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Abstract

We introduce a Bayesian sequential data assimilation method for COVID–19 fore-
casting. It is assumed that suitable transmission, epidemic and observation models are
available and previously validated and the transmission and epidemic models are coded
into a dynamical system. The observation model depends on the dynamical system
state variables and parameters, and is cast as a likelihood function. We elicit prior dis-
tributions of the effective population size, the dynamical system initial conditions and
infectious contact rate, and use Markov Chain Monte Carlo sampling to make inference
and prediction of quantities of interest (QoI) at the onset of the epidemic outbreak. The
forecast is sequentially updated over a sliding window of epidemic records as new data
becomes available. Prior distributions for the state variables at the new forecasting
time are assembled using the dynamical system, calibrated for the previous forecast.
Moreover, changes in the contact rate and effective population size are naturally intro-
duced through auto–regressive models on the corresponding parameters. We show our
forecasting method’s performance using a SEIR type model and COVID–19 data from
several Mexican localities.

1 Introduction

In this paper we introduce a Bayesian sequential data assimilation method for COVID–19
forecasting. Reliable model–based COVID–19 forecasting should be helpful to assist decision–
making and planning for healthcare authorities. Consequently, the contributions of this work
are aimed at building confidence in our methodology.

Compartmental epidemic models have proven to be adequate to assimilate epidemic data
and making forecasts [1, 2]. However, epidemic outbreak predictability is limited due to the
influence of human behavior, incomplete knowledge of the virus’s evolution, and weather [3,4],
as well as delay and under–reporting of new cases and deaths [5,6]. A practical compromise
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is to make probabilistic epidemic forecasts a few weeks ahead of time [7, 8] using a model
that accounts explicitly for data delay and under–reporting.

In this paper we assume that transmission, epidemic and observation models are properly
postulated, previously validated and available. The transmission and epidemic models are
coded into a dynamical system. The observation model depends on the dynamical system
state variables and parameters, and is cast as a likelihood function. In Section 3 we use
a SEIR type epidemic model with Erlang [9] residence times in the exposed and infected
compartments. We elicit prior distributions of the effective susceptible population size, dy-
namical system initial conditions, and infectious contact rates and use Markov Chain Monte
Carlo to make inference and prediction of quantities of interest (QoI), such as hospital oc-
cupancy, at the onsetof the epidemic outbreak in a metropolitan area. Namely, at the time
when community transmission starts in the metropolitan area being analyzed. As new data
becomes available, we update the forecast sequentially over a sliding window of epidemic
records. We assemble prior distributions for the state variables at the new forecasting time
using the dynamical system calibrated for the previous forecast. Moreover, we introduce
changes in the contact rate and effective population size naturally through auto–regressive
models on the corresponding parameters. We argue that this is a natural approach to data
assimilation with an epidemic model.

We show our forecasting method’s performance using a SEIR type model and COVID–19
data from several Mexican localities.

1.1 Related work

Real time epidemic forecasting is an emerging research field [10]. Many forecast modeling
efforts study how to address data under–reporting and delays [8,11]. Other efforts are directed
at exploring what sources of information can be incorporated as covariates to make better
forecasts. Mcgough et al. [12] incorporate traditional surveillance with social media data to
forecast Zika in Latin America. The RAPIDD ebola forecasting challenge [13] explored how
to integrate different sources of data for Ebola forecasting. Hii et al. [14] use temperature
and rainfall to forecast dengue incidence.

In a related work, [15] present a COVID19 prediction model. Using a SEIR type dynamical
model, and including hospital dynamics and Erlang compartments [9] to properly model
residence times, [15] model and predict the COVID19 epidemic in the Mexican 32 states
and several metropolitan areas, from the epidemic onset in Mexico in March 2020 (and until
February 2021, see https://coronavirus.conacyt.mx/proyectos/ama.html (in Spanish),
model ama2 ). However, fitting the whole of the epidemic, to infer initial state values, for an
epidemic lasting several months, ceases to be useful and adds to the numerical complexity and
reliability of the system. In fact, given the generation interval of COVID19, data beyond one
month in the past should start to have less importance for current nowcasting and predictions.

1.2 Contributions and limitations

The probabilistic forecasting method introduced in this paper allows us to forecast the inci-
dence of new cases and deaths one to four weeks in advance

Once we are near or after a local incidence maximum, our forecasting method disentangles
the role of infectious contact rate and effective population size. Other quantities of interest
such as hospital occupancy can be calculated as a byproduct of the forecast using suitable
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renewal equations. More general data analysis, e.g. by age groups, is not presented in this
work. However our results may be applicable on those cases, provided suitable transmission
and epidemic models are available.

