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ABSTRACT Coronavirus (COVID-19) is a viral disease caused by severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2). The spread of COVID-19 seems to have a detrimental effect on the global economy
and health. A positive chest X-ray of infected patients is a crucial step in the battle against COVID-19.
Early results suggest that abnormalities exist in chest X-rays of patients suggestive of COVID-19. This
has led to the introduction of a variety of deep learning systems and studies have shown that the accuracy
of COVID-19 patient detection through the use of chest X-rays is strongly optimistic. Deep learning
networks like convolutional neural networks (CNNs) need a substantial amount of training data. Because
the outbreak is recent, it is difficult to gather a significant number of radiographic images in such a short
time. Therefore, in this research, we present a method to generate synthetic chest X-ray (CXR) images
by developing an Auxiliary Classifier Generative Adversarial Network (ACGAN) based model called
CovidGAN. In addition, we demonstrate that the synthetic images produced from CovidGAN can be utilized
to enhance the performance of CNN for COVID-19 detection. Classification using CNN alone yielded 85%
accuracy. By adding synthetic images produced by CovidGAN,the accuracy increased to 95%. We hope this
method will speed up COVID-19 detection and lead to more robust systems of radiology.

INDEX TERMS Deep learning, convolutional neural networks, generative adversarial networks, synthetic
data augmentation, COVID-19 detection.

I. INTRODUCTION
Coronavirus disease is a respiratory disease caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
COVID-19 was initially detected in Wuhan, China,
in December 2019, and has spread worldwide since then lead-
ing to the ongoing 2020 coronavirus pandemic. More than
4.18 million cases and 286,000 deaths have been registered
in more than 200 countries and territories as of 12 May 2020.
Since no vaccines or cures exist, the only efficient way of
human protection against COVID-19 is to reduce spread by
prompt testing of the population and isolation of the infected
individuals.

Certain health symptoms combined with a chest X-ray
can be used to diagnose this infection. A chest X-ray can
be used as a visual indicator of coronavirus infection by
the radiologists. This led to the creation of numerous deep
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learning models, and tests have shown that it is highly likely
that patients with COVID-19 infection are detected correctly
by using chest radiography images.

Convolutional neural networks (CNNs) have attained state-
of-the-art performance in the field of medical imaging,
given enough data [1]–[4]. Such performance is accom-
plished by training on labeled data and fine-tuning its mil-
lions of parameters. CNNs can easily overfit on small
datasets because of the large number of parameters, there-
fore, the efficiency of generalization is proportional to the
size of the labeled data. With limited quantity and variety
of samples, the biggest challenge in the medical imaging
domain is small datasets [5]–[7]. The medical image collec-
tion is a very expensive and tedious process that requires
the participation of radiologists and researchers [6]. Also,
since the COVID-19 outbreak is recent, sufficient data of
chest X-ray (CXR) images is difficult to gather. We pro-
pose to alleviate the drawbacks by using synthetic data
augmentation.
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Data augmentation methods are employed to extend the
training dataset artificially. Current data augmentation tech-
niques use simple modifications to incorporate affinity like
image transformations and color adjustments, such as scal-
ing, flipping, converting, improving contrast or brightness,
blurring, and sharpening, white balance, etc [8]. This classical
data augmentation is fast, reliable, and easy. However, in this
augmentation, the changes are limited because it is structured
to turn an existing sample into a slightly altered sample.
In other words, classical data augmentation does not produce
completely unseen data. A modern, advanced form of aug-
mentation is synthetic data augmentation which overcomes
the limitations of classical data augmentation. Generative
Adversarial Network (GAN) is one such innovative model
that generates synthetic images. It is a powerful method
to generate unseen samples with a min-max game without
supervision [9]. The general concept of the GANs is to use
two opposing networks (G(z) and D(x)), where one (G(z)
generator) produces a realistic image to trick the other net
that is equipped to better discriminate between the true and
false images (D(z) discriminator). The aim of the generator
is to minimize the cost value function V(D, G) whereas the
discriminator maximizes it [10]. Related works and contribu-
tions are discussed below.

