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The COVID-19 virus has caused a global pandemic since
March 2020. The World Health Organization (WHO) has pro-
vided guidelines on reducing the spread of the virus and one of
the most important measures is social distancing. Maintaining a
minimum of one meter distance from other people is strongly
suggested for safety. While social distancing regulations can slow
down the spread of the virus, they also directly affect a basic
form of non-verbal communication, and there may be deeper
and longer term impacts on human behavior and culture that
remain to be analyzed in social sciences and proxemics studies.
To obtain quantitative results for such studies, it is necessary
to analyze large numbers of personal and/or media photos.
Several methods have been proposed for automatic social distance
monitoring, but they are not directly applicable for analyzing
such general photo collections, where the variations in the
imaging setup are large. Furthermore, in such studies the interest
shifts from monitoring whether the recommended safety mea-
sures are followed to more subtle differences in social distances.
Currently, there is no suitable test benchmark for developing
such algorithms. Collecting images with measured ground-truth
pair-wise distances between all the people using different camera
settings is cumbersome. Furthermore, performance evaluation for
social distance estimation algorithms is not straightforward and
there is no widely accepted evaluation protocol. In this paper,
we provide a dataset of varying images with measured pair-
wise social distances under different camera positions and focal
length values. We suggest a performance evaluation protocol
and provide a benchmark to easily evaluate social distance
estimation algorithms. We also propose a method for automatic
social distance estimation. Our method takes advantage of object
detection and human pose estimation. It can be applied on any
uncalibrated single image as long as focal length and sensor
size information are known. The results on our benchmark are
encouraging with 92% human detection rate and only 28.9%
average error in distance estimation among the detected people.

Index Terms—Social Distance Estimation, Person Detection,
Human Pose Estimation, Performance Evaluation, Test Bench-
mark, Proxemics
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I. INTRODUCTION

Social distances are a part of non-verbal human com-
munications and, naturally, there are personal and cultural
differences in how people feel about their personal space
and interpret the interpersonal distance in different situations.
The research field under social studies concerning these phe-
nomena related to space is known as proxemics [1]. Despite
the long history of studies in the field [2]–[4], it remains
difficult to carry out quantitative analysis on the actual social
distances in the natural situations outside of monitored test
conditions, e.g., when people are spending their free time
with their families. One way to approach this problem is
visual social distancing (VSD), where the interpersonal dis-
tances are automatically measured from the images or videos.
A comprehensive overview of the VSD problem, including the
main challenges and connections to social studies, is provided
in [5].

Social distancing has recently received a lot of attention due
to the outbreak of SARS-CoV-2 virus [6] that was declared as
a global pandemic by the World Health Organization (WHO)
in March 2020. The pandemic, also known as the COVID-
19 pandemic is still ongoing as of May 2021 and there has
been a total of about 164 million confirmed cases and 3.4
million deaths worldwide within the period of December 2019-
May 2021 [7]. Social distancing plays an important role in
slowing down the spread of the virus. WHO recommends
to stay at least one meter apart from other people in order
to reduce the risk of infection [8]. Automatically monitoring
the social distances is important for safety reasons, but it is
also interesting as a phenomenon that has globally changed
basic human behavior [9]–[11]. After the pandemic eases,
there are many interesting research questions in proxemics and
other fields to look into: how the social distancing affected
every-day life, what kind of significant differences were there
between different countries, can the differences be linked to
the spreading speed, will there be any long-term changes that
will stay after the pandemic.

While there are methods and sensors available for automatic
monitoring and surveillance of social distances [12], the anal-
ysis of deeper and longer term social and cultural impacts of
the social distancing regulations requires looking into different
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Fig. 1: An example of an image that represents a style, which
is common in personal and media photography, but not in
monitoring.

source data, such as people’s personal photo collections and
pictures published in newspapers and magazines. For moni-
toring purposes, it is possible to use fixed camera setup and
location, take videos or simultaneous images from multiple
viewpoints, and use additional sensors such as depth or thermal
cameras. All these can make the social distance estimates
more accurate but are not available for typical personal and
media photos that are not taken with a fixed setup, but have
varying parameters such as focal length, sensor size, lighting
conditions, and pitch angle. An example of an image that
could be found in a personal or media photo collection, but
not in a monitoring or surveillance setup is shown in Fig. 1.
At the same time, in such social and proxemics studies the
focus shifts from monitoring whether people are obeying the
regulations to more subtle differences in the social distances
and how they are represented in the media.

During the pandemic, most effort has been understandably
on the monitoring side, and currently there is no suitable
benchmark for developing and testing algorithms for accurate
social distance analysis from single images having varying
camera parameters. This can be due to the laboriousness of
gathering varying images with measured pair-wise distances
between humans. At the same time, there is no clear protocol
for measuring the algorithm performance in this task. To
address these lacks, we provide a social distance evaluation
test benchmark including a protocol for mapping the detected
pair-wise distances into the corresponding ground truth dis-
tances, a suggested overall performance metric, and 96 test
images taken with varying setups: indoors-outdoors, sitting-
standing, varying camera angles using 2 different cameras and
7 different focal lengths. The photos were taken by a profes-
sional photojournalist to follow the typical media photography
style. We publish also easy-to-use codes for evaluating novel
methods and make it easy to integrate additional test photos.