This manuscript is organized as follows. In Section 2 we make a summary of the modeling
decisions taken to implement our forecasting method. In Section 3 we apply our method to
COVID–19 epidemic data. Finally, in Section 4 we present the analysis of the Mexico City
data. Other examples are provided in the supplementary material.

2 Bayesian Sequential Forecasting Method

Let us assume that community transmission starts at time t = t0 at the metropolitan area
where the outbreak is being analyzed. Set k = 0 and denote by [tk, tk + L] the learning
period. Namely, the period when we collect epidemic records z(k) to create a forecast. In
the example presented in Section 3, these epidemic records are new hospital admittances and
deaths. The delay period is [tk + L, tk + L + D], i.e. the period when epidemic records are
not mature and may include delays in reporting. The forecasting day is tk +L+D. We refer
to [tk + L + D, tk + L + D + F ] as the forecasting period, and [tk, tk + L + D + F ] is the
forecasting window as illustrated in Figure 1.

Let x(t) = (S(t), E(t), I(t), ...)T denote the time–dependent vector of state variables. We
shall assume that the epidemic and transmission models are posed as an initial value problem
for a nonlinear system of ordinary differential equations

ẋ(t) = f(x(t), θk)

x(tk) = xk,
(1)

where tk and xk denote respectively the initial time and state in the forecasting window
[tk, tk + L + D + F ], and θk is a vector of model parameters (e.g. contact rate β, effective
population size ω, etc.) used to calibrate model (1). We shall denote p(k) = (xk, θk) the joint
vector of initial conditions and model parameters to be inferred.

If k = 0, we postulate a prior distribution πP (k)(p(k)), a likelihood πZ(k)|P (k)(z(k)|p(k)) and
use equation (1) and samples obtained through Markov Chain Monte Carlo of the corre-
sponding posterior distribution πP |Z(p(k)|z(k)) to make a probabilistic prediction of x(t) in
the forecasting period t ∈ [tk +L+D, tk +L+D+F ]. Afterwards, we update the forecasting
window by setting tk+1 = tk + n, where n is the number of days until the next forecast. We
assemble a new prior distribution πP (k+1)(p(k+1)) for the model parameters pk+1 in the new
forecasting window [tk+1, tk+1 + L + D + F ] using the predicted values of x(t) at t = tk+1

obtained with equation (1) and samples of the posterior distribution πP (k)|Z(k)(p(k)|z(k)) of the
previous forecast. Model parameters θk+1 have an autoregressive prior distribution in terms
of θk. Finally, we set k ← k + 1 and repeat the above process to create a new forecast.

The Bayesian sequential data assimilation method consists of three parts; a dynamical
system that codes the transmission and an epidemiological model, a probabilistic model for
the observed incident cases and deaths, and an informed prior distribution for the param-
eter space in each forecasting period. In Section 3, we show how to postulate each model
component for a forecasting model of covid-19 using data from several Mexico localities.

3



tk tk+1 = tk + n tk + L+D tk + L+D + F

training period delay period forecasting period

new training period

Figure 1: Bayesian Sequential data assimilation. We propose a Bayesian filtering
method that predicts along the dynamical system (1) evaluated in sample points of the pos-
terior distribution πP (k)|Z(k)(p(k)|z(k)) in the current forecasting window [tk, tk + L+D + F ].

3 Example: A SEIR type model

3.1 Dynamical model

We consider a variation on the SEIRD epidemic model for susceptible, exposed, infectious,
removed, and dead individuals. We have added a compartment for unobserved infectious
individuals.

We assume that the total population of the metropolitan area being analyzed is N .
We assume further that there is only a small number of infected individuals at the onset of
community transmission. Susceptible individuals S become exposed E with force of infection
λ. The transmission model is coded into λ as follows, we assume that only unobserved (U)
and observed (O) infectious individuals spread the infection, that is

λ =
(U + kO)β

N
,

where β is the infectious contact rate. We have assumed that the contact rate for observed
infectious is a factor (k) of the contact rate for unobserved infectious. A fraction f of exposed
individuals proceeds to the observed infected class (O) at rate σ1, while the remainder goes
directly to an unobserved infective stage (U), also at rate σ1. Individuals leave the infectious
class at rate σ2, with a fraction 1− g recovering and going to the removed class (R) and the
remainder (g) dying of infection. Unobserved go the removed stage at rate γ. We split the
E, I, and O compartments into two sub-compartments to model residence rates explicitly as
Erlang distributions [9], see Table 1.

