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Abstract

In this paper, we develop two fully parametric quantile regression models, based on power
Johnson Sg distribution Cancho et al. [Statistical Methods in Medical Research, 2020], for mod-
eling unit interval response at different quantiles. In particular, the conditional distribution is
modelled by the power Johnson SB distribution. The maximum likelihood method is employed
to estimate the model parameters. Simulation studies are conducted to evaluate the performance
of the maximum likelihood estimators in finite samples. Furthermore, we discuss residuals and
influence diagnostic tools. The effectiveness of our proposals is illustrated with two data set given
by the mortality rate of COVID-19 in different countries.

Keywords: COVID-19; Parametric quantile regression; Power Johnson Sp distribution; Pro-
portion.

1 Introduction

The most commonly employed two-parameter distribution for modeling doubly bounded random
variables on the unit interval is the beta distribution. In order to accommodate explanatory variable
in the modeling, [Ferrari and Cribari-Netd dﬂﬂl) introduced the beta regression model based on a
parameterization of the beta distribution in terms of the mean and precision parameters. A substantial
number of practical and theoretical works have focused on the use of the mean reparameterized beta
distribution as an integral of the model. For example, see D&p_ma_am:l_Eeﬂad (IZDD.@),

dM) and Migliorati et all (IM). However, there are limitations of the conditional mean models.
For example, in an assymetric distribution, or in the presence of outliers, the mean is pulled in the
direction of the tail, making it a less representative measure of central tendency.
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Quantile regression, introduced by [Koenker and Bassett (1978), is a methodology for understand-
ing the conditional distribution of a response variable given the values of some covariates at different
levels (quantiles), thus providing users with a more complete picture. In particular, several authors

, |2Q]j; |L§an.t§_am:l_MQr_Qn£tAr_ena§, |202d) highlighted the robustness to outliers connected with
quantile regression models. Furthermore, if the conditional dependent variable is skewed, the quan-
tiles may be more appropriate when compared with the mean (Maﬂgm_aﬂ, 2020).

However, parametric quantile regression models for limited range response variables has not re-
ceived much attention in the literature. [Lemonte and Bazdn (IM) introduced a new class of distribu-
tions named the generalized Johnson Sp with bounded support on the basis of the symmetric family
of distributions. In particular, Lemonte and Bazan dZQlﬁ) provided the median re-parameterizations
of the Johnson Sp distribution (m, ) that facilitates its use in a regression setting. Un-
like the beta regression, the median in the re-parameterized Johnson Sg distribution is related to a
linear predictor. (Cancho et all (2020) generalized the Johnson S model to a general class of dis-
tributions. The authors introduced an extra parameter to model the shape of the Johnson Sp dis-
tribution, and studied a quantile regression model for limited range response variables. However,
they consider the model only based on the normal distribution. Other quantile regression models

for limited range response variables are presented in [Bayes et all (201 1), Mazucheli et all M) and
Lemonte and Moreno-Arenas M).

In this paper, we formulate two rich classes of parametric quantile regression models for a bounded
response, where the response variable is power Johnson Sg distributed (Cancho et al, 2020) using a
new parametrization of this distribution that is indexed by quantile (not only for median regression)
and shape parameters. The estimation and inference for the proposed quantile regression models can
be carried out based on the likelihood paradigm (parametric approach). Also, we give full diagnostic
tools for detecting possible outliers and discuss a type of residuals. The main motivations for these
new parametric quantile regression models are fourfold: (i) the Johnson Sp and power Johnson Sp
regression models are themselves special cases of the proposed quantile models; (ii) the first proposed
model has a parameter which controls the shape and skewness of the distribution; (iii) the second
proposed model has less computational cost; and (iv) we considered the model based on several
models (logistic, Cauchy and normal) and several link functions.

The article is organized as follows. In Section 2] we construct two new quantile regression mod-
els for bounded response variables. Estimation, residuals and diagnostic measures are discussed in
Section[3l Section 4 discusses some simulation results for the maximum likelihood (ML) estimation
method. The effectiveness of our models is illustrated in Section [3 by using the mortality rate of
COVID-19 in different countries. Final comments are presented in Section[6l This paper contains an
additional application related to the reproductive activity of the anchoveta in Chile in a Supplementary
Material.

2 The generalized Johnson S distribution

Lemonte and Bazan (IM) introduced a new class of distributions named the generalized Johnson
Sp (“GJS” for short) distribution. The class is defined by the transformation Y = Q~'((X —~)/d) €
(0,1), where v € R, § > 0, Q(y) = log(y/(1 — y)) is the logit function (also representing the
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quantile function for the standard logistic distribution) and X ~ S(0,1;g¢), i.e., the symmetrical
family of distributions with pdf given by g(w), w € R, where g is a function such as g : R — [0, c0).
Considering the reparametrization v = —dQ(§), the cdf of the GJS is given by

3[Q)-Q(&)]
Plyi.o) = [ g(u)du, 3.6 € (0.1)

As F(§;&,0) = 1/2, the parameter £ represents directly the median of the distribution. Additionally,
the authors interpret ¢ as a dispersion parameter. Therefore, a regression structure on £ and ¢ is
studied by the authors, providing a rich class of median regression model with varying dispersion.
Cancho et all (2020) considered g(u) = ¢(u) (where ¢(-) denotes the pdf of the standard normal
model) and the power model transformation , ; |]lm:an.§, [lQQj) to extend this class of
models (named as PJSB), which cdf is given by

Fy;a,7,0) = [@(y+0Q(y)]*, y€(0,1),a,6>0,7€R.