We also propose a social distance estimation algorithm that
can be applied on any uncalibrated single image taken by
a regular camera as long as focal length and sensor size
are known. It combines object detection and human pose

estimation with projective geometry using image parameters
(focal length, sensor size) and pixel locations. While the results
are promising, we also point out some of the main remaining
challenges for future development.

The rest of the paper is organized as follows. Section II
introduces related work on social distancing and automatic
distance evaluation. Section III describes the provided test
benchmark and the proposed evaluation protocol. Our method
for automatic social distance estimation is described in Sec-
tion IV. Section V provides our experimental setup and results
and, finally, Section VI concludes the paper.

II. RELATED WORK

Effectiveness of social distancing on slowing down the
spread of the COVID-19 virus have been widely studied [13]–
[18] and these studies have shown that social distancing mea-
sures are successful in reducing the growth rate of the virus.
Therefore, monitoring and regulating the social distancing be-
haviour between people plays a crucial part in dampening the
effects of the virus. In addition to directly effecting the virus
spread, social distancing has globally changed human behavior
and interactions leading to different side-impacts, e.g., on
mental health [19], [20], physical activity [10], [20], mood
and memory [9], and media consumption [11]. Such impacts
and their cross-cultural [21]–[23] and cross-sectional [20], [24]
differences continue to draw attention from researchers in
many fields.

Social distance monitoring for safety reasons can be eased
by automatic social distance estimation from images and
videos. Recent advancements in machine learning, computer
vision, thermal and ultrasound technologies have made this
task possible. A comprehensive survey in [12] explores the
wide array of current technologies that can be used to mon-
itor and encourage social distancing. A mobile robot that
incorporates a 2D lidar to autonomously navigate in crowded
environments without colliding with people was described in
[25]. The robot uses a RGB-D camera to detect people and it
estimates the distance between the detected people by using
the visual and depth information. A commercial pedestrian
tracking system was used in [26] to detect passengers in
crowded environments and estimate the distances between
them by using a graph based approach. The method was
employed in a Dutch train station and the results show that the
average number of pedestrians and social distance violations
in the station have decreased after the pandemic.

A study in [27] proposed using a deep learning based
model with YOLOv3 [28] as its backbone to monitor social
distancing violations from overhead view cameras. In [29], the
authors used YOLOv3 [28] and DeepSort [30], [31] to detect
bounding boxes of people in RGB images and by utilizing
these boundary boxes, they detected the cases of social dis-
tance violations. Another study [32] used an autonomous drone
and a YOLOv3 model [28] trained with a custom dataset. The
model processes images from the live feed of the drone’s RGB
camera. The drone detects whether or not a person is wearing
a face mask and monitors social distance violations between
the people who are not wearing masks.
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Fig. 2: Birdseye view of the outdoor photo shoot. The ground truth locations of the people and cameras are given in blue and
red dots, respectively.

A work in [33] proposed to use skeleton keypoints gener-
ated from human body pose estimation algorithms [34]–[37]
to estimate the distance between people from uncalibrated
images. The authors used manual tuning to estimate the
homography matrix [38] of an image plane and then used
leg, arm, and torso lengths of the people alongside with the
homography matrix to draw a safe space circle underneath
every detected person. Then, any collision between the es-
timated safe space circles was reported as a social distance
violation. Similarly, the work in [39] also takes advantage
of manual homography matrix calibration to estimate social
distances for fixed cameras. Separating the work from [33],
bounding boxes obtained from the object detection model [40]
and the height of these boxes were used as reference points
to estimate the locations of the people. Moreover, a small
CNN is used to detect the feet locations even when they are
not visible. The output of this CNN is used to correct the
height of the bounding boxes in cases of occlusions. Another
similar study in [41] also used bounding boxes obtained from
object detectors [42], [43] to estimate locations of the people
from surveillance camera footage by using the homography
matrix that is calculated from the known extrinsics. The work
in [44] used a feed forward neural network that was trained
on the intrinsic parameters of the camera and the keypoints
obtained from a pose estimation model. The model outputs
the predicted 3D locations as well as the orientations of the
detected people. While detecting safe distance violations, not
only the proximity but also the orientation of the people with
respect to one another is considered.

Most of the introduced works approach automatic social
distance estimation as a monitoring or surveillance task, where
the goal is to prevent social distance regulation violations. To

this end, they apply additional sensors, use predefined camera
settings, and/or manually define a homography matrix for a
certain environment. While such approaches can improve the
social distance estimation accuracy, they are not feasible when
the purpose is to analyze the impacts of social distances in
personal or media photo collections.

Moreover, the above-mentioned studies approach the auto-
matic social distance estimation problem as a binary classifica-
tion problem where they aim to classify the pair-wise distances
between people either as safe or unsafe, depending on a given
threshold. Classifying distances in a binary manner has a high
tolerance for distance estimation errors. For example, if the
threshold for safe distance is set to 2 meters, the actual distance
between a pair of people is 1.9 meters, and a method estimates
that distance as 0.1 meter, the percentual distance estimation
error would be 94.7%, but a binary classification approach
would still correctly label the situation as a social distance
violation. Furthermore, the binary approach does not provide
any additional information on the severity of the violations
in different situations which may be relevant information for
subsequent analysis.

