920.4K 3.3M 968.5K 19.4M
Phase 2 6.8M 9.0M 14.7M 26.3M 13.4M 20.1M 6.6M 6.3M 22.6M 6.6M 132.4M
Phase 3 8.4M 11.2M 18.2M 32.5M 16.6M 24.8M 8.1M 7.7M 27.9M 8.1M 163.5M

Total 16M 22M 35M 63M 32M 48M 16M 15M 54M 16M 316M

As the sizes of populations to be vaccinated vary during different phases, we assume the lengths

of the three phases to be 1, 2, and 3 months, respectively, with one period in our models being 2

weeks, and the demand of each phase is evenly distributed for each period. To determine candidate

locations for siting DCs, we first consider the ones being used for vaccine production in the US

currently. There are 5 DCs used by Pfizer-BioNTech and Moderna in the US. As these facilities are

already available, we set their corresponding x-values as 1 in all the models. We select representative

cities of the 10 DHHS regions as potential locations to open additional DCs, and Table 3 depicts all

the 15 DC locations and 10 demand locations. For each DC i ∈ I, we calculate the capacity upper

bound Mi by assuming the daily maximum production to be 500,000, 750,000 and 1,000,000 doses

for Phases 1, 2 and 3, respectively, as manufacturers will raise their daily production capacity as

the demand increases. For each t ∈ T , the temporal capacity of manufacturing vaccines Bt is set

as the sum of the maximum capacities over all DCs. We also examine the case when the supply

chain of vaccines experiences certain disruptions and set the corresponding temporal capacities Bt

as 10% of the normal values. The operating cost coi for each DC i ∈ I is estimated as 10000 times

the local unit warehouse rental price per square foot, by assuming a standard warehouse is about

10000 square feet. The unit capacity cost chi is set as $25 for each i ∈ I, which is the average

market price of one dose of COVID-19 vaccine. The unit inventory cost cIjt is estimated as the sum

of low-temperature inventory cost and energy cost of common refrigerators for storing vaccines,

which is $0.00008 for each j ∈ J , t ∈ T . The unit shipping cost csijt for each region j ∈ J and

supplier i ∈ I consists of two parts: The first part is the shipping cost for trucks calculated as $3

per mile times the distance traveled from i to j in miles divided by 230,400, following the fact that

each truck on average can carry 230,400 doses of Moderna vaccines (Moderna, Inc., 2021), and the

second part is the refrigerated trucks’ overall cost per liter of vaccine transported (PATH, World
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Health Organization (WHO), 2013). The penalty cost cujt of each unit of unsatisfied demand is set

to $100 and is varied later for sensitivity analysis.

Table 3: Locations of 10 customers sites, 15 candidate DCs and optimal solutions for Phase 1
given by Deterministic (DT), Stochastic (SP) and Distributionally Robust Optimization (DRO)
approaches

City Customer sites Candidate DCs DT SP DRO

Kalamazoo, MI already opened
Pleasant Prairie, WI already opened X

Bloomington, IN already opened X
Norwood, MA already opened X X X

Saint Louis, MO already opened X
Boston X candidate

New York City, NY X candidate X X
Philadelphia, PA X candidate X X

Atlanta, GA X candidate X X X
Chicago, IL X candidate X X
Dallas, TX X candidate X X X

Kansas City, KS X candidate X X
Denver, CO X candidate X X

San Francisco, CA X candidate X X
Seattle, WA X candidate X X

5.1.2 Results

We compute optimal solutions using three different approaches (“DT” for Deterministic, “SP”

for Stochastic Programming and “DRO” for Distributionally Robust Optimization) based on 100

in-sample scenarios and then evaluate them in 1000 out-of-sample scenarios, both of which are

generated independently from the same uniform distribution between the demand lower and upper

bounds. For DT, we simply replace the uncertain demand with mean values shown in Table 2. For

DRO, the discrete support consists of the 100 in-sample scenarios, and we set εµjt = 0.5µjt, ε
S
jt =

0.1, ε̄Sjt = 2 for all j ∈ J , t ∈ T . For each approach, we display the DCs that are open and actively

ship out vaccines in the optimal solutions of Phase 1’s problem in Table 3.

To summarize the out-of-sample performance of optimal solutions given by the three approaches,

we provide Table 4, where we rank the models from the most preferred (= 1) to the least preferred

(= 3) in terms of the resultant amounts of unsatisfied demand and overall cost, respectively. The

DRO approach cannot solve the problem to optimality or even obtain feasible solutions within the

computational time limit (being 2 hours) for Phases 2 and 3. As a result, we only compare DT and

SP for these two phases.

