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Abstract— COVID-19, a new strain of coronavirus disease,
has been one of the most serious and infectious disease in
the world. Chest CT is essential in prognostication, diagnosing
this disease, and assessing the complication. In this paper, a
multi-class COVID-19 CT segmentation is proposed aiming at
helping radiologists estimate the extent of effected lung volume.
We utilized four augmented pyramid networks on an encoder-
decoder segmentation framework. Quadruple Augmented Pyra-
mid Network (QAP-Net) not only enable CNN capture features
from variation size of CT images, but also act as spatial inter-
connections and down-sampling to transfer sufficient feature
information for semantic segmentation. Experimental results
achieve competitive performance in segmentation with the Dice
of 0.8163, which outperforms other state-of-the-art methods,
demonstrating the proposed framework can segment of consol-
idation as well as glass, ground area via COVID-19 chest CT
efficiently and accurately.

Index Terms— COVID-19, Computed Tomography, Image
Segmentation, Spatial Pyramid Network

I. INTRODUCTION

A novel coronal virus named COVID-19 was firstly re-
ported in China in December 2019. The risk of COVID-19
is stated to very high at the global level by WHO in February
2020 [1]. More than 190 million cases have been reported
in 192 countries and regions around the world, and more
than 4 million patients have died until July 2021 [2]. The
spread is still ongoing. Computed Tomography(CT) is an
effective medical imaging approach to diagnosis COVID-19
pneumonia, which can determine whether the patient’s lungs
have lesions and the extent of the lesions. Medical image
analysis plays an important role in early detection of lesions,
rapid quantification, and judging whether patient is cured. In
this paper, a robust and efficient medical imaging segmen-
tation framework is proposed aiming at helping radiologists
segments different regions on chest CT. The extent of damage
lung volume(consolidation, glass, lung and background) is
estimated properly.
Deep learning based computer aided diagnosed(CAD) sys-
tem on COVID-19 is currently studied [3]. It allows radiolo-
gists quickly get clinical information about the class of pneu-
monia, location, region size and etc. In image segmentation
community, an encoder-decoder framework named U-Net has
been an state-of-the-art segmentation method [4], and many
researchers have explored COVID-19 segmentation based on
it. More specifically, [5] studied on both 2D U-Net and
3D U-Net in COVID-19 segmentation, as machine learning
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model can collect more feature information in 3D CT, but
lead to high computational cost. [6] studied on COVID-
19 segmentation mainly based on U-Net++ [7]. [8] build
a framework based on U-Net++ which achieve jointly seg-
mentation and classification task. Residual learning, attention
mechanism, transfer learning have also been studied which
improve segmentation model be more robust under noisy
label, extract feature efficiently, and improving capability
of the model to distinguish a variety of symptoms of the
COVID-19 [9][10].
In this work, we propose a novel Quadruple Augmented
Pyramid Network(QAP-Net) for multi-class COVID-19 seg-
mentation. To solve the shortcomings of limited image
features can be collected and transferred properly through
multi-CNN layers pipeline, QAP-Net is proposed. Firstly,
four pyramid networks are developed based on Pooling layers
with variation size and Atrous CNN with variation dilation
rate, respectively. Secondly, the pyramid network is theoreti-
cally improved as the augmented pyramid network. Different
kinds of pooling layers and different setting of dilation rate
are explored. Thirdly, four augmented pyramid networks are
well analyzed and settled on a classical encoder-decoder
network. Finally, QAP-Net is tested on a COVID-19 dataset
which shows competitive performance against other state-of-
the-art methods with a variety evaluation metrics.

II. METHOD

The architecture of QAP-Net is illustrated in Figure 1. It
is developed based on a classical encoder-decoder backbone
including 2D Convolutioanal layers, Max pooling layers,
Average pooling layers, and 2D transpose Convolutional
layers. The number of channels of input, feature map and
output are illustrated on each feature map. Four proposed
augmented pyramid network modules showed on Figure 2
are utilized on the backbone. Atrous CNN based augmented
pyramid network consists of two atrous modules built in
parallel approach. It performs as a skip connection from
encoder to decoder, which enable sufficient global and local
information been copy and crop to decoder for multi-class
pixel-level segmentation. The number of these modules are 4,
3, 2, 1. Pooling based augmented pyramid network consists
of Average and Max pooling modules, separately. It can
extract trunk parameters, decrease computational cost, and
make model more robust with rotation, translation, and size
invariance. The detail of QAP-Net is introduced, analyzed
and discussed below in Section II-A and Section II-B.
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Fig. 1: Quadruple Augmented Pyramid Network for Medical Image Segmentation