A common pattern observed in most of the machine learning
based social distance estimation methods (with the exception
of at least [33], [44] that use keypoints of the human body) is
that they rely on the bounding boxes drawn by object detectors
to detect social distance violations. Although the current object
detectors are accurate in detecting objects, the bounding boxes
are generally loosely drawn around these objects. Thus, it is
not reliable to use only the bounding box information for
estimating exact distances between people as it is not possible
to infer accurate 3D location estimates from the bounding
boxes alone. Therefore, we aim to estimate exact 3D locations
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Fig. 3: Birdseye view of the indoor photo shoot. The ground truth locations of the people and cameras are given in blue and
red dots, respectively

of all the people in uncalibrated RGB images with respect
to the camera by using the information extracted from the
human body skeleton detected by body estimation algorithms.
Moreover, we also incorporate an object detection model for
people detection. However, the purpose of the people detection
in our approach is to only detect the false positives in skeleton
keypoints, when they are drawn on non-human objects.

The method in [33] is the most similar to our method as is
also uses body poses. In [33], manual input is used to estimate
the homography matrix of the image plane to the ground plane.
The method is evaluated on surveillance camera footage and
the task is approached as a binary classification problem. It is
feasible to manually set the homography matrix of surveillance
cameras as these cameras are generally non-moving and stable.
Contrary to this, we want our method to be fully automatic
as we aim to estimate distances in images taken in different
locations with different cameras. Instead of requiring manual
input to estimate the homography as the study in [33], we
assume that we can find keypoint pairs that are parallel to
camera’s sensor plane and we use the image parameters, i.e.,
focal length and sensor size in our distance estimation.

For the developing and testing social distance estimation
methods, it is important to have image datasets that have a
suitable setup and ground-truth for the task. The previous
works have used datasets such as Epfl-Mpv-VSD [45], Epfl-
Wildtrack-VSD [46] and OxTown-VSD [47]. These dataset
include videos taken by surveillance cameras with fixed extrin-
sic and intrinsics and they do not include manually measured
ground truth locations and distances. Instead, the locations of
the people are estimated by making use of the annotation boxes
that were drawn on the people. The pixel locations of these
annotation boxes are used as a reference point to estimate

the subjects’ locations by taking the extrinsic parameters into
account. This means that these locations are not exactly ground
truth, but estimations based on the known extrinsics and the
pixel locations of the manually annotated person bounding
boxes. Furthermore, since exact body parts are not annotated
and the annotations are only in bounding box format, it is not
feasible nor possible to accurately match the detected people
with the given ground truth people when there are multiple
overlapping boxes. Moreover, only the people that are passing
on a certain region of interest are annotated.

Due to the aforementioned reasons, the existing datasets
are not suitable for evaluating methods that aim at estimating
distances in general photo collections and are not manually
tuned for a specific camera and environments. Furthermore,
the approximate person annotations and location estimates
do not allow accurately measuring the distance estimation
performance, but are only suitable for detecting coarse vio-
lations in social distancing recommendations. While this may
be sufficient for surveillance purposes in fixed environments,
more accurate ground-truth and annotations are needed for
evaluating methods aiming at detecting subtle changes in long-
term social distancing behavior in varying environments. In
the following section, we introduce our novel dataset that
addresses the mentioned drawbacks of the existing datasets.

III. KORTE SOCIAL DISTANCE ESTIMATION
BENCHMARK

We provide a test benchmark for facilitating research in au-
tomatic social distance evaluation. We propose a performance
evaluation protocol and provide 96 test images with ground-
truth pair-wise distances. While the number of images is too
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low for training fully learning-based systems, it provides a var-
ied test setup. All the evaluation codes along with the test pho-
tos are publicly available at https://doi.org/10.23729/b2ea87e6-
b845-46b8-abf3-cdbe299ce8b0. It is also easy to complement
the benchmark with additional images by following the pro-
posed annotation format and using the provided evaluation
protocol.

A. Test Photo Collection

We collected test photos in two separate photo shoots. The
first photo shoot was organized outdoors at Tampere University
campus in December 2020. Every person was standing. The
second photo shoot was organized indoors at Tampere Univer-
sity campus in January 2021 with people sitting around tables.
In both photo shoots we had five volunteer test subjects. We
followed the COVID-19 restrictions at the time: everyone was
wearing a mask and we were less than 10 people gathering. As
an additional safety measure, we placed to closest distances
from each other only people who meet regularly anyway
because they share working space or live together. Every test
subject signed an agreement allowing to use their images for
research purposes. Any bypassers in the images were censored
out to respect their privacy and because their exact positions
were unknown. The photos were taken by a professional
photojournalist.

During the photo shoots, test subjects stayed on the same
known positions, while the photographer changed his position
and used multiple cameras and lenses at each spot. Fig. 2
shows the birdseye view of the first outdoor photo shoot. P0,
P1, P2, P3, P4, P5 are the locations of the 5 test subjects
and C0, C1, C2 are the camera locations. For the first photo
shoot, P0, P1, P2, P3, P4, P5, C0 and C1 were all on the
same ground plane, while C2 was at a balcony with a height
of 230 cm relative to the ground plane that all of the other
locations were at. Fig. 3 shows the birdseye view of the second
photo shoot. P0, P1, P2, P3, P4, P6 are the locations of the
6 people and C0, C1, C2, C3 are the camera locations. The
unit of the x and y axis labels is centimeters. For the second
photo shoot, all of the locations were on the same ground
plane. The ground truth locations of the cameras and the test
subjects were measured and maintained exploiting tiles on the
ground/floor that were equal in size. Only the camera location
C2 in the outdoor photo shoot was not on the same tiling and,
therefore, it was measured separately using a measuring tape.