From Table 4, in Phase 1, DRO obtains the least amount of unsatisfied demand and the second

highest cost overall, while DT performs the worst in terms of both demand satisfaction and overall

cost. When facing scarce resources (i.e., 10% of the regular capacities), the ranking remains the

same in Phase 1 because all three approaches do not use up all the resources. However, when
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Table 4: Out-of-sample performance of different approaches in terms of unmet demand and overall
cost for Phases 1, 2, 3 of vaccine distribution in the US.

Phases Model
Unsatisfied Demand Overall Costs
Ample Scarce Ample Scarce

Phase 1
DT 3 3 3 3
SP 2 2 1 1

DRO 1 1 2 2

Phase 2
DT 2 1 2 1
SP 1 1 1 1

DRO - - - -

Phase 3
DT 2 1 2 2
SP 1 1 1 1

DRO - - - -

the resource capacity becomes tight such as in Phases 2 and 3, the results are almost identical for

different models as there is not much flexibility in making different production and shipment plans.

In terms of the overall cost, SP always outperforms the other two approaches. We note that the

raw cost breakdowns of each approach are detailed in Tables 8 and 9 in the Appendix. Next, we

focus on the analysis of optimal solutions of different methods under the setting of ample resources.

The average shipments in the optimal solutions of SP and DRO for Phase 1’s vaccine distribution

are presented in Figures 1 and 2, respectively. From Figure 1, seven DCs are selected in the optimal

solution, and among them four are the representative cities in regions with high demand volumes,

and three are from the existing Pfizer-BioNTech and Moderna open DCs. On the other hand,

the other two existing DCs do not produce or ship any vaccines either because they are too close

to some other open DCs in the optimal solution or they reside in the areas having low demand

volumes. Moreover, the top five largest shipments are from DCs to their nearest demand sites (i.e.,

New York City to Philadelphia, Pleasant Prairie to Chicago, Saint Louis to Kansas City, Dallas to

Denver, and San Francisco to Seattle), and each requires up to five trucks if fully occupied and the

delivery time will be all within two days. All the other longer-distance shipments are in smaller

volumes, requiring only one truck. For example, the longest-distance shipment is from Norwood

to Seattle, which may take 4 to 5 days according to UPS’s estimation, but it only carries 25 doses

of vaccines. Comparing Figure 2 with Figure 1, DRO selects more DCs to open, among them

only two are existing open ones. The number of shipment routes also increases significantly. As

San Francisco is not an open DC anymore, the largest shipment occurs between Seattle and San

Francisco and requires 8 trucks and 2 days to transit. The second and third largest shipments are

from Philadelphia to New York City and Norwood to Boston, respectively, both requiring 3 trucks

and 1 day.

Furthermore, we present Phase 1’s unsatisfied demand mean, standard deviation, and 75 to 95

percentile values in the 1000 out-of-sample scenarios according to the three approaches in Figure 3a,

and average unsatisfied demand percentages in each region in Figure 3b, respectively. From Figure

3, DRO attains the least amount of unsatisfied demand while DT performs the worst. Comparing
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Figure 1: Average shipments of Phase 1’s vaccines in 1000 out-of-sample scenarios given by the
optimal solution of the SP approach. The background color of 10 DHHS regions indicates the total
demand across all three phases where darker color represents higher demand volume. The black
and gray circles stand for open DCs and demand sites, respectively, while DCs located in New
York City, Atlanta, Dallas and San Francisco are also demand sites themselves and the sizes of
these black circles represent the amount of vaccines they produce for satisfying their own demand.
The black lines represent shipments from open DCs to demand locations with wider lines meaning
higher volumes.

the results in different regions, Region 5 – Chicago does not meet over 4% of the demand in DT

approach, and Region 8 – Denver does not cover about 4% of the demand in SP approach, both of

which have relatively low demand volumes according to Table 2.

Lastly, we compare the vaccine allocation results in the SP approach with the current Pfizer-

BioNTech and Moderna’s status reported by CDC (Center for Disease Control and Prevention,

2021b,a). From CDC’s website, Pfizer-BioNTech has started to provide first-dose vaccines since

December 14, 2020, with the same amount of second-dose vaccines arriving three weeks later, while

Moderna started to ship first-dose vaccines on December 21, 2020, with a four-week delay in the

second-dose shipments. Consequently, we let December 14, 2020 be the starting date of Phase 1

and denote Phase 1-1 as the first two-week period of Phase 1 (i.e., December 14, 2020 – December

28, 2020). We report the total number of doses that our SP approach and CDC have allocated in

each period in Table 5, and display the number of doses each region has received in each period in

Figure 4 as of February 8, 2021.