A. RELATED WORKS
Recently, the GAN framework is used by many medical
imaging techniques. Zhao et al. [11] developed a multi-scale
VGG16 network and a DCGAN based model, Forward and
Backward GAN (F&BGAN) to generate synthetic images
for lung-nodules classification. Beers et al. [12] trained a
PGGAN (progressively grown generative adversarial net-
work) to synthesize medical images of fundus pictures show-
ing premature retinopathic vascular pathology (ROP) and
glioma multimodal MRI pictures. Dai et al. [13] applied
GAN in order to produce segmented images of lung and
heart from chest X-ray. A patch-based GAN was developed
in Nie et al. [14] to convert brain CT pictures to the cor-
responding MRI. They also suggested an automated image
optimization model. Xue et al. [15] suggested two GAN
networks called a Segmentor and a Critic which studied the
connection between a binary brain tumor segmentation map
and brain MRI pictures. Schlegl et al. [16] utilized GAN to
study the data distribution of healthy tissue using patches in
the retinal region. The GAN was then checked for anomaly
detection in retinal images on patches of both unseen and
healthy imagery.

The lack of data in medical imaging led us to explore ways
of expanding image datasets. In the present research, we are
focusing on improvements in COVID-19 detection. In order
to synthesize standard CXR images, we developed an Aux-
iliary Classifier Generative Adversarial Network (ACGAN)
based model.

In a research published in the journal Radiology [17], chest
radiography outperformed laboratory testing in the detec-
tion of 2019 novel coronavirus disease. The frequency of

anomalies in radiographical images rapidly increased after
the onset of symptoms and peaked during the days of illness.
The researchers in [18], [19] concluded that chest radiogra-
phy should be used as the main COVID-19 screening method
(also known as SARS-CoV-2). In particular, CXR imaging
has various advantages like readily available and accessible,
easily portable, and it helps in the rapid prioritization of
COVID-19 suspected patients. Since the pandemic is recent,
there are only a limited number of CXR images available for
study. Therefore, we develop CovidGAN to generate artificial
training data for CNN. The generation of artificial data is
very effective in the case of small datasets and when the data
includes sensitive information. GANs can synthesize images
from scratch from any specific category and can produce
satisfactory results when combined with other methods.

Many research projects and innovations related to
COVID-19 have been proposed [20]–[22]. This paper, how-
ever, to the best of our knowledge is the first one to present a
GAN architecture for improvement in COVID-19 detection.

B. CONTRIBUTIONS
In this study, we use CNN for COVID-19 detection. CNNs
are extensively used in the field of computer vision. These
are widely used to examine visual imagery, and also work in
image classification. In the last few years, several studies of
medical imagery have applied CNNs and have recorded better
performance [6]. We combine synthetic CXR images gener-
ated using CovidGAN with our proposed CNN architecture.
This research has the following contributions:

1) Propose an Auxiliary Classifier Generative Adversarial
Network (ACGAN) based GAN, called CovidGAN for
the generation of synthetic CXR images.

2) Design a CNN-based model for COVID-19 detection.
3) Using CovidGAN for augmentation of training dataset

with the CNN model for improved detection of
COVID-19.

The remaining transposition is as follows. Section II defines
the dataset and the CNN architecture for COVID-19
detection. Section III elaborates on the method of syn-
thetic data augmentation for the extension of the dataset.
Section IV and V show the results and conclusion of this
research, respectively. Section VI discusses the limitations of
this study.

II. COVID-19 DETECTION
This section describes the characteristics of the dataset used
and the CNN architecture for COVID-19 detection.

A. DATASET GENERATION
The dataset is composed of 1124 CXR images. More pre-
cisely, there are 403 images of COVID-CXR and 721 images
of Normal-CXR. To generate the dataset we collected the
images from three publicly accessible datasets: 1) IEEE
Covid Chest X-ray dataset [23] 2) COVID-19 Radiogra-
phy Database [24] and 3) COVID-19 Chest X-ray Dataset
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Initiative [25]. The decision to develop the dataset on these
three datasets is driven by the fact that all of them are
open-sourced and completely available to the public and
research communities. The collected images are merged and
the duplicate images are removed from the dataset. Image
Hashing method is used to remove the duplicate images. This
method creates a hash value that uniquely identifies an input
image based on the contents of an image.

The most striking trend is the limited number of cases and
associated CXR pictures of COVID-19 that indicate the scant
availability of COVID-19 data in the public domain. Samples
of the dataset are given in Fig. 4 A.