We do not report the exact pitch angles, and they were not
fixed in the photo shoots. Due to the camera positions, pitch
angles are close to zero in most of the images except for
the 16 photos taken from camera position C2 in the outdoor
photo shoot, where the camera was at an elevated position.
We believe that our dataset represents a typical media or
personal photo collection with respect to the pitch angles, but it
should be noted that methods performing well on our dataset
(especially if they rely on the zero pitch angle assumption)
may not perform equally well on extreme pitch angles such
as overhead images.

The used camera models were Canon EOS 5D Mark II and
Canon EOS 6D Mark II. The used focal length sizes were 16,

Focal
Length (mm) Camera Model Shooting Setting

Indoor Outdoor
16 Canon EOS 6D Mark II 4 7
24 Canon EOS 6D Mark II 4 8
35 Canon EOS 6D Mark II 4 11
50 Canon EOS 6D Mark II 7 11

105 Canon EOS 6D Mark II 14 11
200 Canon EOS 5D Mark II - 7
300 Canon EOS 5D Mark II - 8
All 33 63

TABLE I: Numbers of photos in the test dataset for different
focal lengths (mm), camera models, and shooting settings
(indoor/outdoor).

24, 35, 50, 105, 200, and 300 mm. The cameras were stabilized
on a tripod and the tripod’s height was 135 cm for all images.
Fig. 4 shows example photos from both photo shoots, one
photo from each camera position.

B. Test Data Description

The overall dataset contains 96 images including 63 outdoor
images and 33 indoor images. All of the images are in JPG
format. 81 of the images have the resolution 4180x2768 and
15 of the images have the resolution 4080x2720. Two different
camera models were used and the sensor size for both of
these cameras is 36 mm in width and 24 mm in height. The
distribution of the pictures in terms of focal lengths, camera
models, and shooting setting are given in Table 1.

Along with the images, we also provide different annotation
data provided in three separate .csv files illustrated in Fig. 5.
The first file (Fig. 5a) contains the pixel locations of four
different body parts. These annotated body parts are center
of the eyes, center of the shoulders, center of the torso, and
center of the head. If a body part is not visible in the image,
then it is not annotated. The people in the images are labeled
as P0, P1, P2, P3, P4, P5, and P6 in the annotation file.
These person tags are consistent through all of the images.
This means that a person tag always refers to the same person
in all of the images that we provide. The second file (Fig. 5b)
contains the 3D locations of people and different camera
positions in both photoshoots. Photoshoot ID 0 refers to the
outdoor photo shoot and photoshoot ID 1 refers to the indoor
photo shoot. The third file (Fig. 5b) links the image filenames
with the corresponding photoshoot and camera location. The
cameras’ exterior orientation parameters are not included in
the metadata of the images.

New images can be added to the dataset simply by following
the described structure of the annotation data shown in Fig. 5.
This does not require any changes in the provided evaluation
codes. New photo shoots, i.e., new settings of people, must be
identified with a unique integer identifier. For any photo shoot,
the real world locations of the people should stay the same in
all the photos. There may be pictures taken from different
camera locations. Person and camera tags should start with a
P and C letter, respectively, followed by a unique identifier
integer. Person and camera location tags must be consistent
within a given photo shoot, however repeated tags in different
photo shoots are allowed. This means that two different people
or camera tags could be the same as long as they belong to

https://doi.org/10.23729/b2ea87e6-b845-46b8-abf3-cdbe299ce8b0
https://doi.org/10.23729/b2ea87e6-b845-46b8-abf3-cdbe299ce8b0
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Fig. 4: Example photos from the test dataset. The upper row has photos from the outdoor photo shoot taken from all camera
positions C0 (left) to C2 (right) and the lower row has photos from the indoor photo shoot taken from all camera positions
C0 (left) to C3 (right).

a different photo shoot. At least 1 of 4 body parts (center of
the eyes, shoulders, torso, head) of the people in the images
must be annotated in terms of pixel locations. They should be
named ”Eyes”, ”Shoulder”, ”Torso”, and ”Head” in the body
part column of the body part pixel location file in Fig. 5a.

To be consistent with the annotations in the provided test
images, the annotation can be done as follows. Using the
keypoint numbering in Fig. 7, the center of the eyes refers
to the middle point of the keypoint pair 15-16, the center
of the shoulders refers to the middle point of the keypoint
pair 2-5, the center of the torso refers to the middle point
of the keypoint pair 1-8, and the head should be annotated
as middle point of the head regardless of the head’s angle
with respect to the camera. If a head is sideways and only
one of the eyes is visible, the visible eye can be annotated
as the center of the eyes. If none of the eyes are visible, the
center of the eyes should not be annotated. The center of the
eyes should also not be annotated if at least one of the eyes
is out of the picture due to the head being on the edge of
the picture. The other body parts can be annotated as long as
they are either completely visible in the picture or are partially
occluded by another person or object. In the cases where they
are partially occluded, the pixel location should be estimated
as if the occluding person or object was not present in the
picture. The center of the shoulders, torso, and head should
not be annotated only in the cases where these body parts
are either partially or completely out of the picture due to
the person being on the edge of the picture. If a person is
sideways and only one of the shoulders, i.e., keypoints 2 and
5, is visible, this point can be annotated as the center of the
shoulders.