(a) Pyramid Atrous
Network dr=[1, 2, 4]

(b) Pyramid Atrous
Network dr=[1, 3, 9]

(c) Pyramid Avg
Pooling Network

(d) Pyramid Max
Pooling Network

Fig. 2: Augmented Pyramid Networks

A. Atrous Spatial Convolutional Network

Convolutional Neural Networks(CNN) has shown promis-
ing performance on computer vision task in recent studies.
Compared with fully connected neural networks which ex-
tract all input nodes, CNN only extract a series of specific
size of nodes on an input image also know as receptive field.
Deep CNN, however, suffer not only vanishing/exploding
gradients problem, but also can be detrimental to semantic
segmentation task, because pixel-level features cannot been
transfer through pipeline with multi-CNN layers and down-
sampling. Aiming at collecting variation size of features,
an alternative approach is Atrous CNN [11]. Atrous CNN
increases receptive field by inserting zeros between non-zeros
of filters. An example of atrous CNN is illustrated in Figure
2a and Figure 2b, where the dilation rate is set by 1, 2, 4
and 1, 3, 9.
By setting Dilation Rate dr for an Filter whose size is f ∗f ,
the size of receptive field can be easily increased without
additional computational cost. The size of Receptive Field
RF ∗RF can be calculated by Equation 1.

RF = f + (dr − 1)(f − 1) (1)

The dilation rate setting, however, has not been clearly
studied, and Atrous CNN lead to gridding effect [12].

To fully capture receptive field with limited number of atrous
CNN by optimizing atrous rate setting, this section illustrates
the reason why we develop pyramid pooling network by
setting dilation rate dr = (1, 2, 4) and (1, 3, 9). Here, we
assume the size of feature map is 1D, and no non-linear
modules(Relu, Sigmpoid and etc) is utilized. Fn denotes
feature map is calculated by the nth atrous CNN, so that F 0

indicates input feature map, and Fn indicates output feature
map. The Receptive Field RF of final layer can be calculated
by Equation 2.

RFn = f + (dr0 − 1)(f − 1) +

n∑
1

drn (2)

However, atrous CNN potentially lead to feature nodes not
been collected as there is non-trainable zeros been inserted
into filter. The number of Uncollected Nodes UNn after nth

atrous CNN can be calculated by Equation 3.

UNn = (f − 1) ∗ (dr0 − n ∗
n∑
1

drn) (3)

If UNn is a negative number, it means no uncollected nodes
and several nodes been collacted for multi times. To evaluate
the efficiency of dilation rate setting, an Evaluation Ratio



R between receptive field size RF and Uncollected Nodes
UNn is calculated by equation 4

ER = UNn/RFn (4)

Under the limit and unchanged number of atrous CNN layers
n, ER should be as minimize as possible. After Equation 2
and Equation 3 been put in Equation 4, the dilation rate
setting dr must follow geometric progression as shown in
Equation 5 so that maximum the value of receptive field size
RF , and minimum the value of Uncollected Nodes UNn.

dr = [1, ..., (dr)n−1] (5)

A more intuitive and visible example is shown on Figure
3. Dilation rate setting such as [1,2,4] and [1,3,9] performs
better than [1,3,4] which potentially leads to glidding effects
or [1,2,9] which results in several feature nodes not been
collected.

Fig. 3: Example 1D Atrous CNN with Different dilation Rate
Setting

Inspired by Inception module [13], we build an atrous
CNN module based on two proper Atrous CNN pyramid
networks consist of three layers. To mitigate the difference
between encoder and decoder [14], and transfer more fea-
ture information to decoder, a skip-connection-liked-path is
built by atrous CNN block. Considering down-sampling, up-
sampling and difference between encoder and decoder, the
number of atrous CNN blocks on each path is 4, 3, 2, 1.