B. CNN ARCHITECTURE
In this research, a VGG16 network is used for COVID-19
detection. A VGG16 architecture consists of twelve 3 × 3
convolutional layers. Some convolutional layers are fol-
lowed by the max-pooling layer and finally, it has three
fully-connected layers in the end. The stride is fixed to 1 pixel
in all the convolutional layers. The five max-pooling layers
use a fixed stride of 2 and a 2 × 2 pixel filter. A padding
of 1 pixel is done for the 3 × 3 convolutional layers. All the
layers of the network use ReLU as the activation function.
The advantage of VGG16 is its simplicity and depth. Its deep
architecture extracts features with low spatial resolution and
give good results on image classification problems.

Our CNN uses VGG16 architecture which is connected
with four custom layers at the end. A global average pooling
layer is followed by a 64 units dense layer and a dropout layer
with 0.5 probability. Lastly, a softmax layer is attached to find
the prediction of the network.

The dataset consists of 932 training samples
(COVID-CXR: 331 images and Normal-CXR: 601 images)
and 192 testing samples (COVID-CXR: 72 images and
Normal-CXR: 120 images). The image preprocessing steps
involved are resizing and normalizing. Since the scale
of the images varies in the dataset, all the images are
resized to 112 × 112 × 3, using image processing SciKit.
Further, each image is normalized by rescaling the pixels
from [0, 255] to [0, 1]. Our CNN gets a fixed size CXR image
of 112 × 112 × 3.

Since a VGG16 network has a million parameters,
it requires a lot of training data and computing resources.
Therefore, fine-tuning is performed to modify the parameters
of the pre-trained VGG16 model so that it can adapt to
the new task in hand. The custom layers of the model are
trained, without updating the weights of VGG16 layers. Thus,
fine-tuning updates the weights of the custom layer. This
allows the new output layers to learn to interpret the learned
features of the VGG16 model; which is achieved by setting
the ‘‘trainable’’ property on each of the VGG layers to False
before training.
Training and implementation details: Adaptive Moment

Estimation (Adam) [26] is used as the optimizer and cat-
egorical_cross_entropy as the loss function. Adam is a
method for stochastic optimization which calculates adaptive

FIGURE 1. ACGAN Architecture.

learning rates for parameters. ReLU is used as the activation
function of the network. The proposed CNN had approxi-
mately 14 million parameters. The learning rates of Adam
are controlled by the parameter beta. The hyperparameters
used for training are learning_rate = 0.001, beta = 0.9,
and batch_size = 16. The network is trained for 25 epochs
and after training, 85% accuracy is achieved. The proposed
architecture is trained and tested using Keras deep learning
library.

III. GENERATING SYNTHETIC IMAGES
The major drawback in the above CNN model was the small
dataset. To extend the training data and boost the results
of COVID-19 detection, we increased the data by synthetic
augmentation. This section elaborates the method of augmen-
tation in detail.

A. AUXILIARY CLASSIFIER GENERATIVE ADVERSARIAL
NETWORK (ACGAN)
Generative Adversarial Networks (GANs) utilizes two neural
networks that compete with one another to create new virtual
instances of data which can be transmitted as real data [10].
GANs are extensively used for image generation. In this
research, we use a version of GAN called Auxiliary Classifier
GAN to perform data augmentation.

GANs find it difficult to generate high-resolution samples
from highly variable data sets. Conditional GAN (CGAN) is
a variant of GAN which allows the model to rely on outside
information to improve the sample quality. In CGAN, a latent
space point and a class label are given as input to the generator
and it attempts to generate an image for that class [27]. The
discriminator is provided with an image as well as a class
label, and it decides if the image is true or false.

AC-GAN is a type of CGAN that transforms the discrim-
inator to predict a particular image’s class label instead of
receiving it as an input. It stabilizes the training process and
allows the generation of high-quality images while learning
a representation that is independent of the class label [28].
ACGAN architecture is shown in Fig. 1.

ACGAN applies the associated class label c and noise z to
each produced sample [28]. The generator G utilizes both to
produce Xfake = G(c, z) images. The discriminator D gives
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FIGURE 2. CovidGAN complete Architecture with generator and discriminator.

FIGURE 3. Layered Architecture of CovidGAN generator.

a distribution of probability over class labels and sources.

P(S | X ), P(C | X ) = D(X ).

The log-likelihood of source class Ls and correct class Lc
forms the objective function.

Lc = E[log P(C = c | Xreal)]

+E[log P(C = c | Xfake)] (1)

Ls = E[log P(S = real | Xreal)]

+E[log P(S = fake | Xfake)] (2)

D maximizes Ls + Lc and G maximizes Lc - Ls. We propose
a GAN architecture based on ACGAN called CovidGAN,
that produces synthetic images of CXR to improve Covid-19
detection.