Besides the logistic model, the authors also considers ()(y) as the quantile function for the normal,
Cauchy, Gumbel and reverse Gumbel models. Thus, the pdf of the PISB model is

Fr08.0) = Bafo(y -+ 0QUNI ot + 60 |“92. ye (0.1

Defining , = ®~!(¢/*), the authors considered the reparametrization ¢ = Q= (%) , which

represents the median of the PJSB distribution (for any Q)(-) quantile function). As v = xg5(a) —
dQ(1)), the pdf of the PJSB can be expressed as

£ (59,8, @) = 8a[@(1Q(y)~ Q) +05(a))]* D (S1Q(y) ~ Q1) +0.5(0) ‘dQ—(y)

1).
& | y€(0,1)

The authors proposed a regression model for ¢) and ¢ in this model. However, this model can be re-
strictive because considers the only normal distribution. For this reason, we consider the power model

transformation of ILehmanrl ( 1953); Durrans (lLQQj) for the GJS distribution of Lemonte and Bazan

M), say the power generalized Johnson S (PGJSB) distribution, with cdf given by

3[Q(y)-Q(&)] “
F(y;€,0,a) = (/ g(u)du> = [G(6[Q(y) — QD] = [G(v+QW))]*, vy € (0,1),

(1
and pdf given by

Fly:7.0.0) = 8alG(3 + Q)] gy +5Q(y)) \LQ@/)

1).
& | y € (0,1)

where G is the cdf related to g. Evidently, for G = ®, we recover the model in (Cancho et al) M).
However, we are interested in model a general quantile, say ¢, not only the median. In this work, we
discuss two ways to model the 100 x gth quantile considering the PGJSB model.
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1. Wenote that ) = Q! <%> is the 100 x gth quantile for the PGISB model, where x; (o) =

G~'(¢**). Based on this idea, we also can reparametrize the model noting defining v =
x7(a) — 0Q(1)). The pdf for this reparametrization is

dQ(y)

36,8, 0) = 6a[G(BR() Q)]+ ()" g (BQ(y) Q)+ (0) 'W' Cye(o).
(2)
In this work, we will refers to this specific parametrization as RPGISB1, (¢, 6, a).
2. Despite the nature of « is to be a parameter, we can consider a(q) = —log(q)/log(2), ¢ €

(0,1) as fixed. With this definition, the cdf in (I)) evaluated in £ is given by F(&;:€,0) =
(1/2)*9) = q. Therefore, fixing a(q) = — log(q)/log(2), ¢ € (0, 1), we have that ¢ represents
the 100x gth quantile of the distribution and similarly to the work of Lemonte and Bazan (2016),

0 also can be interpreted as a dispersion parameter. We will refers to this parametrization as
RPGISB2,(¢, ).

In both cases, the RPGJSB1, and RPGJSB2, models can be used to define a rich class to perform
quantile regression for data in the (0, 1) interval (not only for median regression). The advantage of
RPGJSB1, model is that «, for a fixed quantile 1), controls the shape of the distribution (different
«’s produce different shapes). However, in this parametrization the shape of the model also depends
on ¥. As we will perform regression on 1, this indicates that the shape of the quantile depend on
the covariates. A second problem is the computational costs, because evaluate 2| can be hard to
compute for some combinations of g and (). On the other hand, the advantage of RPGJSB2, is the
parsimonious (because one parameters is not estimated) and the reduction in the computational costs,
because « is considered fixed. However, in the RPGISB2, model the shape of the distribution is
maintained (because the model belongs to the location-scale family of distributions) because such
shape is “fixed”.

Figure[I]shows the density function for the RPGISB1, (1, § = 1, @) model with logit link and G = ®
under different combinations of ¢, ¢ and a. From Figure [Il note that the proposed model is very
flexible since its density can assume different shapes.

3 Inference and its associated diagnostic analysis

In this section, we discuss some aspects related to the inference, residuals and diagnostic analysis
of the RPGJSB1, and RPGJSB2, quantile regression models.