From Table 5 and Figure 4, CDC almost doubled the vaccine allocations in Phase 1; however,

it falls behind in Phase 2 and as of February 8, 2021, the total amount of vaccines distributed by

Pfizer-BioNTech and Moderna does not reach the benchmark given by SP approach. Moreover, it
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Figure 2: Average shipments of Phase 1’s vaccines in 1000 out-of-sample scenarios given by the
optimal solutions of the DRO approach. The background color of 10 DHHS regions indicates the
total demand across all three phases where darker color represents higher demand volume. The
black and gray circles stand for open DCs and customer sites, respectively, while DCs located in
Philadelphia, Chicago, Atlanta, Dallas, Kansas City, Denver and Seattle are also demand sites
themselves and the size of these black circles represent the amount of vaccines they produced for
satisfying their own demand. The black lines represent shipments from open DCs to demand
locations with wider lines meaning higher volumes.

Table 5: Total number of doses in the optimal solutions of SP and CDC’s reported data for each
period as of February 8, 2021

Approaches Phases 1-1 & 1-2 Phases 2-1 & 2-2 Total

SP 19M 71M 90M
CDC 38M 34M 72M

is worth noting that when calculating the vaccines distributed by Pfizer-BioNTech and Moderna,

we assume that the first-dose and second-dose shipments will be received three weeks apart by

ignoring the transportation delay. As a result, the number reported in the “CDC” row of Table

5 will be slightly higher than the real-time data tracker such as Center for Disease Control and

Prevention (2021c) .

5.2 COVID-19 Test Kit Allocation in Michigan, USA

5.2.1 Experimental Design and Setup

To demonstrate that the presented generic optimization approaches are well-suited for various

resources over different scale problems, we focus on the COVID-19 test kit resource allocation
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(a) Unsatisfied demand statistics

(b) Regional unsatisfied demand

Figure 3: Unsatisfied demand given by vaccine distribution in Phase 1 of different approaches.

problem in Michigan, and divide the state into eight emergency preparedness regions according to

Figure 5. For ensuring distribution of these resources, we consider these regions as representatives

of demand locations. Note that Regions 2N, 2S, 3 are renamed as Regions 2, 3 and 4 for notation

simplicity in the case study. We pick 29 suppliers in Michigan as the candidate locations of the

distributions centers.

For predicting demand and generating uncertain scenarios, we mainly follow Pei and Shaman

(2020), which projects the daily new confirmed cases in the US at county level based on a meta-

population Susceptible-Exposed-Infectious-Removed (SEIR) model. The projections are reported

in the 2.5, 25, 50, 75, 97.5 percentiles for each county and day, and regularly updated to capture

different trends in virus transmission and intervention policies over the pandemic. To identify

the demand of each emergency preparedness region, we first calculate the percentiles of the total

projected confirmed cases, and then divide them by our targeted positivity rate (i.e., 5%), meaning

that we aim to test 100 persons if there are 5 confirmed cases. Having obtained the percentiles

of the projected demand, we extract the mean and variance according to Wan et al. (2014) by

assuming the 2.5 and 97.5 percentile values being lower and upper bounds of the support of the

underlying random demand for estimation.

We consider different planning horizons to represent various phases of virus transmission. The

trend of the disease transmission in Michigan is depicted in Figure 6. From Figure 6, the number

of infected cases reached the first peak in April, 2020. It was then controlled in June, 2020 with the
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Figure 4: Comparison of the number of doses each region received in different periods between
CDC’s reported data and our SP approach.

Figure 5: Michigan Emergency Preparedness Regions (source: Michigan state government).

regulations from governor’s executive orders and closures of businesses and public services. Around

December, winter holiday gatherings increased virus spread, and thus resulted in another peak and

19



continued transmissions. Consequently, we select April 5, June 4 and December 20 as the starting

dates of the planning horizon, where we consider a two-week planning horizon with one period

being one week. As a result, we examine the presented approaches over (i) peak periods (i.e., April

5 – April 19), (ii) off-peak periods where we can still observe the effects of closures (i.e., June 4 –

June 18), and (iii) continued transmission case (i.e., December 20 – January 3).

Figure 6: The number of infectious cases by date of onset in Michigan between March 2020 and
January 2021.