The dynamics of the epidemic process is governed by the following nonlinear system of
ordinary differential equations

Ṡ = −λS
Ė = λS − σ1E
Ȯ = fσ1E − σ2O
U̇ = (1− f)σ1E − γU
Ṙ = (1− g)σ2O + γU

Ḋ = gσ2O,
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Algorithm 1: Bayesian sequential data assimilation for COVID-19 forecasting

Input. Initial time (t0), data (z(k)) for k = 0, 1, ..., learning period size size (L), number of
days to forecast (F ), number of days to move the forecasting window n, and number
of the delays days (D),

Output. • Posterior distribution πP (k)|Z(k)(p(k)|z(k)) for k = 0, 1, ...

• Prediction of QoI, e.g. hospital occupancy, report of new cases, etc, in the
forecasting period [tk + L+D, tk + L+D + F ] for k = 0, 1, ...

Step 1. If k = 0:
Set a prior distribution for p(k), πP (k)(p(k))
Go to Step 3

else:
Go to Step 2

Step 2. For k > 0, the prior distribution for p(k) = (xk, θk) is set using the MCMC output of
the period k − 1:

• For the k−initial state (xk), the MCMC output of the state variable at time
t0 + nk is fitted a known distribution.

• For the model parameters θk, the MCMC output of θk−1 is fitted a known
distribution.

Step 3. Compute posterior distribution, πZ(k)|P (k)(z(k)|p(k))

Step 4. Forecast QoI up to time t = t0 + nk + L+D + F ;

Step 5. Save the MCMC output for the next forecasting time.

with initial conditions; E(0) = E0, O(0) = O0, U(0) = U0, R0 = R(0), D0 = D(0), and
S(0) = N − E0 −O0 − U0 −R0 −D0. Here N = S + E +O + U +R +D.

A flow diagram for the model is shown in Figure 2.

S E

U

O

R

D

λ

(1− f)σ1

fσ1

γ

gσ2

(1− g)σ2

Figure 2: A SEIR type model that into account both observed and unobserved infections.
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Table 1: Average times and Erlang shape parameters for sub-compartments.

Variable Rates Average time Erlang shape Reference
S β Inferred 1
E 1/σ1 5 days 2 [16,17]
A 1/γ 7 days 2 [18]
I 1/σ2 14 days 2 [19,20]

3.2 Model parameters

The model has two kinds of parameters that have to be calibrated or inferred; the ones related
to COVID-19 disease (such as residence times and proportions of individuals that split at
each bifurcation of the model) and those associated with the public response to mitigation
measures such as the contact rate Beta and the proportion of effective population size during
the outbreak (ω). Some of these parameters can be found in recent literature (see Table 1)
or inferred from reported cases and deaths, but some remain mostly unknown. In the latter
category, we have the fraction 1− f of unobserved infections. We assume 1− f = 0.2, which
means that 80% of cases of symptomatic/asymptomatic infectious go unreported.

3.3 Observational model and data

The observed data used to fit the model is based on time series of incident confirmed cases and
deaths. We consider daily deaths counts di and its theoretical expectation that is estimated
in terms of the dynamical model as

µD(ti) = D(ti)−D(ti−1).

Analogously, we consider daily case ci and its corresponding µc(ti) given by the daily flux
entering the O compartment [15], namely

µc(ti) =

∫ ti

ti−1

fσ1E2(t)dt

where E2(t) is the last state variable in the E Erlang series. We calculate the above integral
using a simple trapezoidal rule with 10 points.

3.4 Estimating model parameters with MCMC

We consider daily confirmed cases ci of patients with a positive test (O) and daily report
deaths di, for the area being analyzed. To account for over dispersed counts, we use a negative
binomial (NB) distribution NB(µ, ω, θ) with mean µ and over dispersion parameters θ and
ω. For data yi, we let

yi ∼ NB(pµ(ti), ω, θ),

with fixed values for the over dispersion parameters ω, θ and an additional reporting proba-
bility p. We assume conditional independence in the data and therefore from the NB model
we obtain a likelihood.
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The parameters to inferred are the contact rate (β), the proportion of the effective popu-
lation (ω), the fraction of infected dying (g), and crucially we also infer the initial conditions
for E(0), O(0), U(0), R(0), D(0). Letting S(0) = ω ·N − (E(0) +O(0) + U(0) +R(0)). We
have all initial conditions defined and the model can be solved numerically to obtain µD and
µc to evaluate our likelihood.