C. Evaluation Protocol
Any distance estimation method to be tested using the

benchmark should give as output at least 1 of the 4 annotated
pixel body locations along with either the estimated 3D

location of the persons or the estimated distances between the
people. The body part can be different for each person, or a
method may choose to give only a single body part, such as the
head, for all the persons. The test benchmark uses the pixel
locations to automatically match each detected person with
one of the ground truth locations and then computes average
percentual pair-wise estimation errors between the estimated
and ground truth distances.

We provide all the necessary functionalities for testing as
long as the required output for each image is given. Internally,
the matching is carried out by comparing the automatically
detected body pixel locations with the points annotated in the
files. The automatically detected body parts are compared to
all of the respective annotated body parts. As an example, a
detected torso point is compared to all of the annotated torso
points for that image. For all of the detected body parts of
a person, the closest respective annotated point in terms of
pixel-wise distance is found. In case there are more than one
detected persons matched with the same ground truth person,
the matching is done in a greedy manner by selecting only
the closest match and the rest of the detected persons for that
ground truth person are regarded as false positives.

After matching the detections with the persons labeled in the
photos, we calculate the distances between each person pair by
using their estimated 3D locations. Then, the estimated pair-
wise distances are compared to the corresponding ground truth
pair-wise distances to obtain a percentual distance estimation
error for each pair. The performance is evaluated by taking the
average of all of the pair-wise percentual distance estimation
errors for each image and then averaging over images. In
addition to the pair-wise percentual distance estimation error,
we evaluate also the person detection rate, i.e., the ratio of
correctly detected person averaged over all the images, and the
false discovery rate averaged over all the images. It should be
noted here that we do not use any threshold for matching the
detections with the actual people. As long as the number of
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(a) Body part pixel locations

(b) Ground truth relative 3D location (c) Photoshoot identifiers and camera locations

Fig. 5: Annotation file formats

detections is lower or equal to the actual number of images, all
the detections are matched. Thus, detections can be considered
false positives only if there are more detections than actual
people for an image. Therefore, a method producing many
false positive detections is expected to get a high detection
rate, but naturally the distance estimations would likely be
poor and the false discovery rate would be higher. On the
other hand, a method missing most the people could have a low
pair-wise percentual distance estimation error for the detected
people, but still not be suitable social distancing analyses.
Therefore, it is important to consider all these metrics together,
when evaluating a social distance estimation algorithm.

The pair-wise percentual distance estimation error De for
the eth single image is given by the following formula where
n is the number of detected people in the image, Ei is the
estimated 3D location of the ith person and Gi is the ground
truth 3D location of the ith person:

De =

∑n−1
k=1

∑n
i=k+1

‖Ek−Ei‖−‖Gk−Gi‖
‖Gk−Gi‖ ∗ 100(

n
2

) . (1)

Here, the distances may be also directly given instead of the
3D locations.

In order to obtain an overall distance estimation error metric
for a set of images, De of all of the images in the image set

are averaged. The distance estimation error for a set of images
DE is given by the following formula where N is the number
of images in the set:

DE =

∑N
e=1De

N
. (2)

The test benchmark gives DE , the person detection rate, and
the false discovery rate as an output for a given set of images as
long as the input and annotated data are provided in the proper
format. Currently, the test benchmark uses our provided test
photos, but if new images are added to the dataset as explained
in Section III-B, these will be automatically considered in the
evaluation.

IV. PROPOSED METHOD FOR SOCIAL DISTANCE
ESTIMATION

Our proposed method to estimate social distances takes
advantage of object detection and human pose estimation
methods. Firstly, the input image is given to YOLOv4 [42]
object detection model to obtain bounding boxes for people.
After bounding boxes are obtained, overlapping boxes are
grouped together. Then, these grouped boxes are cropped from
the full image and they are individually given to OpenPose
[34]–[37] human pose estimation model. After the skeleton
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Fig. 6: False positive examples for OpenPose (left) and YOLOv4 (right).

keypoints are extracted from OpenPose, the pixel locations of
these keypoints are used in our distance estimation algorithm
to obtain 3D location estimates for each person in the image.

When YOLOv4 and OpenPose models are used together,
they eliminate the other model’s false positives. The left
image in Fig. 6 shows a case where a backpack is falsely
recognized as a human by OpenPose. However, YOLOv4
does not recognize it as a human. Therefore, the backpack
would not be cropped and given to the OpenPose model. The
right image in Fig. 6 shows a case where a bicycle is falsely
recognized as a human by the YOLOv4 model. The bicycle is
then cropped from the full image and given to the OpenPose
model. However, the OpenPose model does not detect any
human skeleton in the cropped bicycle image. Therefore,
neither of these false positive cases is further processed by
the distance estimation algorithm.

After the cropped images from YOLOv4 are processed
by the OpenPose model, the skeleton keypoints for detected
human bodies are extracted. We use the 25 keypoint output
version of OpenPose illustrated in Fig. 7. Out of the extracted
keypoints, we select pairs whose mutual distance is indepen-
dent of the person’s pose, whose average distance is available
in the literature, whose angle towards the lens is as constant
as possible, and which are visible in most of the photos. With
these criteria, we select three key point pairs for our algorithm:
15-16 for pupillary distance, 2-5 for shoulder width, and 1-8
for torso length. In typical media or personal photos, the torso
has the most constant angle towards the lens, but the eyes and
shoulders are visible also in the close-up and portrait photos,
where the torso is not seen. We assume average adult body
proportions for the three keypoint pairs: 389 mm for shoulder
width [48], 63 mm for pupillary distance [49] and 444 mm
for torso length [50]. The extracted keypoint pairs are then
processed by our distance estimation algorithm that estimates
3D positions with respect to the camera for each person.