In terms of parameter choices, we set the upper bound Mi of the capacity hit to the maximum

production amount of supplier i ∈ I at period t ∈ T depending on the size of each supplier, and the

temporal capacity of manufacturing test kits Bt to the sum of maximum capacity over all DCs for

all t ∈ T . We also test the case where there are only scarce resources available (usually in earlier

phases of the pandemic), and set the capacity Bt to 10% of the regular capacities for all t ∈ T . The

operating cost coi for each supplier i ∈ I is set similar to the one in the vaccine distribution case.

We set the unit capacity cost chi to $20 for all i ∈ I, and the unit inventory cost cIjt to the average

pallet storage cost divided by the number of test kits a pallet can store for all j ∈ J , t ∈ T . The

unit shipping costs csijt for all region j ∈ J and supplier i ∈ I are calculated as $3 per mile times

the distance in miles divided by the number of test kits a truck can carry. In the state-level test kit

allocation problem, we examine three cases of the unit penalty cujt for unmet demand such that we

can prioritize population groups or regions during different time periods. In particular, in Case (i),

we set cujt to a constant, i.e., cujt = 100 for all j and t; in Case (ii), we let cujt be linearly dependent

on the projected demand median for region j at period t, i.e., cujt = dmedian
jt + 10 (we add a small

constant to the median as some regions’ demand medians are 0 in early phases but we also want

to penalize the lost demand there); and in Case (iii), we set cujt = 0.001delderj with delderjt being the

number of people above 65 years old in region j. In the latter two cases, we prioritize regions with

more infections and more elderly or high-risk population groups, respectively.

To compare the severity of disease transmission in different regions and phases, we display the

weekly projected demand median dmedian
jt for 8 regions in Michigan during the three phases as well

as 65 or older populations in each region in Table 6. As can be seen from Table 6, Regions 7 and 8
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Table 6: Projected demand median during different phases and population above 65 for 8 regions

Starting date Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8

April 5 153 3.6K 2.2K 107 2 407 31 0
June 4 43 236 516 61 112 443 0 0

December 20 55.5K 100.0K 93.3K 72.7K 52.1K 76.5K 18.8K 12.7K

Population above 65 181.8K 360.2K 349.2K 216.9K 143.5K 237.2K 84.2K 66.5K

have significantly fewer number of new cases each day and senior populations than other regions,

while Regions 2 and 3 have the highest projected demand and senior population and thus will be

most prioritized when we follow the penalty cost cases (ii) and (iii).

5.2.2 Results

We first obtain optimal solutions of the three models (DT, SP, DRO) based on 100 in-sample sce-

narios and 1000 out-of-sample scenarios following the same normal distribution with the estimated

mean and variance. For DRO, we set the scaling parameters as εµjt = 0.5µjt, ε
S
jt = 0.1, ε̄Sjt = 2

for all j ∈ J , t ∈ T in June and December and set εµjt = µjt, ε
S
jt = 0.01, ε̄Sjt = 10 for all

j ∈ J , t ∈ T in April. By fixing the penalty parameter cujt to 0.001delderj for each region j ∈ J
(i.e., Case (iii) penalty setting), we summarize out-of-sample performance given by solutions of the

three approaches under different resource settings in Table 7, where we rank the approaches from

the most preferred (= 1) to the least preferred (= 3) in terms of unsatisfied demand and overall

cost, respectively. We note that the raw cost breakdowns of each approach are presented in Tables

10 and 11 in the Appendix.

Table 7: Out-of-sample performance of different approaches in the COVID-19 test kit distribution
example

Phases Model
Unsatisfied Demand Overall Cost
Ample Scarce Ample Scarce

April
DT 3 3 3 3
SP 2 2 1 1

DRO 1 1 2 2

June
DT 3 3 3 3
SP 2 2 1 1

DRO 1 1 2 2

December
DT 3 1 3 1
SP 2 1 1 2

DRO 1 1 2 3

From Table 7, in the ample resource case, DRO always obtains the least amount of unsatisfied

demand, while DT performs the worst. When there are only scarce resources (i.e., 10% available),

the ranking remains the same in April and June because all three models do not use up to 10% of

the total resources. However, when the resource capacity becomes tight such as in December, the

results of the three models are identical as there is not much flexibility in producing and shipping
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test kits. In terms of overall cost, SP outperforms the other two models in most of the settings.