B. SYNTHETIC IMAGE AUGMENTATION USING CovidGAN
1) COVIDGAN GENERATOR ARCHITECTURE
The generator takes a latent vector of noise (which is a
random normal distribution with 0.02 standard deviation)
and class label as input, to output a single 112 × 112 × 3
image. The class label is passed through an embedding layer
of 50 dimensions for categorical input. Then, it is further

passed through a 7× 7 node dense layer with linear activation
to output a 7 × 7 × 1 tensor. The point in latent space is
interpreted by a 1024 × 7 × 7 node dense layer to give
activations that can be reshaped to 7× 7× 1024 to get many
copies of a low-resolution version of the output image. The
tensors generated from class label and noise (that is 7× 7× 1
and 7× 7× 1024) are concatenated and passed through four
transpose convolutional layers to upsample the 7× 7× 1024
featuremaps, first to 14× 14× 512, then 28× 28× 256, then
56× 56× 128 and finally to 112× 112× 3. Each transpose
convolutional layer, except for the last one, is followed by a
batch normalization layer and an activation layer. The model
uses methodologies such as ReLU activation, a kernel of
size (5, 5), stride of (2, 2) and a hyperbolic tangent (tanh)
activation function in the output layer. The total parameters
of the generator are approximately 22 million. The output of
the generator is an image of shape 112 × 112 × 3. Layered
architecture of the generator is given in Fig. 3.

2) COVIDGAN DISCRIMINATOR ARCHITECTURE
The discriminator model is a CNN architecture that has two
output layers and takes one image of shape 112 × 112 × 3
as input. The model outputs a prediction if the image is real
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FIGURE 4. A: Real images in dataset, B: Synthetic images generated by CovidGAN.

(class= 1) or fake (class= 0), and also outputs the class label
that is COVID-CXR or Normal-CXR. Each block of discrim-
inator represents a convolutional layer, which is followed by
a batch normalization layer, an activation layer and a dropout
layer with 0.5 probability. The input is downsampled from
112 × 112 × 32 to 56 × 56 × 64, then 28 × 28 × 128,
then 14 × 14 × 256 and finally to 7 × 7 × 512. The model
uses a kernel of size (3, 3), a stride that changes alternatively
from (1, 1) to (2, 2) and LeakyReLU activation function with
a slope of 0.2. Discriminator has approximately 2 million
parameters. The final output is flattened and the probability of
the image’s reality and the probability of the image belonging
to each class is estimated. The first output layer with sigmoid
function predicts the realness of the image. The second output
layer with softmax function predicts the label.

3) TRAINING PROCEDURE
The generator model is stacked on top of the discrimi-
nator model. Initially, the layers of the discriminator are
set as non-trainable. Thus, only the generator gets updated
via the discriminator. This forms a composite model of
GAN, which we call CovidGAN. The CovidGAN is trained
to synthesize CXR images for both COVID-CXR and
Normal-CXR class. The image preprocessing step involved
resizing (112 × 112 × 3) and normalizing the images from
[0, 255] to [−1, 1]. (Normalization is a process that changes
the range of pixel values. Its purpose is to convert an input
image into a range of pixel values that are more familiar
or normal to the senses). Adam is used as the optimizer
function. Adam is easy to implement, works on sparse gra-
dients, requires little memory space, and is computationally
efficient. Therefore, Adam is the best choice for the opti-
mization of the model. The following hyperparameters are
used for training CovidGAN: batch_size = 64, learning_rate
= 0.0002, beta = 0.5 (beta is the momentum of Adam opti-
mizer), number of epochs = 2000. CovidGAN has approx-
imately 24 million parameters and it takes around 5 hours
to train the model. The GAN gets optimized using two

loss functions, one for each output layer of the discrimi-
nator. The first layer uses binary_crossentropy and second
sparse_categorical_crossentropy. The complete architecture
is trained using Keras deep learning library.

The complete CovidGAN architecture is shown in Fig. 2.
The synthetic images generated from CovidGAN are shown
in Fig. 4 B. CovidGAN generated 1399 synthetic images of
Normal-CXR and 1669 synthetic images of COVID-CXR.