We use the pinhole camera model [51] shown in Fig. 8
for our calculations. We also make an assumption that every
keypoint pair is parallel to the camera’s sensor plane. We make
these assumptions because the subjects’ poses and camera’s
exterior orientation parameters [52] are not known. Estimating
the exterior orientation parameters [52] of the camera from
single images is an ill-posed problem [53], but in most cases
the angle between a person’s torso and the camera’s sensor
plane is negligible for our calculations.

Fig. 7: 25 skeleton keypoint output of OpenPose.

We denote 3D locations of the keypoints on the image
coordinate system as

(xa, ya, f), (3)

where f is the focal length, and 3D location estimates of the
keypoints on the world coordinate system as

En = (Xa, Ya,−d), (4)

where d is the distance to the camera. The distance between
a pair of keypoints on the image coordinate system is

Di =
√
(x0 − x1)2 + (y0 − y1)2 + (f − f)2 (5)

and the distance between the keypoints on the world coordinate
system is

Dw =
√
(X0 −X1)2 + (Y0 − Y1)2 + (d− d)2. (6)
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Fig. 8: Pinhole camera model.

Fig. 9: Birdseye view of orientation angle toward the lens.

Since the camera sensor’s plane size is known, xa and ya in
Eq. (3) can be derived from the the x and y pixel locations of
the keypoints in the image. The last coordinate, f , in Eq. (3) is
obtained from the camera parameters. Thus, all the keypoints’
3D positions on the image coordinate system in Eq. (3) are
known and Di can be solved. By using triangle similarity, the
following equations give 3D positions of the keypoints on the
world coordinate system. Eq. (7), where Dw is one of the
average body proportions, is used to derive d in Eq. (4). After
d is derived, Xa and Ya are obtained from Eqs. (8) and (9).

Di

f
=
Dw

d
(7)

Xa = − d
f
xa (8)

Ya = − d
f
ya (9)

After the 3D coordinates of the keypoints on the world
coordinate system in Eq. (4) are estimated, the middle points of
each detected keypoint pair are used to represent a 3D location
for the person. Thus, we have at most 3 different estimated 3D
locations for a person, one for each keypoint pair (shoulder,
pupil, torso). While we assume that the keypoint pairs are

parallel to the camera’s sensor plane, this assumption may
not be valid, and the accuracy of the estimated locations is
affected by the severity of the violations. Fig. 9 shows the
birdseye view of a person’s orientation angle θ toward the
lens. If the angle is non-zero, the shoulder and pupil keypoint
pairs are no longer parallel to the sensor plane and the
estimates based on these keypoint pairs are prone to error.
However, in a typical situation of upright torsos the estimates
made from the torso length are unaffected by θ, because θ
does not affect Di computed using Eq. (5) for the torso.
On the other hand, also a torso may not be parallel to the
sensor plane either because the person is in a bent position or
because the camera’s pitch angle is non-zero. For an overhead
image, shoulders might be parallel to the sensor plane, while
torsos would be perpendicular. Whenever the assumption on a
keypoint pair being parallel to the sensor plane is violated,
Di in Eq. (5) decreases. A smaller Di leads to a larger
estimate for d from Eq. (7). For this reason, we select the 3D
location with the smallest distance to the camera. For typical
media or personal photos, where the pitch angle is small, this
means using the estimate derived from the torso whenever it is
available. However, for close-up and portrait pictures, the torso
is often not visible. Fig. 10 shows three pictures taken from the
same location but with increasing focal lengths. The rightmost
image in Fig. 10 is an example of a close-up picture where
the distance estimations have to be made from the shoulder
and pupil distances since there are no visible torsos.

Finally, our method computes the distances between all
the pairs of detected people and gives them as outputs. The
pixel locations for the detected persons are given to be able
to evaluate on our benchmark, while they are not needed if
the method is used for analysing social distancing in novel
images. The overall flowchart of the proposed social distance
estimation method is illustrated in Fig. 11.



SEKER ET AL.: AUTOMATIC SOCIAL DISTANCE ESTIMATION FROM IMAGES 10

Fig. 10: Examples of pictures from the dataset belonging to the first photo shoot, all of them taken from camera location C1.
The used focal lengths for the pictures are 16mm, 105mm and 300mm from left to right.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

All of the code was developed in Python programming
language version 3.8 [54]. OpenPose [34]–[37] and YOLOv4
[42] models were used for human detection. All of the images
were resized to 50% of their original sizes before being
sent to YOLOv4 model. The input size of YOLOv4 was
set to 704x704. Input size was not set for OpenPose as
OpenPose is able to adapt its input size for each image. The
version of the OpenPose model we were using was originally
trained by using the COCO keypoint challenge dataset [55],
combined with OpenPose authors’ own annotated dataset for
foot keypoint estimation which consists of a small subset of
the COCO dataset where the authors labelled foot keypoints.
YOLOv4 uses CSPDarknet53 [56] as its backbone which
was trained on the ImageNet dataset [57]. The deep learning
models were downloaded from their respective official source
code pages 1 2 and they were loaded and used by TensorFlow
library version 2.3.1 [58]. For image processing purposes,
OpenCV imaging library was used [59]. In addition to our
final method that generates 3D position estimates using torso,
shoulders, and eyes and selects the estimate closest to the
camera as explained in Section IV, we also evaluate variants
of the proposed method, where only one of these body parts
is used at the time. We use our test benchmark to compute the
results for all the images and for outdoor and indoor images
separately.