3.1 Inference

Suppose the 100 x gth quantile ¢/ for the RPGJSB1, model and the dispersion parameter ¢ satisfies
the following functional relations

Qi) = mi = XiTB and log(6;) = 1o = ZZ-TVa (3)
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Figure 1: Pdf for RPGIJSB1,(¢,6 = 1, &) model with logit link and G = ®. Left panel: ¢ = 0.25,
a = 0.5 and varying v; center panel: ¢ = 0.5, @ = 0.5 and varying v; right panel: ¢ = 0.5, ¢¥ = 0.4
and varying a.

or
Q(gz) =i = XZTB and 10g<5i) = T2 = ZiTV, “4)

for the RPGJSB2, model, where 3 = (8,...,,)  and v = (v,...,1,)" are vectors of unknown
regression coefficients which are assumed to be functionally independent, 3 € R? and v € R", with
p+r < n, ny; and ny; are the linear predictors, and x; = (i1, ..., %) and z; = (21, .., 2i) "
are observations on p and r known regressors, for © = 1,...,n. Furthermore, we assume that the
covariate matrices X = (xi,...,%,)' and Z = (zi,...,2,)' have rank p and r, respectively. The
log-likelihood function for the RPGJSB1, model is given by

n

£46) = 3 { 10g(6) +Iog(e) + 0 = 1)10g {G (4Q) — Q(wn)] + 73(a) }

i=1
dQ(y;) } (5)

dy;
£26) = 3 { (5] + Iox(a) + (o = 1) 0g 6 (GQ(w) ~ QU]
dQ(y;) }
: (6)

dy;
Note that & = (B7,v",a) and @ = (B",v") is the vector of parameters for the RPGISB1, and

RPGJSB2, models, respectively. The ML estimator of 8, say 5, is obtained maximizing equation
@) or (6), depending on the considered model are presented in Section . We considered the maxi-
mization procedure based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method initialized with
a vector of zeros. To validate a solution, we checked: 1) If the convergence is attached and; ii) if the
determinant of the hessian such matrix is positive. If the two conditions are not satisfied, we rerun
the procedure based initialized with a random vector generated by independent standard normal vari-

5

log {9 (5.10(u1) — Q)] + 22(a)) } + log \

whereas for the RPGJSB2, is given by

log {9 (5.1Q(3:) — QE) + log ’




ables until i) and ii) are satisfied. Under usual regularity conditions (see Cox and Hinkley, 1974) 0 is
consistent. Moreover,

z_l(a) [é\— 0} A Npir (Opir, Lpyr),  asn — 400,

~

where 2(8) = —0%(,(8) /0000 | ,_5 is minus the estimated hessian matrix for the RPGISBI1, (I = 1)
and RPGJSB2, (I = 2) models, respectively.

3.2 Residuals

In order to assess if the posited model is correct, we will consider the randomized quantile residuals
(RQRs) proposed by Dunn_and_SmthH (t]ﬂ%). For the RPGJSB1, model, such residuals are given by

F= o7 (IGGRW) - QU + ay@)F) . i=1...m.

whereas for the RPGJSB2, model, the RQRs are given by

7= 07 ((66IQW) —QENI @), i=1...n.

gi, @ and @i, i =1,...,n, correspond to the expressions in equations (3) and () evaluated in 3 and
v, for each model, respectively. If the model is correctly specified, the distribution of 77, ..., 7, is

standard normal, which can be validated considering different normality tests, such as Kolmogorov-
Smirnov (KS), Shapiro-Wilks (SW), Anderson-Darling (AD) and the Cramér-Von-Mises (CVM)
tests. See |Xa;Lam:l_Suﬂ (2011)) for a discussion about such tests.

3.3 Local influence

The local influence method suggested by CooK (@) evaluates the simultaneous effect of ob-
servations on the ML estimator without removing it from the data set, based on the curvature of the
plane of the log-likelihood function. Consider ¢;(0;;w) and ¢5(05; w) the log-likelihood functions
corresponding to the RPGJSB1, and RPGJSB2, models, respectively, but now perturbed by w, a
vector of perturbations. w belongs to a subset {2 € R™ and w, is a non-perturbed n x 1 vector,
such that ¢,(6;w,) = ¢,(0), for all 6, [ = 1,2. In this case, the likelihood displacement (LD) is

~

LD(0) = 2(&(@) — 0(0,)), where 6., denotes the ML estimate of 6 on the perturbed regression
models, that is, @,, is obtained from ¢,(8; w). Note that £,(8; w) can be used to assess the influence
of the perturbation of the ML estimate. Cook (1986) showed that the normal curvature for 0 in the
direction d, with ||d|| = 1, is expressed as C4(8) = 2|d"VT%(8)"'Vd|, where Visa (p +r) x n
matrix of perturbations with elements V;; = 90%(,(6; w)/90;0w;, evaluated at 0 = 0 and w — wy,
foryj=1,...,p+randi=1,...,n. Alocal influence diagnostic is generally based on index plots.
For example, denoting (@) the observed Fisher information matrix, the index graph of the eigen-

vector d,,,, corresponding to the maximum eigenvalue of B(6) = —V X(0)"'V, say Cy . (0),

max (

6



evaluated at 0 = §, can detect those cases that, under small perturbations, exert a strong influence
on LD(0). Another important direction of interest is d; = e;,,, which corresponds to the direction of
the case 7, where e;,, is an n x 1 vector of zeros with value equal to one at the ith position, that is,
{ein,1 < i < n} is the canonical basis of R". In this case, the normal curvature is C;(6) = 2|b;],
where b;; is the ith diagonal element of B (0) given above, for i = 1,...,n, evaluated 8 = 6. 1If
C,(é) > 2(](0) where C(0 ) Yo, Ci(e ) /n, it indicates case 7 as potentially influential. This
procedure is called total local influence of the case ¢ and can be carried out for 8, 3 or v, which
are denoted by C;(0), C;(83) and C;(v), respectively. We calculate the matrix V for three different
perturbation schemes, namely: case weighting perturbation, response perturbation and explanatory
variable perturbation.