B. Spatial Pyramid Pooling Network

Pooling layers are commonly attached after convolutional
layers in computer vision tasks. The main function of Pooling
layers are 1)translation, rotation, scale invariance, 2) reducing
computational cost by down-sampling, 3) avoiding overfit-
ting, and 4)improving generalization ability of model.
Max pooling is commonly applied in image segmentation
tasks, because the feature of boundary and texture structure
of the image can be efficiently extracted by capturing the
maximum value of pixel. Max pooling outperforms average
pooling when variance of brightness of pixel is high (under
noisy label, Under multi-scene conditions, Strong contrast
between light and dark). Considering the application of
proposed model is specialized to COVID-19 medical imaging
analysis via CT. Average pooling is utilized to reduce the
deviation of the estimated mean which outperforms better

than Max pooling. For this reason, the final augmented
pooling module is based on two sub-module with Max
pooling and Avg pooling.
To collect variation size of features, the size of pooling
operation is set to 4*4, 6*6, 8*8, 10*10, and the output
by pooling layers are all resized by interpolation except
the 4*4 layer, so that all features can be concatenated on
channel axis. In this way, the size of feature map is four
times smaller than the input feature map size. In the QAP-
Net, the augmented pooling networks act as down sampling
which the input is the 1st, 2nd and 3rd level of the output
of encoder, and also act as skip connection that the output
is concatenated as input to the related decoder, respectively.

III. EXPERIMENTS AND RESULTS

A. Dataset and Experimental Setup

We used a COVID-19 dataset from MedSeg, a commercial
AI medical company which consists of 20 CT scans, of up
to 630 slices per scan [15]. All images are normalized and
resized to 256 × 256. Images for PSP-Net are resized to
288 × 288. Data augmentation was applied in the form of
rotations, random size crop and horizontal flip. 10% of data
is used for testing, 10% of data is used for valdation and the
rest of data is for training. The code was developed in Python
using Tensorflow. It has been run on an Nvidia GeForce RTX
3090 GPU with 24GB memory, and Intel i9-10900K. With
a training batch size of 16, the learning rate is 10−4, the
learning rate will be reduced by *0.8 if no dice coefficient
been improved after 8 epochs, and the minimal learning rate
is 10−5. Training will be early stopped, once dice coefficient
on validation dataset not been improved for 10 epochs. Given
the imbalance between the spine and background pixels, the
loss function was based on the categorical focal loss. The
total training epoches is 100.

B. Results and Discussion

QAP-Net is compared with classical segmentation algo-
rithms including LinkNet, PSP-Net, MultiResUnet, Dense-
lyUnet, and U-Net with several classical backbones such
as VGG, ResNet and etc [9] [16] [17]. We compare the
performance of our algorithm against a collection of others
conventional, widely used overlap measures such as the
Dice coefficient, Accuracy, Precision, Sensitivity or Recall,
Specificity, which ensuring a reliable evaluation with other
methods are illustrated in Table I. Example images about
ground truth and predicted results including ground glass,
consolidation, lung other and background is illustrated in
Figure 4 where yellow demonstrate True Positive pixels, red
demonstrate False Positive pixels, and green demonstrates
False Negative pixels.

C. Ablation study

In order to analyze the effects of each of the four proposed
augmented networks and their combinations, extensive abla-
tion experiments have been conducted. Table II documents
how the removal of one or more components compromises
the overall performance. The same table also gives a measure



TABLE I: Direct Comparison Against Existing Algorithms

Model mIOU Acc Pre Sen Spe

LinkNet 0.6126 0.9833 0.7181 0.7783 0.9883
Resnet50 LinkNet 0.6766 0.9829 0.7867 0.8110 0.9881
VGG Linknet 0.4640 0.8534 0.5160 0.6985 0.8577
Dense Linknet 0.7887 0.9919 0.8336 0.9324 0.9941
U-Net 0.7374 0.9894 0.8133 0.8792 0.9924
Attention U-Net 0.5585 0.8234 0.5871 0.9157 0.8251
Efficient U-Net 0.5828 0.7176 0.6026 0.9539 0.7180
Residual-U-Net 0.7620 0.9895 0.8287 0.9005 0.9923
Dense-U-Net 0.5544 0.7772 0.5871 0.8921 0.7788
MultiRes-U-Net 0.4264 0.9294 0.4328 0.9757 0.9276
RAR-U-Net 0.7884 0.9969 0.8536 0.9120 0.9982
PSP-Net 0.7733 0.9970 0.8220 0.9260 0.9974
SeResNet PSP-Net 0.7446 0.9965 0.7840 0.9365 0.9973
QAP-Net 0.8163 0.9976 0.8460 0.9580 0.9980

Fig. 4: Example Results on Test Dataset by QAP-Net

of the complexity of the overall model and its sub models.
Algorithm illustrates that different algorithms are separately
utilized for training.