B. Results

Tables II, III, and IV show the person detection rates and
pair-wise percentual distance estimation errors for all the
images, outdoor images, and indoor image, respectively. Since
we are using YOLOv4 [42] in addition to OpenPose [34]–[37]
and they cancel each other’s false positives, we have no cases
with more detections than actual people in an image. This
leads to zero false discovery rates as explained in Section
III-C. Therefore, false discovery rates are not reported in
the tables. It can be observed from Table II that the most
reliable body part to estimate locations is the torso. However,
estimations made from the torso alone fail for close-up pictures
where the torso detection rate is low. When all three body

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
2https://github.com/AlexeyAB/darknet

parts (shoulder, pupil, and torso) are used together for the
estimations, the obtained results shown in the last column
are better than the results obtained from a single body part.
Although the combined method has slightly lower performance
than the torso based method in terms of pair-wise percent
distance error, person detection rate is significantly higher than
that of the torso based method. The combined method mostly
uses the torso whenever it is visible (overall shots) and uses
the shoulder and pupil distances when the torso is not visible
(close-up shots).

Looking at Tables III and IV, it can be seen that there
are no significant differences in terms of pair-wise distance
errors when it comes to indoor and outdoor pictures. However,
it should be noted that the person detection rates for the
outdoor pictures are higher than for the indoor pictures. This is
primarily caused by the fact that the body parts of the people in
the indoor pictures were obstructed by the chairs. There were
also more cases of people facing away from the camera and
people standing in front of other people in the indoor photo
shoot.

C. Additional results and analysis

We separately show the results for the images that were
taken from camera location C2 for the first (outdoor) photo
shoot on Table V. C2 location was at a balcony of height
230 cm relative to the ground plane where the subjects were
standing on. Thus, the camera was pitched down to include
the subjects within the field of view. For the other camera
locations, the pitch angle was close to zero and people were
mainly standing or sitting with their torsos upright. Therefore,
the torsos can be expected to be almost parallel to the cam-
era’s sensor plane and, thus, produce good distance estimates
whenever they are visible. For camera location C2, this may no
longer be the case. However, the results show that the relative
pair-wise distance estimation errors for C2 locations are only
slightly higher than on the average. We can conclude that this
level of pitch angle does not cause significant problems.

A graph showing how the pair-wise distance estimation
errors depend on the ground truth distances is given in Fig. 12.
It can be observed from this graph that the pair-wise distance
estimations errors are on average slightly lower for higher
ground truth distances.

We also provide additional results by formulating the
social distance estimation problem as a binary classifica-
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Focal
Length (mm)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detection

Rate

Pair-wise
Percent
Distance

Error

Person
Detection

Rate

Pair-wise
Percent

Distance
Error

Person
Detection

Rate

Pair-wise
Percent
Distance

Error

Person
Detection

Rate

Pair-wise
Percent

Distance
Error

16 11 0.84 163.91 0.68 45.81 0.77 19.94 0.90 20.50
24 12 0.83 230.80 0.61 65.20 0.84 17.76 0.93 21.62
35 15 0.84 101.48 0.70 52.86 0.96 20.51 0.96 22.61
50 18 0.84 190.37 0.62 50.35 0.84 26.16 0.91 25.52
105 25 0.82 116.52 0.80 52.65 0.72 34.54 0.95 34.15
200 7 0.71 109.99 0.75 50.61 0.41 93.54 0.79 53.68
300 8 0.72 288.13 0.89 34.48 0.18 - 0.89 34.48
All 96 0.81 166.45 0.72 51.59 0.73 27.55 0.92 28.88

TABLE II: Person detection rates and pair-wise percentual distance errors for each of the methods for both of the photo shoots
(indoor and outdoor) combined

Focal
Length (mm)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detection

Rate

Pair-wise
Percent
Distance

Error

Person
Detection

Rate

Pair-wise
Percent

Distance
Error

Person
Detection

Rate

Pair-wise
Percent
Distance

Error

Person
Detection

Rate

Pair-wise
Percent

Distance
Error

16 7 0.85 129.35 0.71 56.42 0.85 18.75 0.85 18.47
24 8 0.83 169.08 0.64 84.67 0.91 16.98 0.91 20.71
35 11 0.90 174.70 0.76 64.18 0.96 20.16 0.96 21.08
50 11 0.88 192.92 0.70 65.19 0.89 24.33 0.92 26.40
105 11 1.00 127.59 1.00 48.99 0.81 41.64 1.00 33.09
200 7 0.71 109.99 0.75 50.61 0.41 93.54 0.79 53.68
300 8 0.72 288.13 0.89 34.48 0.18 - 0.89 34.48
All 63 0.86 164.43 0.78 58.73 0.74 28.82 0.91 28.87

TABLE III: Person detection rates and pair-wise percentual distance errors for each of the methods for the first photo shoot
(outdoor) where every person is standing up

Focal
Length (mm)