3.3.1 Perturbation of the case weights

In this case the perturbed log-likelihood function is given by ¢,(0;w) = > " w;(,(0) for

RPGJSB1, (I = 1) and RPGISB2, (I = 2), respectively, with 0 < w; < 1, fori = 1,...,n, and

= 17 (all-ones vector). Hence, the perturbation matrices for the RPGJSB1, and RPGJSB2,
models are given by

< XTﬁlﬁg < XTﬁ5ﬁ7ﬁ9
v, = Dl FER, Ds DD
! < ZTD,D, ) an 2= ( Z7 DDy D,

respectively, with D1 = [aiaij], D2 = [biLij]’ D3 = [dd}LW] and D4 = [CZ(;LZ'J'] where a; = 8¢2/87]21
and b; = 00;/0n;» defined from @); dy = 9001 (¢, ;) /0¢,~, ds = 04 (’(/)i, d;)/06; defined from the
RPGJSB1, model and ¢;; is the Kronecker delta for i,j = 1,2,...,n. Similarly, D5 = [c;¢;],
Dy = [d; L”] D, = [dgbm] Dg = [dgL,j] and Dy = [d Lij] where ¢; = 0&/0n; and d; = 09;/On;z
defined from (@); dg 0ly(&;, 04, ) [ OE;, ds = 0l (&, 04, ) /00; and d, = = Oly(&;, 0, ) /O defined
from the RPGJSB2, model.

3.3.2 Perturbation of the response

Now consider an multiplicative perturbation of the ith response by making y;(w;) = y,w;s,, where
s, represents a scale factor and w; € R, for¢ = 1,...,n. Then, under the scheme of response per-
turbation, the log-likelihood function is given by ¢ (6; w) = >, ¢1(¢;, d;, &; w) for the RPGISB1,
model and (5(0; w) = > | (2(&;, 6; w) for the RPGISB2, model, where

O b, a;w) = (a—1)1og(G(m)) + log(ad;) +log(g(r:)) + log(|wss,Qy (yiwis,)|)
lo(&, 0i;w) = (v —1)log(G(mai)) +log(adi) + log(g(m:)) + log(|wis, @y (yawis, )|)

with 71; = 8;(Q(yswisy) — Q(¢:)) and 72 = 6;(Q(yswisy) — Q&) + 3 ().



The disturbance matrices of the RPGJSB1, and RPGJSB2, models here take the form

= XTﬁlﬁwS = XT.ﬁ5ﬁ12.ﬁ14S
Vi = ~ A d V,= PPN
! ( Z7D,D,, S o =\ z™DyD;;DuS

where S = [s,;;], the ith element of matrices Do and Dy; for model RPGISB1, and matrices D,
D3 and D, for model RPGJISB2, are detailed in Section A.1 of the supplementary material.

3.3.3 Perturbation of the predictor

Now consider an multiplicative perturbation of the ith predictor by making z;(w;) = =, w; and
zi(w;) = ziT w;, forw; € R, 7 =1,...,n. Then, under the scheme of prediction perturbation, the log-
likelihood function is given by ¢;(0; w) = > | {1(¢}, 0;) for the RPGISB1, model and ¢»(0; w) =
S Uo(&F, 67, ) for the RPGISB2, model, where Q () = x, Bw; and §F = exp{z, vw;} for the
RPGJSB1, model and Q(¢) = & Bw; and 07 = exp{z, vw;} for the RPGISB2, model.

The disturbance matrices of RPGJSB1, and RPGJSB2, models here take the form

- TN =N TP . D
S and [ X DuDi
Z ' D Z ' 'DgDy

where the ith elements of matrices D5 and D, for RPGJSB1, model and matrices D7, D;g and
D4 for RPGJSB2, model are detailed in Section A.2. of the supplementary material.

4 Simulation studies

In this section, we present a simulation study to assess the performance of 8 = (3, v, «)" under
different scenarios. First, we assume that G and the link function are correctly specified. The data
were drawn motivated by the scheme for the anchoveta data set presented in Section C of the supple-
mentary material. We considered x; = z;, where both matrices includes an intercept and a covariate.
Such covariates were drawn from the U(—5.478, —2.305) distribution. We considered the logistic
and normal models for G and the logit and loglog link functions. The true values for parameters were
considered as the estimated parameters for three values for ¢ = {0.1,0.5,0.9}. We also considered
three sample sizes: 100, 200 and 500.