IV. RESULTS AND DISCUSSION
In this section, we analyze the effect of synthetic data aug-
mentation technique used for improved COVID-19 detec-
tion. Initially to perform COVID-19 detection we used the
CNN classifier defined in section II. Then to improve the
performance of CNN we used synthetic data augmenta-
tion technique. The performance of the model is observed
on 192 testing samples (the testing samples consists of only
actual data of COVID-CXR: 72 images and Normal-CXR:
120 images). We found that synthetic data augments pro-
duced (shown in Fig. 4 B) from CovidGAN enhanced the
performance of CNN. An accuracy of 85% is achieved with
actual data (with 0.89 precision and 0.69 recall for COVID

class) that increased to 95% with synthetic augments (with
0.96 precision and 0.90 recall for COVID class). A detailed
analysis is shown in Table 1. The results and Environment
Setup are presented in this section.

A. EVALUATION MEASURES AND ENVIRONMENT SETUP
The implementation of CNN and CovidGAN architecture is
done using Keras [29] deep learning library. All training and
testing processes are performed using Nvidia RTX 2060 GPU
with 6GBmemory and Intel Core i7 9th generation CPUwith
16GB RAM.

We used precision, recall (or sensitivity), F1-score, and
specificity to measure and analyze the performance of the
CNN model using synthetic data augmentation technique.
Precision is the classifier’s ability to not mark a negative
sample as positive and recall is the classifier’s ability to
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TABLE 1. Performance comparison for Covid-19 detection.

classify all those with the disease correctly (true positive
rate). F1-score is the weighted average of precision and recall.
Specificity is the ability of the classifier to correctly identify
those without the disease (true negative rate). In addition
to total accuracy, the macro-average and weighted average
are also calculated. The formulas of the measures are given
below:

precision =
TP

TP+ FP
(3)

sensitivity = recall =
TP

TP+ FN
(4)

F1score = 2 ∗
recall ∗ precision
recall + precision

(5)

specificity =
TN

TN + FP
(6)

Total accuarcy =

∑
TP

Total Covid19 samples
(7)

where TP is true positives, FP is false positives, and FN is
false negatives. Macro-average finds unweighted mean for
each label without taking the label imbalance into account.
Weighted average is calculated by using true instances of each
label.

B. PERFORMANCE ANALYSIS OF SYNTHETIC DATA
AUGMENTATION
Table 1 analyzes the COVID-19 detection performance of
CNNwith synthetic data augmentation technique.We can see
that when CNN is used on actual data (CNN-AD), the detec-
tion accuracy is only 85% (with 69% sensitivity and 95%
specificity). As described in the previous section, we used
CovidGAN data augmentation to generate synthetic images
of CXR. It is observed that training CNN with actual and
synthetic images (CNN-SA) yields 95% accuracy (with 90%
sensitivity and 97% specificity), which is a clearly a better
performance rate.

An increase in precision and recall is also recorded for
both COVID (0.96 precision and 0.90 recall) and Normal
(0.94 precision and 0.97 recall) class. This suggests that the
synthetic augments produced have meaningful features that
help in the enhancement of CNN performance.

C. VISUALIZATION USING PCA
We use the PCA visualization and confusion matrix for anal-
ysis of the results. Principal Component Analysis (PCA) is a
method which reduces the dimension of feature space such
that new variables are independent [30], [31]. PCA retains
large pair distances in order to optimize variance.

Steps involved in PCA:
1) Standardization: The mean of all the dimensions of

the dataset is calculated, except the labels. The data is scaled
so that each variable contributes equally to analysis. In the
equation given below, z is the scaled value, x is the initial,
and µ and σ are mean and standard deviation, respectively.

z =
x − µ
σ

(8)

2) Covariance Matrix Computation: Covariance is mea-
sured between 2 dimensions. In a 3-dimensional data set
(A, B, C), the covariance between the A and B dimensions,
the B and C dimensions, and the A and C dimensions is mea-
sured. The covariance of two variables X and Y is computed
using the following formula given below:

Cov(X ,Y ) =
1

n− 1

∑n
i=1(Xi − X

′)(Yi − X ′) (9)

where X ′ and Y ′ are arithmetic mean of X and Y respectively,
and n is number of observations. The resultant covariance
matrix would be a square matrix of n x n dimensions, i.e for
a 3 dimensional data the covariance matrix will be 3 × 3.