IV. CONCLUSION

Multi-class segmentation of COVID-19 chest CT is of
great significance for the diagnosis in clinical practice. We
establish four augmented pyramid networks on a encoder-
decoder network. Comprehensive evaluations and compar-
isons are completed, and our proposed method achieves
promising performance.

REFERENCES

[1] World Health Organization et al., “Coronavirus disease 2019 (covid-
19): situation report, 82,” World Health Organization, 2020.

[2] Ensheng Dong, Hongru Du, and Lauren Gardner, “An interactive web-
based dashboard to track covid-19 in real time,” The Lancet infectious
diseases, vol. 20, no. 5, pp. 533–534, 2020.

TABLE II: Ablation Studies on Contributions of Architecture

Atrous Pyramid Net Pooling Pyramid Net mIOU
1 3 9 1 2 4 Max Avg

0.5331
X 0.7469

X 0.7966
X X 0.7996

X 0.7419
X 0.7872

X X 0.7373
X X X 0.8072
X X X 0.8023
X X X X 0.8163

[3] Zhou Longxi, Li Zhongxiao, et al., “A rapid accurate and machine-
agnostic segmentation and quantification method for ct-based covid-19
diagnosis,” IEEE transactions on medical imaging, vol. 39, no. 8, pp.
2638–2652, 2020.

[4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net:
Convolutional networks for biomedical image segmentation,” in
International Conference on Medical image computing and computer-
assisted intervention. Springer, 2015, pp. 234–241.

[5] Gozes Ophir, Frid-Adar, et al., “Rapid ai development cycle for
the coronavirus (covid-19) pandemic: Initial results for automated
detection & patient monitoring using deep learning ct image analysis,”
arXiv preprint arXiv:2003.05037, 2020.

[6] Chen Jun, Wu Lianlian, et al., “Deep learning-based model for detect-
ing 2019 novel coronavirus pneumonia on high-resolution computed
tomography,” Scientific reports, vol. 10, no. 1, pp. 1–11, 2020.

[7] Zongwei Zhou et al., “Unet++: A nested u-net architecture for medical
image segmentation,” in Deep learning in medical image analysis and
multimodal learning for clinical decision support, pp. 3–11. Springer,
2018.

[8] Jin Shuo Wang Bo et al., “Ai-assisted ct imaging analysis for covid-19
screening: Building and deploying a medical ai system in four weeks,”
MedRxiv, 2020.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 770–
778.

[10] Oktay Ozan, Schlemper Jo, Folgoc, et al., “Attention u-net: Learning
where to look for the pancreas,” arXiv preprint arXiv:1804.03999,
2018.

[11] Liang-Chieh Chen et al., “Deeplab: Semantic image segmentation with
deep convolutional nets, atrous convolution, and fully connected crfs,”
IEEE transactions on pattern analysis and machine intelligence, vol.
40, no. 4, pp. 834–848, 2017.

[12] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser, “Dilated residual
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 472–480.

[13] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[14] Nabil Ibtehaz and M Sohel Rahman, “Multiresunet: Rethinking the
u-net architecture for multimodal biomedical image segmentation,”
Neural Networks, vol. 121, pp. 74–87, 2020.

[15] “Covid-19 ct segmentation dataset,” http://
medicalsegmentation.com/covid19/.

[16] Karen Simonyan and Andrew Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[17] Ziyang Wang, Zhengdong Zhang, and Irina Voiculescu, “Rar-u-
net: a residual encoder to attention decoder by residual connections
framework for spine segmentation under noisy labels,” The 28th IEEE
International Conference on Image Processing, September 2021.

http://medicalsegmentation.com/covid19/
http://medicalsegmentation.com/covid19/

	I Introduction
	II Method
	II-A Atrous Spatial Convolutional Network
	II-B Spatial Pyramid Pooling Network

	III Experiments and Results
	III-A Dataset and Experimental Setup
	III-B Results and Discussion
	III-C Ablation study

	IV Conclusion
	References