As mentioned previously, to validate a solution, we checked: If the convergence is attached and
if the determinant of the hessian such matrix is positive. If the two conditions are not satisfied,
we rerun the procedure initialized with a random vector generated by independent standard normal
variables until both conditions are satisfied. For each combination of G, link, ¢ and sample size, we
considered 5,000 replicates and in each case the estimation is performed based on the same G and
link function. Based on the 10,000 replicates, we report the bias for each estimator, the standard
error of the estimates (S E), the mean of the estimated standard errors (S E3) and the 95% coverage
probabilities (CP). Tables 2] and [3l summarizes such results. Note that the bias of the parameters is
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Table 1: True parameters used for simulation studies.

logistic normal

link q B B w v log(a) By B 40 vi  log(a)

logit 0.1 49 2.6 2.2 04 07 44 24 15 03 -—-14
05 48 21 22 04 —-07 46 2.1 1.5 03 —14

09 47 18 22 04 —-07 48 19 15 03 —14

loglog 0.1 13 0.8 08 —-03 01 1.2 0.7 —-0.1 -0.3 1.1
05 21 09 1.0 -0.2 0.1 20 09 00 -03 1.0

09 28 10 1.1 -02 01 28 1.0 01 -02 1.0

reduced and the terms SE; and SFE are closer when n is increased, suggesting that the estimators
are consistent in finite samples. Additionally, when the sample size is increased the CP are closer
to the nominal value used. Finally, Table ] presents the percentage of times where the algorithm
converges when is initialized with a vector of zeros. Note that the maximization procedure converged
at least in 89.43% of the generated samples and such percentages are increased when the sample size
is increased.



Table 2: Recovery parameters when G and the link are correctly specified (case G is the cdf of the
logistic distribution).

G link q  parameter bias SE, SE, CP bias SE; SE, CP bias SE;, SE, CP
logistic  logit 0.1 Bo —0.034 0.753 0.728 0.938 —0.017 0.538 0.529 0.946 —0.007 0.345 0.339 0.946
B —0.015 0.238 0.229 0.934 —0.007 0.166 0.163 0.942 —0.003 0.104 0.102 0.947
vy 0.041 0.381 0.367 0.935 0.020 0269 0.263 0.942  0.009 0.171 0.170 0.947
121 —0.001 0.088 0.085 0.939 0.000 0.061 0.060 0.946 0.000 0.039 0.038 0.946
log () —0.004 0.355 0.331 0947 —0.002 0.232 0.224 0946 —0.002 0.140 0.138 0.948
0.5 5o —0.017 0.485 0.472 0.941 0.001 0.322 0.319 0.946 —0.003 0.204 0.205 0.950
B —0.005 0.146 0.142 0939  0.000 0.096 0.095 0.946 —0.001 0.061 0.061 0.949
12 0.046 0.452 0.443 0.946 0.027 0.296 0.294 0.948 0.007 0.183 0.182 0.949
vy 0.002 0.107 0.106 0.946  0.002 0.068 0.068 0.949  0.000 0.042 0.042 0.951
log () 0.004 0.352 0.331 0.952 —0.001 0.231 0.224 0.948 0.000 0.142 0.139 0.947
0.9 Bo —0.001 0.620 0.591 0.930 -0.002 0.369 0.363 0.942  0.002 0.237 0.236 0.950
[ 0.004 0.177 0.169 0.932 0.002 0.112 0.111 0.943 0.001 0.072 0.072 0.948
Vo 0.060 0.461 0.443 0.943 0.024 0.289 0.283 0.943 0.007 0.184 0.182 0.946
V1 0.006 0.103 0.100 0.938 0.002 0.066 0.065 0.946 0.000 0.043 0.043 0.945
log () 0.010 0.362 0.334 0946  0.003 0.234 0.224 0.949  0.002 0.140 0.139 0.949
loglog 0.1 5o 0.008 0.175 0.168 0.931 0.002 0.116 0.113 0.938 0.000 0.071 0.071 0.949
B 0.001 0.039 0.037 0.935 0.000 0.026 0.025 0.937  0.000 0.016 0.016 0.948
vy 0.020 0.413 0.398 0.944  0.005 0.280 0.275 0.946 —0.001 0.165 0.167 0.950
v 0.000 0.096 0.092 0.939 —0.002 0.067 0.065 0.942 —0.001 0.039 0.039 0.949
log(cv) 0.153 1.175 2.515 0.964 0.035 0.349 0.324 0.961 0.014 0.178 0.174 0.956
0.5 Bo —0.002 0.130 0.128 0.944 —0.003 0.090 0.090 0.951 0.001 0.061 0.061 0.946
51 0.000 0.031 0.030 0.945 —0.001 0.021 0.021 0.949 0.000 0.014 0.014 0.947
12 0.007 0.386 0.376 0.944 0.003 0.264 0.261 0.947 0.006 0.175 0.175 0.950
121 —0.003 0.093 0.091 0.945 —0.002 0.063 0.062 0.949 0.000 0.041 0.041 0.950
log () 0.143 1.070 2.042 0.965 0.041 0306 0.290 0.962  0.012 0.177 0.174 0.951
0.9 Bo —0.005 0.178 0.175 0.939 —0.004 0.141 0.139 0.942 —0.002 0.082 0.082 0.947
B4 —0.001 0.042 0.041 0940 —0.001 0.033 0.032 0.943 0.000 0.019 0.019 0.947
2 0.012 0.387 0.374 0.940 0.010 0.296 0.288 0.944 0.004 0.174 0.173 0.949
2 —0.002 0.094 0.091 0940 0.000 0.071 0.069 0.944  0.000 0.041 0.041 0.949

log(«) 0.133 0.968 1.596 0.965 0.042 0311 0.290 0.961 0.014 0.177 0.174 0.952

5 Data analysis

In this section, we present a real data set application related to the mortality rate of the COVID-
19 in different countries to illustrate the performance of the RPGJSB1, and RPGJSB2, regression
models. An additional application related to the reproductive activity of the anchoveta in Chile is
presented in Section C of the supplementary material.

