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1Departamento de Matemática, Facultad de Ingenierı́a, Universidad de Atacama, Copiapó, Chile
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Abstract

In this paper, we develop two fully parametric quantile regression models, based on power

Johnson SB distribution Cancho et al. [Statistical Methods in Medical Research, 2020], for mod-

eling unit interval response at different quantiles. In particular, the conditional distribution is

modelled by the power Johnson SB distribution. The maximum likelihood method is employed

to estimate the model parameters. Simulation studies are conducted to evaluate the performance

of the maximum likelihood estimators in finite samples. Furthermore, we discuss residuals and

influence diagnostic tools. The effectiveness of our proposals is illustrated with two data set given

by the mortality rate of COVID-19 in different countries.

Keywords: COVID-19; Parametric quantile regression; Power Johnson SB distribution; Pro-

portion.

1 Introduction

The most commonly employed two-parameter distribution for modeling doubly bounded random

variables on the unit interval is the beta distribution. In order to accommodate explanatory variable

in the modeling, Ferrari and Cribari-Neto (2004) introduced the beta regression model based on a

parameterization of the beta distribution in terms of the mean and precision parameters. A substantial

number of practical and theoretical works have focused on the use of the mean reparameterized beta

distribution as an integral of the model. For example, see Ospina and Ferrari (2008), Bayes et al.

(2012) and Migliorati et al. (2018). However, there are limitations of the conditional mean models.

For example, in an assymetric distribution, or in the presence of outliers, the mean is pulled in the

direction of the tail, making it a less representative measure of central tendency.
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Quantile regression, introduced by Koenker and Bassett (1978), is a methodology for understand-

ing the conditional distribution of a response variable given the values of some covariates at different

levels (quantiles), thus providing users with a more complete picture. In particular, several authors

(Su, 2015; Lemonte and Moreno-Arenas, 2020) highlighted the robustness to outliers connected with

quantile regression models. Furthermore, if the conditional dependent variable is skewed, the quan-

tiles may be more appropriate when compared with the mean (Mazucheli et al., 2020).

However, parametric quantile regression models for limited range response variables has not re-

ceived much attention in the literature. Lemonte and Bazán (2016) introduced a new class of distribu-

tions named the generalized Johnson SB with bounded support on the basis of the symmetric family

of distributions. In particular, Lemonte and Bazán (2016) provided the median re-parameterizations

of the Johnson SB distribution (Johnson, 1949) that facilitates its use in a regression setting. Un-

like the beta regression, the median in the re-parameterized Johnson SB distribution is related to a

linear predictor. Cancho et al. (2020) generalized the Johnson SB model to a general class of dis-

tributions. The authors introduced an extra parameter to model the shape of the Johnson SB dis-

tribution, and studied a quantile regression model for limited range response variables. However,

they consider the model only based on the normal distribution. Other quantile regression models

for limited range response variables are presented in Bayes et al. (2017), Mazucheli et al. (2020) and

Lemonte and Moreno-Arenas (2020).

In this paper, we formulate two rich classes of parametric quantile regression models for a bounded

response, where the response variable is power Johnson SB distributed (Cancho et al., 2020) using a

new parametrization of this distribution that is indexed by quantile (not only for median regression)

and shape parameters. The estimation and inference for the proposed quantile regression models can

be carried out based on the likelihood paradigm (parametric approach). Also, we give full diagnostic

tools for detecting possible outliers and discuss a type of residuals. The main motivations for these

new parametric quantile regression models are fourfold: (i) the Johnson SB and power Johnson SB
regression models are themselves special cases of the proposed quantile models; (ii) the first proposed

model has a parameter which controls the shape and skewness of the distribution; (iii) the second

proposed model has less computational cost; and (iv) we considered the model based on several

models (logistic, Cauchy and normal) and several link functions.

The article is organized as follows. In Section 2, we construct two new quantile regression mod-

els for bounded response variables. Estimation, residuals and diagnostic measures are discussed in

Section 3. Section 4 discusses some simulation results for the maximum likelihood (ML) estimation

method. The effectiveness of our models is illustrated in Section 5 by using the mortality rate of

COVID-19 in different countries. Final comments are presented in Section 6. This paper contains an

additional application related to the reproductive activity of the anchoveta in Chile in a Supplementary

Material.