We display the detailed unsatisfied demand percentages in each region under different cases of

penalty cost patterns in Figure 7. Comparing Figure 7 with Table 6, for Cases (ii) and (iii) penalty

settings, the demand in Regions 2, 3, 4 and 6 is all satisfied, as these regions have more projected

demand in December and more senior populations. On the other hand, Regions 7 and 8 always

have the highest unsatisfied demand as they are farther away from the DCs and have less projected

demand.

Figure 7: Unsatisfied demand percentages in each region in December with ample resources given
Cases (i), (ii), (iii) unit penalty.

Next, we present the cost breakdown over different phases in Figure 8. From Figure 8, under

ample resources, DRO can satisfy almost all the demand, while DT still leaves thousands of people

untested. However, when we limit the resources to be 10% of the regular amounts (see gray dashed

line in Figure 8), all capacity costs that exceed the gray line will be truncated to the one that uses

only 10% of the original Bt. For scenarios where all approaches’ capacity costs exceed 10% (e.g.,

December under ample resources), under scarce resources, these approaches’ performance will be

identical as they are limited by the total capacity, confirming the results in Table 7.
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Figure 8: Cost breakdown of test kit distribution over different phases under ample resources (in
dollars).

6 Conclusion

In this paper, we presented a generic framework to model resource distribution for epidemic control

under spatiotemporal demand uncertainties for these resources. Depending on the level of statistical

information available for characterizing the uncertainties, which are impacted by various factors

including infection trends and demographic behavior, we proposed a stochastic programming and a

distributionally robust optimization approach to optimize the locations and capacities of DCs along

with deciding shipments to and inventory at demand sites while penalizing the unmet demand. As

the proposed optimization frameworks can be applied to different scales of resource distribution,

we presented two case studies using COVID-19 vaccine distribution in the US and the analogous

test kit distribution in the State of Michigan. These case studies benefit from not only the existing

infrastructure of the current manufacturers but also the potential DCs that can be built to facilitate

the distribution of these resources. Furthermore, we considered different phases of the pandemic,

ample or scarce resources, and three cases of unmet demand penalty settings to compare the results

of deterministic, stochastic and robust optimization approaches.

Our approaches aim efficient and fair distribution of resources by allowing prioritization of re-

gions with more vulnerable population groups or with higher infection susceptibility. The case

studies demonstrated the importance of incorporating demand uncertainty in these planning prob-
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lems as the stochastic programming and distributionally robust optimization approaches outper-

form the deterministic one in terms of cost and demand coverage. The distributionally robust

approach provided a better worst-case performance in terms of unvaccinated or untested people

who qualify, with an overall cost higher than the one of the stochastic programming approach.

As the stochastic programming approach can provide an intermediate solution while considering

uncertainty, its performance was compared against CDC’s current distribution status of COVID-19

vaccines, demonstrating more vaccines need to be distributed across the country in the later phases

for satisfying the demand and establishing the herd immunity. Furthermore, the case study of test

kit distribution demonstrated the prioritization of resource allocation depending on the infection

trend and vulnerable population percentages over the studied regions.
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Özaltın, O. Y., Prokopyev, O. A., Schaefer, A. J., and Roberts, M. S. (2011). Optimizing the

societal benefits of the annual influenza vaccine: A stochastic programming approach. Operations

Research, 59(5):1131–1143.

26

https://www.modernatx.com/covid19vaccine-eua/providers/storage-handling
https://www.modernatx.com/covid19vaccine-eua/providers/storage-handling


Parker, F., Sawczuk, H., Ganjkhanloo, F., Ahmadi, F., and Ghobadi, K. (2020). Optimal resource

and demand redistribution for healthcare systems under stress from covid-19. arXiv preprint

arXiv:2011.03528.

PATH, World Health Organization (WHO) (2013). Delivering Vaccines: A cost comparison of in-

country vaccine transport container options. https://path.azureedge.net/media/documents/

TS_opt_in_country_transport_rpt.pdf.

Pei, S. and Shaman, J. (2020). Initial simulation of sars-cov2 spread and intervention effects in the

continental us. MedRxiv.

Santini, A. (2021). Optimising the assignment of swabs and reagent for pcr testing during a viral

epidemic. OMEGA, 102:102341.

Shen, Z.-J. M., Zhan, R. L., and Zhang, J. (2011). The reliable facility location problem: Formula-

tions, heuristics, and approximation algorithms. INFORMS Journal on Computing, 23(3):470–

482.

Snyder, L. V. (2006). Facility location under uncertainty: A review. IIE Transactions, 38(7):537–

554.

Tebbens, R. J. D. and Thompson, K. M. (2009). Priority shifting and the dynamics of managing

eradicable infectious diseases. Management Science, 55(4):650–663.