5.1 COVID-19 data set

The COVID-19 pandemic has unprecedentedly affected the entire worldall. Specifically, has
yielded high mortality rates since its emergence in December 2019, generating a disequilibrium soci-
etal, economic, cultural and political. It has been shown by early studies that statistical analysis can
be applied to COVID-19 problems to build predictive models that can assess risk factors and mortality
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Table 3: Recovery parameters when G and the link are correctly specified (case G is the cdf of the

normal distribution).

G link q  parameter bias SE; SE, CP bias SE, SE, CP bias SE; SE, CP

normal  logit 0.1 Bo —0.004 0725 0711 0939 0000 0470 0473 0952 —0.002 0289 0291 0.951

B —0.005 0.202 0.198 0939 —0.002 0.133 0.134 0951 —0.002 0.081 0.082 0.949

o 0912 2171 0730 0.847 0243 1.024 0450 0946 0.045 0270 0248 0.954

v 0.000 0.083 0.079 0932 0001 0055 0054 0945 0.000 0.032 0.032 0951

log(a) —1.763 4569 1.650 0.867 —0.462 2.167 1.019 0960 —0.082 0.612 0.565 0.956

05 —0.006 0464 0452 0942 —0.005 0330 0.324 0945 0.002 0.196 0.194 0.946

By —0.004 0.135 0.131 0.940 —0.002 0.094 0.092 0941  0.000 0.056 0.056 0.946

v 0944 2251 0703 0841 0215 0966 0450 0949  0.040 0281 0250 0.952

v 0.002 0082 0.079 0939 0001 0056 0055 0947 0.000 0.034 0.033 0.950

log(a) —1.806 4729 1597 0.862 —0398 2.046 1012 0961 —0.071 0.625 0.564 0.954

09 A —0.028 0595 0550 0910 —0.001 0393 0375 0934 —0.004 0244 0242 0947

B —0.002  0.165 0.153 0912  0.003 0.111 0.106 0933  0.000 0.069 0.069 0.949

Y 0923 2248 0712 0852 0235 1.009 0450 0947  0.047 0279 0253 0.949

v 0.006 0.088 0.084 0937 0001 0057 0055 0941 0.001 0.035 0.035 0.949

log(a) —1.733 4706 1576 0.871 —0.434 2.133 1.008 0961 —0.083 0.614 0.563 0.956

loglog 0.1 Bo 0005 0.156 0.152 0935 0.005 0.115 0.114 0942 0.001 0.070 0.069 0.946

By 0.000 0.035 0.034 0936 0001 0.026 0026 0945 0.000 0.016 0.015 0.946

v 0.085 0.834 0530 0963 0024 0371 0351 0951 0.006 0209 0209 0.952

v —0.004 0.077 0.076 0.942 —0.001 0.059 0.058 0.946 —0.001 0.035 0.035 0.951

log() 1090 23978 3284 0965 0.103 1.677 1200 0958 0.027 0.661 0.658 0.961

05 0002 0.116 0.114 0942 0.000 0.084 0.083 0946 0.000 0.054 0.053 0.948

By 0.000 0.026 0.025 0942 0000 0019 0019 0947 0.000 0.012 0.012 0.947

v 0.123 0990 0539 0954 0017 0379 0348 0955 0.009 0212 0212 0952

v —0.004 0.082 0.079 0939 —0.002 0.059 0.059 0.946 —0.001 0.036 0.036 0.950

log(a) 0612 16917 3.114 0964 0.091 1453 1150 0963 0.017 0.654 0.645 0957

09 B —0.016 0224 0219 0935 —0.007 0.169 0.167 0939 —0.004 0.095 0.095 0.943

B —0.002  0.051 0.050 0.937 —0.001 0.040 0.039 0.940 —0.001 0.022 0.022 0.946

v 0.125 0934 0538 0958 0.029 038 0357 0951 0.008 0208 0207 0951

v 0.000 0.083 0.080 0940 0.000 0.061 0.060 0948  0.000 0.035 0.034 0952

log(a) 0428 12877 2.696 0964 0.088 1443 1.192 0957 0.034 0.657 0.647 0.961

Table 4: Percentage of time where the maximization algorithm converges with initial value as the
vector zero.

qg=0.1 qg=20.5 q=109

G link 100 200 500 100 200 500 100 200 500

logistic  logit  100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

loglog  99.71 100.00 100.00 99.83 100.00 100.00 99.85 100.00 100.00

normal logit  90.77 98.40 100.00 89.43 98.65 99.99 9038 98.59  99.99

loglog  99.43 99.99 100.00 99.01 99.98 100.00 99.05 99.98 100.00

rates (lll_e_t_alj 2020; ILi et all, 2020; Du et all, |2Q2d) Also the overall mortahty rate has been about

5%, while the statistics showed a rate of around 20% for senior patients
). We consider the following information for the countries with at least 1,000 reported cases of
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COVID-19 and at least 100 deaths attributed to COVID-19, totalizing 123 countries at November 3,
2020.