3) Compute Eigenvectors and corresponding Eigen-
values: The eigenvector and corresponding eigenvalues are
computed for the covariance matrix. The corresponding
eigenvalue is the factor by which the eigenvector is scaled.
The eigenvector of the matrix A as a vector u that satisfies
the following equation:

Au = λu (10)

where λ is the eigenvalue. This means that the linear trans-
formation is defined by λ and the equation can be re-written
as:

(A− λI )u = 0 (11)

where I is the identity matrix.
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FIGURE 5. PCA visualization.

FIGURE 6. Confusion matrix for Covid-19 detection using CNN with actual
data.

4) Choose k eigenvectors with the largest eigenvalues:
The eigenvectors with respect to their decreasing order of
eigenvalues are sorted, k is chosen out of them, where k is
the number of dimensions in the dataset.

5) Recasting data along Principal Components’ axes
In the last step, our samples are transformed onto the new

subspace by re-orienting data from the original axes to the
ones that are now represented by the principal components.

Final Data= Feature - Vector * Transpose (Scaled (Data))
So lastly, principal components are computed and the data

points in accordance with the new axes are projected.
The features or high-dimensional data are taken from the

last layer of CNN. The features of the real images and syn-
thetic images are plotted in Fig. 5. We can see that synthetic
images (shown in red and green) are close to real images
(shown in purple and blue).

The confusion matrices for COVID-19 detection are plot-
ted in and Fig. 6 and Fig. 7. The confusion matrix is used
to summarize the performance of the CovidGAN model.
We recorded the performance of the model for 192 testing
samples (COVID-CXR: 72 images and Normal-CXR: 120
images). In the dark blue colored diagonal of the matrix are
the correct classifications, whereas all other entries are mis-
classifications. It can be seen in Fig. 6 that 22 COVID-CXR
images are misclassified as Normal-CXR (false negative)
and 6Normal-CXR images aremisclassified as COVID-CXR
(false positive) when CNN is trained on actual data. But in

FIGURE 7. Confusion matrix for Covid-19 detection using CNN with
synthetic data augmentation and actual data.

Fig. 7 only 7 images are misclassified as Normal-CXR when
CNN is trained on actual data and synthetic augments (gen-
erated from CovidGAN). Also, the number of false positives
is reduced to 3.

V. CONCLUSION
In this research, we proposed an ACGAN based model
called CovidGAN that generates synthetic CXR images to
enlarge the dataset and to improve the performance of CNN
in COVID-19 detection. The research is implemented on a
dataset with 403 COVID-CXR images and 721 Normal-CXR
images. Our limited dataset highlights the scarcity of medical
images in the research communities.

Initially, the proposed CNN architecture is used to classify
the two classes (that is COVID-CXR and Normal-CXR).
Further, the performance of CNN with synthetic data aug-
mentation technique is investigated.

Synthetic data augmentation adds more variability to the
dataset, by enlarging it. CovidGAN is used to generate syn-
thetic images of chest X-ray (CXR). An improvement in clas-
sification performance from 85% to 95% accuracy is recorded
when CNN is trained on actual data and synthetic augments.
An increase in precision and recall of both the classes are also
observed.

Our findings show that synthesized images of CXR
have significant visualizations and features that help in the
detection of COVID-19. Lastly, a detailed analysis of the
performance of our CNN architecture with synthetic data
augmentation technique is given in Table 1.

In conclusion, we proposed a way to enhance the accuracy
of COVID-19 detection with minimal data by generating
synthetic medical images of chest X-ray. Despite its excellent
results, CovidGAN is not intended to compete with labo-
ratory testing. Instead, we hope that this approach leads to
stronger and more reliable radiology systems.

In the future, we intend to improve the quality of the
synthetic CXR images by training a Progressive Growing
GAN [32].
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VI. LIMITATIONS
This analysis still has a variety of limitations. Firstly, GAN
architecture and training can be improved further. Secondly,
we used a small dataset because of the time constraints and
difficulty in gathering enough data. The quality of the syn-
thetic samples produced in this research could be improved
by integrating more labeled data which improves the learning
process of GAN. Thirdly, the dataset is obtained from various
sources and cross-center validations were not conducted in
this analysis. We have made every effort to ensure that the
data collected is correctly labeled. Any mistake in data label-
ing, however, would probably affect the results reported. Such
an impact could be especially pronounced when the dataset
is small. Lastly, the only way to reliably detect COVID-19 is
through medical assistance and clinical testing. The findings
of this paper provide promising results that encourage the
use of this approach to make more robust radiology systems.
This paper also promotes a systematic large-scale gathering
of COVID-CXR images.
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