Regarding the elicitation of the parameters’ prior distribution for the first forecast, we
use Gamma distributions for the initial conditions E0, O0, and U0, with scale 1 and shape
parameter 10. This for modeling the low, near to 10, and close to zero counts for the number
of initial infectious conditions. For the initial conditions R0 and D0, we also use Gamma
distributions with scale and shape parameters equal to 1. This because at the beginning of
the outbreak, both parameters are close to zero. The prior distributions for the remaining
parameters are summarized in Table 2.

To sample from the posterior, we resort to MCMC using the t-walk generic sampler [21].
The MCMC runs semi-automatic, with consistent performances in most data sets.

Table 2: Parameters and prior distributions used for Bayesian inference.

Parameter Prior distribution
Contact rate (β) LogNorm(1, 1)

Fraction of infected dying (g) Beta(1 + 1/6, 1 + 1/3)
Proportion of the effective population (ω) Beta(1 + 1/6, 1 + 1/3)

4 Results

This section displays the results to apply Algorithm 1 with covid-19 data set from Mexico’s
city metropolitan area. Further examples of other Mexican metropolitan areas can be found
in the supplementary material. The data set reports the incident number of confirmed cases
and deaths for each location at a daily frequency starting in early 2020.

The uncertainty in the early forecast is high because we do not yet know the effective
size of the population participating in the epidemic. Further, these forecasts are prone to
further errors given the uncertainty in disease spread parameters and the initial state of the
disease. We use the Bayesian Sequential Forecasting Method to predict trajectories, given
weekly updates. The model starts with inaccurately predicted trajectories, where the median
of the trajectories overestimate the future data (See Figure 3). Further, the prediction has a
high initial cone of uncertainty.

The next predictions using previous information and update data quickly increase ac-
curacy, i.e., the median of the forecast becomes close to the future data, and the cone of
uncertainty shrinks, Figures 4-5. These results point to opportunities in capturing behav-
ioral changes during sequential forecasts and predicting in real-time the future trajectory
of the disease after sufficient observations. Figures 4-6 show how the model captures the
tendency changes in the pandemic dynamic. Also, changes in the parameters associated with
the public health measures such as the contact rates (β), the proportion of effective popu-
lation size during the outbreak (ω), and the proportion of observed infectious dying (g) are
exhibited in Figure 7.
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(a) (b)

Figure 3: Outbreak analysis for Mexico city metropolitan area, using data from March 8
to April 12. (a) Confirmed cases (b) Confirmed deaths. Central red lines indicate the
median incidence forecast. The darker shaded region indicates the interquartile forecast
range, and the lighter shaded region indicates the 5–95th percentile range. All displayed
forecast durations are ten days from the point of prediction. Total population 21,942, 666
inhabitants.

(a) Forecast 7, using data from April 27 to May 31.

(b) The previous forecastings were superimposed.

Figure 4: Outbreak analysis for Mexico city metropolitan area. From left to right, confirmed
cases and deaths.
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(a) Forecast 14, using data from June 15 to July 19

(b) The previous forecastings were superimposed.

Figure 5: Outbreak analysis for Mexico city metropolitan area. From left to right, confirmed
cases and deaths. Central red lines indicate the median incidence forecast. The darker shaded
region indicates the interquartile forecast range, and the lighter shaded region indicates the
5–95th percentile range. All displayed forecast durations are 20 days from the point of
prediction.
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(a) Forecast 40, using data from December 14 to January 17

(b) The previous forecastings were superimposed.

Figure 6: Outbreak analysis for Mexico city metropolitan area. From left to right, confirmed
cases and deaths. Central red lines indicate the median incidence forecast. The darker shaded
region indicates the interquartile forecast range, and the lighter shaded region indicates the
5–95th percentile range. All displayed forecast durations are 20 days from the point of
prediction.

Figure 7: Outbreak analysis for Mexico city metropolitan area. From left to right, contact
rate after lockdown (β), proportion of the effective population (ω), and the fraction of in-
fected dying (g). Central red lines indicate median incidence forecast. Darker shaded region
indicates forecast interquartile range, and lighter shaded region indicates 5–95th percentile
range.
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4.1 Other examples

Guanajuato

(a) Forecast 7, using data from May 11 to June 14

(b) The previous forecastings were superimposed..