* mort: mortality rate (reported death/reported cases). Mean=0.025, Median=0.020, standard
deviation=0.028, minimum=0.002 and maximum=0.291.

» surface: surface of the country (in km?).
* population: official estimated population of the country.

* cont: continent to which the country belongs (categorized as 1: Africa, Asia u Oceania; 2:
America; 3: Europe; with 56, 28 and 39 countries, respectively).

The information was taken from the World Heatlh Organization m, M). It is of interest to
model the mortality rate in terms of the surface and the continent of each country (previous analysis
suggest that the population is not significative to model the mortality rate). Figure [2| shows the plots
for Q(mort) for different link functions versus the log(surface) and separated by cont.
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Figure 2: Descriptive plots for )(mort) versus log(surface) for different link functions: logit,
probit, loglog and cloglog and separated by continent: Africa, Asia u Oceania (black), America (red)
and Europe (green).

5.1.1 Estimation

In view of the above, we consider to model the mortality rate using mort; ~
RPGJSB1,(v;,;, o), with

Q(1;) = Bo + b1 x log(surface;) + B2 X America; + (3 X Europe; and
log(;) = vy + 11 X America; + 15 X Europe;,

or alternatively, mort, ~ RPGJSB2,(¢;,0;), where Q(&) = Bo + 51 x log(surface;) + [ X
America; + 3 X Europe; and 9; is modelled in the same way. In Section B.1 of the supplemen-
tary material, we present the AIC and BIC for ¢ ranging in the set {0.05,0.10,...,0.90,0.95} and
the RPGJSB1, and RPGJSB2, models. Note that the RPGJSB1, provides the lower AIC than the
RPGIJSB2, for all the considered g. Then, hereinafter we focused in the RPGJSB1, model, specif-
ically where G is the cdf of the logistic model and the cloglog link (which provide the lower AIC

12



for all ¢). Table[3/and Section B.2 of the supplementary material present the estimated parameter for
such model for five selected quantiles. Also are presented the KS, SW, AD and CVM tests to check
the normality of the RQRs. Note that the log(surface) is significative to model the quantile (with
a nominal level of 5%) for all the considered ¢. This can be explained because countries with larger
areas may have greater difficulties in providing medical coverage to their inhabitants in relation to
countries with smaller areas. Also the parameter related to America is significant in both, quantile
and scale parameters. However, the parameter related to Europe is significant to model the quantile
of the mortality for COVID-19 only for small ¢g. On the other hand, the four tests do not reject the
normality assumption for the RQRs, suggesting that the RPGJSB1, model with the logistic distribu-
tion for G and the cloglog link is appropriated to model all the considered quantiles of the mortality
rate.

On the other hand, Figure 3] presented the point estimation and the 95% confidence interval (CI)
for the parameters in terms of the quantile ¢q. From [3 the intercept for the quantile increases as
q increases, whereas the coefficients related to the quantile of America and Europe decreases
when ¢ is increased. Furthermore, the coefficients related to the quantile for log(surface) and
the coefficients related to the scale of America and Europe remain similar for all ¢q. Figure [
presented the estimated quantiles 0.05,0.25,0.50,0.75 and 0.95 for the mortality rate for different
values of log(surface).
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Figure 3: Point estimation and 95% confidence interval for parameters estimated in RPGJSB1, model
for different quantiles (cloglog link and G the cdf of the logistic model).

5.1.2 Local influence analysis

We also presented a local influence analysis for the selected model under the three perturbations
schemes discussed in Section[3.3] Figure[3shows such analysis for the RPGJSB1 model with ¢ = 0.5
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Table 5: Estimated parameters for different quantile in RPGISB1,—( 5 model for the COVID-19 data
set with G the cdf of the logistic model and cloglog link. Also are presented the p-values for the
traditional normality test for RQRs.

p-values for quantile residuals
q parameter estimated  s.e. t-value  p-value KS SW AD CVM

5o -5.6835 0.3709 -15.32 <0.0001
o5t 0.1290 0.0276 4.68 <0.0001
B 0.4749 0.1248 3.80 0.0001
0.50 O3 0.1886 0.1320 1.43 0.0766 0.995 0.820 0915 0.969
Yy 0.9060 0.1556 5.82 <0.0001
2 0.4294 0.2030 2.12 0.0172
Vo 0.2264 0.1737 1.30 0.0963
log a 0.1164 0.3337 0.35 0.3636
0.10 010 o 0.10
W08 Qﬁ W08 S W08 Q@%
%) 04 . Q/ 36“ Eb 04 g)m
sg).oz— g §).027 sg).oz—
0.00 0.00 0.00