Number
of

Pictures

Shoulder
Based

Method

Pupil
Based

Method

Torso
Based

Method

Combined
Method

Person
Detection

Rate

Pair-wise
Percent
Distance

Error

Person
Detection

Rate

Pair-wise
Percent

Distance
Error

Person
Detection

Rate

Pair-wise
Percent
Distance

Error

Person
Detection

Rate

Pair-wise
Percent

Distance
Error

16 4 0.83 224.38 0.62 29.89 0.62 22.71 1.00 24.05
24 4 0.83 354.25 0.54 26.27 0.70 19.31 0.95 23.45
35 4 0.66 51.94 0.54 24.56 0.95 21.46 0.95 26.82
50 7 0.76 186.35 0.50 31.27 0.76 29.03 0.88 24.13
105 14 0.67 105.46 0.65 55.39 0.64 27.44 0.91 34.83
All 33 0.73 170.57 0.59 38.92 0.71 25.24 0.92 28.90

TABLE IV: Person detection rates and pair-wise percentual distance errors for each of the methods for the second photo shoot
(indoor) where every person is sitting down

Number
of

Pictures

Combined
Method

Person
Detection

Rate

Pair-wise
Percent

Distance
Error

16 1.00 32.88

TABLE V: Person detection rates and pair-wise percentual
distance errors for the combined method for the photos taken
from camera location C2, for which the zero pitch angle
assumption is not valid.

tion task similar to previous works. We set four differ-
ent social distance thresholds as safe distances. If the dis-
tance between a pair is smaller than the threshold, we

consider the distance to be unsafe and safe otherwise. We
consider the unsafe case as the positive class. The stan-
dard evaluation metrics for binary classification problems
are Precision, Recall and F1-Score. The formulas for these
metrics are Precision = TruePositives

TruePositives+FalsePositives ,
Recall = TruePositives

TruePositives+FalseNegatives , F1 − score = 2 ∗
( Precision∗Recall
Precision+Recall ). F1-score is an overall measure of the

binary classification performance and is always within the
range of 0-1. An F1-score of 1 indicates perfect classification
performance. The F1-score results of our proposed method are
given in Table VI.

As can be seen in Table VI, the choice of safe distance
threshold changes the F1-scores drastically. For example, the
low performance for 1m threshold follows from many ground-
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Fig. 11: Flowchart of the method.

Fig. 12: Pair-wise distance estimation errors for each of the
ground truth pair-wise distances.

Safe Distance (m) F1-Score
1 0.39

1.5 0.61
2 0.81
3 0.90

TABLE VI: F1-scores of our proposed method for different
safe distance thresholds

truth distances being just slightly above the threshold. As
our methods tends to slightly underestimate the distances as
explained in Section IV, these cases lead to false positives.
This supports our claim that formulating the problem of social
distance estimation as a binary classification task is not an
optimal way to evaluate the performance of the methods. As
the results depend greatly on the threshold value, F1-scores
do not reflect the true capacity and accuracy of the distance
estimation performance of a method. Our proposed evaluation
protocol, which gives the average pair-wise percentual dis-
tance estimation error offers greater insight on the method’s
performance.

VI. CONCLUSION

To address the need for more accurate estimation of social
distances from general images to analyze social and cultural
impacts of the social distancing regulations introduced due
to the COVID-19 pandemic, we proposed a new test bench-
mark for automatic social distance estimation algorithms. The
benchmark includes an evaluation protocol for methods pro-
ducing pair-wise social distances. The images follow a typical
journalistic photographing style instead of a fixed monitoring
setup, and they were taken with varying camera settings.
Furthermore, we proposed a robust method that estimates 3D
locations of persons in images and then uses these estimated
locations to calculate the social distances between the people.
Our method is able to estimate social distances in any single
image without the need for knowing the extrinsic parameters
or manually calibrating the homography matrix of the image
plane to the ground plane, provided that the focal length
and sensor size information of the camera are known, which
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enables our method to be used flexibly on all kinds of images.
The proposed method was able to obtain 92% person detection
rate along with 28.9% pair-wise distance error on the proposed
test benchmark.

While our method gives satisfactory results for overall shots
where the torsos of the people can be detected by OpenPose,
the accuracy of the estimations gets weaker for close-up shots
where the torsos are generally not visible in the image. This
happens because our method assumes one of the keypoint
pairs (eyes, shoulders, torso) to be parallel to the camera’s
sensor plane, and violations of this assumption lead to distance
estimates that are longer than the ground-truth. In typical jour-
nalistic photos, where the camera’s pitch angle is close to zero
and the peoples’ torsos are in upright positions, the assumption
is typically most accurate for the torso keypoint pair whenever
it is visible in the image. Thus, our method could be improved
by estimating automatically also the pitch angle and persons’
angles with respect to the camera. Our method also uses
average adult human body proportions for the calculations.
Therefore, the estimations made for children in the images
would be less accurate. Our method can be improved by taking
advantage of other methods that can estimate the gender and
ages of the subjects and adaptively changing the assumed
body dimensions for each individual subject depending on
their gender and age. It should also be noted that our method
requires the focal length and sensor plane size information
of the camera. Therefore, our method cannot be applied on
photos where these information are lacking. For our method
to be applied on pictures where the focal length and sensor
plane size are not known, these information would have to be
estimated through other methods.

In our future research, we will use our benchmark to
further enhance the proposed method and then use it in an
interdisciplinary study, where we will analyze the impacts of
the COVID-19 regulations on social interactions. While the
COVID-19 makes the social distance analysis very topical,
the benchmark and the developed methods are naturally not
restricted on COVID-19 related analysis, but they can be
beneficial in other image-based proxemics studies focusing on
different historical, cultural, or journalistic phenomena.
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