Figure 8: Outbreak analysis for Guanajuato. From left to right, confirmed cases and deaths.
Central red lines indicate the median incidence forecast. The darker shaded region indicates
the interquartile forecast range, and the lighter shaded region indicates the 5–95th percentile
range. All displayed forecast durations are 20 days from the point of prediction. Total
population 6,228,175 inhabitants.
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(a) Forecast 14, using data from June 27 to August 2.

(b) The previous forecastings were superimposed.

Figure 9: Outbreak analysis for Guanajuato. From left to right, confirmed cases and deaths.
Central red lines indicate the median incidence forecast. The darker shaded region indicates
the interquartile forecast range, and the lighter shaded region indicates the 5–95th percentile
range. All displayed forecast durations are 20 days from the point of prediction.
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(a) Forecast 14, using data from December 14 to January 17.

(b) The previous forecastings were superimposed.

Figure 10: Outbreak analysis for Guanajuato. From left to right, confirmed cases and deaths.
Central red lines indicate the median incidence forecast. The darker shaded region indicates
the interquartile forecast range, and the lighter shaded region indicates the 5–95th percentile
range. All displayed forecast durations are 20 days from the point of prediction.

Figure 11: Outbreak analysis for Guanajuato. From left to right, contact rate after lock-
down (β), proportion of the effective population (ω), and the fraction of infected dying (g).
Central red lines indicate median incidence forecast. Darker shaded region indicates forecast
interquartile range, and lighter shaded region indicates 5–95th percentile range.
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Juaréz

(a) Forecast 7, using data from May 11 to June 14.

(b) The previous forecastings were superimposed.

Figure 12: Outbreak analysis for Juaréz. From left to right, confirmed cases and deaths.
Central red lines indicate the median incidence forecast. The darker shaded region indicates
the interquartile forecast range, and the lighter shaded region indicates the 5–95th percentile
range. All displayed forecast durations are 20 days from the point of prediction. Total
population 1,464,930 inhabitants.
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(a) Forecast 14, using data from June 29 to August 2

(b) The previous forecastings were superimposed.

Figure 13: Outbreak analysis for Juaréz. From left to right, confirmed cases and deaths.
Central red lines indicate the median incidence forecast. The darker shaded region indicates
the interquartile forecast range, and the lighter shaded region indicates the 5–95th percentile
range. All displayed forecast durations are 20 days from the point of prediction.
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(a) Forecast 38, using data from December 15 to January 18

(b) The previous forecastings were superimposed.

Figure 14: Outbreak analysis for Juaréz. From left to right, confirmed cases and deaths.
Central red lines indicate the median incidence forecast. The darker shaded region indicates
the interquartile forecast range, and the lighter shaded region indicates the 5–95th percentile
range. All displayed forecast durations are 20 days from the point of prediction.

Figure 15: Outbreak analysis for Juaréz. From left to right, contact rate after lockdown (β),
proportion of the effective population (ω), and the fraction of infected dying (g). Central red
lines indicate median incidence forecast. Darker shaded region indicates forecast interquartile
range, and lighter shaded region indicates 5–95th percentile range.
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Villa Hermosa

(a) Forecast 7, using data from May 11 to June 14.

(b) The previous forecastings were superimposed.

Figure 16: Outbreak analysis for Villa Hermosa. From left to right, confirmed cases and
deaths. Central red lines indicate the median incidence forecast. The darker shaded region
indicates the interquartile forecast range, and the lighter shaded region indicates the 5–95th
percentile range. All displayed forecast durations are 20 days from the point of prediction.
Total population 888,867 inhabitants.
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(a) Forecast 14, using data from June 29 to August 2.

(b) Previous forecast.

Figure 17: Outbreak analysis for Villa Hermosa. From left to right, confirmed cases and
deaths. Central red lines indicate the median incidence forecast. The darker shaded region
indicates the interquartile forecast range, and the lighter shaded region indicates the 5–95th
percentile range. All displayed forecast durations are 20 days from the point of prediction.
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(a) Forecast 38, using data from December 14 to January 17.

(b) Previous forecast.

Figure 18: Outbreak analysis for Villa Hermosa. From left to right, confirmed cases and
deaths. Central red lines indicate the median incidence forecast. The darker shaded region
indicates the interquartile forecast range, and the lighter shaded region indicates the 5–95th
percentile range. All displayed forecast durations are 20 days from the point of prediction.

Figure 19: Outbreak analysis for Villa Hermosa. From left to right, contact rate after
lockdown (β), proportion of the effective population (ω), and the fraction of infected dying
(g). Central red lines indicate median incidence forecast. Darker shaded region indicates
forecast interquartile range, and lighter shaded region indicates 5–95th percentile range.
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