8 10 12 14 16 18 8 10 12 14 16 18 8 10 12 14 16 18

log-surface (in km?) log-surface (in km?2) log-surface (in km?)
Figure 4: Estimated 100 x g¢th quantile in the RPGJSB1, model varying the log(surface) for
countries in Africa, Asia or Oceania (left panel), America (center panel) and Europe (right panel)
considering the cloglog link and G the cdf from the logistic model.

using the cloglog link and G the cdf of the logistic model in the COVID-19 data set. In Section B.3
of the supplementary material is presented the same analysis for other selected quantiles. Note that,
considering all the cases, the observation 121 appear in at least some case, which correspond to Yemen
(Asia). Yemen reported a high mortality rate (29%, 601 accumulated deaths and 2067 accumulated
cases, respectively). Evidently there is a problem in the handling of information about COVID-19 in
the country. Table |6 presents the relative change for the parameters (RC), for its estimated standard
errors (RCSE) and the respective p-value for the estimation without Yemen. We highlight that the
greater variations are obtained for the parameters related to the scale and for log o (excepting the
case for 83(¢ = 0.90)). However, the estimated quantiles presented in Figure 3 do not depend on
those parameters. Therefore, such plot without the referred observations are similar. We highlight
that the significance of the parameters related to the quantile is maintained for all the cases (excepting
for B3(¢ = 0.05)), suggesting a robustness of the model to estimate the different quantiles in this
problem.
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Figure 5: Index plots of C; for B (upper) and v (lower) under the weight perturbation (left), response
perturbation (center) and covariate perturbation (right) schemes for RPGJISB1,— 5 model (cloglog
link and G the cdf from the logistic model) in COVID-19 data set.

6 Conclusions

In this paper, we propose two classes of parametric quantile regression models for studying the
association between a bounded response and covariates via inferring the conditional quantile of the
response. The proposed quantile regression models was built based on power Johnson SB distribu-
tion anthgLe_t_a]_J, |2Q2d) using a new parameterization of this distribution that is indexed by quan-
tile, dispersion and shape parameters (RPGJSB1,(¢, d, o)) or quantile and dispersion parameters
(RPGJSB2,(v,0)). The first proposed quantile model has an extra-parameter o > 0 is associated
with the “tailedness”, and the second proposed quantile model has a less computational costs. The
ML inference was implemented to estimate the models parameters, which was satisfactory consider-
ing the simulation studies where parameters were recovered for different sample sizes. Furthermore,
under each proposed quantile regression model, we have developed model diagnostic tools. In or-
der to illustrate our approach, two applications using real data sets were presented and discussed. In
particular, we analyze the mortality rate of COVID-19 and the reproductive activity of the Chilean
anchoveta. Results of the applications showed that the proposed quantile models are adequate. Based
on the results, the RPGJSB1, regression model presents a better fit for the COVID-19 mortality rate
and the anchoveta data sets. As part of future research, there are several extensions of the new mod-
els not considered in this paper that can be addressed in future research, in particular, an extension
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Table 6: RCs (in %) in ML estimates and their corresponding SEs for the indicated parameter and
respective p-values for COVID-19 data set when observation 121 is dropped.

q

parameter 0.10 0.25 0.50 0.75 0.90
RC 7.81 11.06 1643 2358  32.58
RCSE  fo(q) 0.20 0.10 0.05 0.27 0.66
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
RC 15.58 15.58 15.58 15.58 15.58
RCSE  Si(q) 0.28 0.28 0.28 0.28 0.28
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
RC 1.17 1345 4156 9946  266.08
RCSE  fs(q) 4.83 7.63 8.81 2.12 2895
p-value 0.0003  0.0001  0.0001 <0.0001 <0.0001
RC 943 3059  78.19 216.11 2502.37
RCSE  fs(q) 6.92 12.61 16.00 1.10  450.43
p-value 0.0526  0.0431  0.0383  0.0359  0.0351
RC 12.54 12.54 12.54 12.54 12.54
RCSE  1(q) 28.63  28.63  28.63  28.63  28.63
p-value 0.0562  0.0562  0.0562  0.0562  0.0562
RC 45.7 45.7 45.7 45.7 45.7
RCSE  ui(q) 8.75 8.75 8.75 8.75 8.75
p-value 0.1588  0.1588  0.1588  0.1588  0.1588
RC 3573 3573 3573 3573 3573
RCSE  1(q) 11.86 11.86 11.86 11.86 11.86
p-value 0.3219 03219 03219 03219  0.3219
RC 951.62 951.63 951.63 951.61 951.64
RCSE loga(q) 69477 69478 69478 69476  694.78
p-value 0.3855  0.3855  0.3855  0.3855  0.3855

of the methods developed in this paper would be to consider in @) a much more general family of
distributions; that is, consider models for zero-inflated and one-inflated data set. Directions related to
random effects in the model also can be addressed in future works.
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