Wan, X., Wang, W., Liu, J., and Tong, T. (2014). Estimating the sample mean and standard

deviation from the sample size, median, range and/or interquartile range. BMC Medical Research

Methodology, 14(1):1–13.

Wang, C. and Chen, S. (2020). A distributionally robust optimization for blood supply network

considering disasters. Transportation Research Part E: Logistics and Transportation Review,

134:101840.

Wang, W., Wu, Q., Yang, J., Dong, K., Chen, X., Bai, X., Chen, X., Chen, Z., Viboud, C., Ajelli,

M., and Yu, H. (2020). Global, regional, and national estimates of target population sizes for

covid-19 vaccination: descriptive study. BMJ, 371.

Westerink-Duijzer, E. (2017). Mathematical Optimization in Vaccine Allocation.

Xiang, Y. and Zhuang, J. (2016). A medical resource allocation model for serving emergency victims

with deteriorating health conditions. Annals of Operations Research, 236(1):177–196.

Zachary A. Collier, J. M. K., Trump, B. D., Cegan, J. C., and Sarah Wolberg, I. L. (2020).

Value-based optimization of healthcare resource allocation for covid-19 hot spots. arXiv preprint

arXiv:2011.14233.

Zhang, Y., Jiang, R., and Shen, S. (2018). Ambiguous chance-constrained binary programs under

mean-covariance information. SIAM Journal of Optimization, 28(4):2922–2944.

27

http://arxiv.org/abs/2011.03528
https://path.azureedge.net/media/documents/TS_opt_in_country_transport_rpt.pdf
https://path.azureedge.net/media/documents/TS_opt_in_country_transport_rpt.pdf
http://arxiv.org/abs/2011.14233


Appendix: Additional results

We first present the detailed results of cost breakdown in the national vaccine allocation and state-

level test kit distribution problems under different phases, resource settings and approaches.

Table 8: Cost breakdown of vaccine distribution under ample resources, different phases and ap-
proaches

Phases Approaches Operating Capacity Shipping Inventory Penalty Total

Phase 1
DT $97K $486M $39K $34 $37M $524M
SP $63K $496M $48K $155 $6M $503M

DRO $76K $515M $55K $80 $292K $516M

Phase 2
DT $194K $3B $143K $202 $287M $4B
SP $175K $3B $117K $1K $29M $3B

DRO N.A.

Phase 3
DT $290K $4B $184K $405 $366M $4B
SP $263K $4B $144K $2K $40M $4B

DRO N.A.

Table 9: Cost breakdown of vaccine distribution under scarce resources, different phases and ap-
proaches

Phases Approaches Operating Capacity Shipping Inventory Penalty Total

Phase 1
DT $97K $486M $39K $34 $37M $524M
SP $63K $496M $52K $99 $7M $503M

DRO $54K $512M $58K $64 $687K $513M

Phase 2
DT $105K $2B $49K $0 $17B $19B
SP $105K $2B $49K $0 $17B $19B

DRO N.A.

Phase 3
DT $256K $3B $125K $0 $13B $16B
SP $161K $3B $153K $0 $13B $16B

DRO N.A.

Table 10: Cost breakdown of test kit distribution under ample resources, different phases and
approaches

Phases Approaches Operating Capacity Shipping Inventory Penalty Total

April
DT $2K $13M $5K $3 $8M $20M
SP $4K $15M $6K $15 $1M $16M

DRO $4K $20M $5K $2 $1K $20M

June
DT $2K $1M $5K $2 $490K $2M
SP $2K $1M $5K $11 $94K $1M

DRO $2K $2M $7K $0 $1K $2M

December
DT $4K $18M $5K $2 $4M $22M
SP $4K $19M $5K $7 $642K $20M

DRO $4K $22M $5K $0 $16K $22M
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Table 11: Cost breakdown of test kit distribution under scarce resources, different phases and
approaches

Phases Approaches Operating Capacity Shipping Inventory Penalty Total

April
DT $2K $13M $5K $3 $8M $20M
SP $4K $15M $6K $15 $1M $16M

DRO $4k $17M $8K $8 $181K $17M

June
DT $2K $1M $5K $2 $490K $2M
SP $2K $1M $5K $11 $94K $1M

DRO $2K $2M $7K $0 $1K $2M

December
DT $5K $17M $3K $0 $15M $32M
SP $5K $17M $3K $0 $15M $32M

DRO $5K $17M $3K $0 $15M $32M
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