2 The generalized Johnson SB distribution

Lemonte and Bazán (2016) introduced a new class of distributions named the generalized Johnson

SB (“GJS” for short) distribution. The class is defined by the transformation Y = Q−1((X−γ)/δ) ∈
(0, 1), where γ ∈ R, δ > 0, Q(y) = log(y/(1 − y)) is the logit function (also representing the
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quantile function for the standard logistic distribution) and X ∼ S(0, 1; g), i.e., the symmetrical

family of distributions with pdf given by g(w), w ∈ R, where g is a function such as g : R → [0,∞).
Considering the reparametrization γ = −δQ(ξ), the cdf of the GJS is given by

F (y; ξ, δ) =

∫ δ[Q(y)−Q(ξ)]

−∞

g(u)du, y, ξ ∈ (0, 1).

As F (ξ; ξ, δ) = 1/2, the parameter ξ represents directly the median of the distribution. Additionally,

the authors interpret δ as a dispersion parameter. Therefore, a regression structure on ξ and δ is

studied by the authors, providing a rich class of median regression model with varying dispersion.

Cancho et al. (2020) considered g(u) = φ(u) (where φ(·) denotes the pdf of the standard normal

model) and the power model transformation (Lehmann, 1953; Durrans, 1992) to extend this class of

models (named as PJSB), which cdf is given by

F (y;α, γ, δ) = [Φ(γ + δQ(y))]α, y ∈ (0, 1), α, δ > 0, γ ∈ R.

Besides the logistic model, the authors also considers Q(y) as the quantile function for the normal,

Cauchy, Gumbel and reverse Gumbel models. Thus, the pdf of the PJSB model is

f(y; γ, δ, α) = δα[Φ(γ + δQ(y))]α−1φ(γ + δQ(y))

∣∣∣∣
dQ(y)

dy

∣∣∣∣ , y ∈ (0, 1).

Defining xq = Φ−1(q1/α), the authors considered the reparametrization ψ = Q−1
(
x0.5(α)−γ

δ

)
, which

represents the median of the PJSB distribution (for any Q(·) quantile function). As γ = x0.5(α) −
δQ(ψ), the pdf of the PJSB can be expressed as

f(y;ψ, δ, α) = δα[Φ(δ[Q(y)−Q(ψ)]+x0.5(α))]
α−1φ(δ[Q(y)−Q(ψ)+x0.5(α)]

∣∣∣∣
dQ(y)

dy

∣∣∣∣ , y ∈ (0, 1).

The authors proposed a regression model for ψ and δ in this model. However, this model can be re-

strictive because considers the only normal distribution. For this reason, we consider the power model

transformation of Lehmann (1953); Durrans (1992) for the GJS distribution of Lemonte and Bazán

(2016), say the power generalized Johnson SB (PGJSB) distribution, with cdf given by

F (y; ξ, δ, α) =

(∫ δ[Q(y)−Q(ξ)]

−∞

g(u)du

)α

= [G(δ[Q(y)−Q(ξ)])]α = [G(γ+ δQ(y))]α, y ∈ (0, 1),

(1)

and pdf given by

f(y; γ, δ, α) = δα[G(γ + δQ(y))]α−1g(γ + δQ(y))

∣∣∣∣
dQ(y)

dy

∣∣∣∣ , y ∈ (0, 1).

where G is the cdf related to g. Evidently, for G = Φ, we recover the model in Cancho et al. (2020).

However, we are interested in model a general quantile, say q, not only the median. In this work, we

discuss two ways to model the 100× qth quantile considering the PGJSB model.

3



1. We note that ψ = Q−1
(
x∗q(α)−γ

δ

)
is the 100×qth quantile for the PGJSB model, where x∗q(α) =

G−1(q1/α). Based on this idea, we also can reparametrize the model noting defining γ =
x∗q(α)− δQ(ψ). The pdf for this reparametrization is

f(y;ψ, δ, α) = δα[G(δ[Q(y)−Q(ψ)]+x∗q(α))]
α−1g(δ[Q(y)−Q(ψ)+x∗q(α)]

∣∣∣∣
dQ(y)

dy

∣∣∣∣ , y ∈ (0, 1).

(2)

In this work, we will refers to this specific parametrization as RPGJSB1q(ψ, δ, α).

2. Despite the nature of α is to be a parameter, we can consider α(q) = − log(q)/ log(2), q ∈
(0, 1) as fixed. With this definition, the cdf in (1) evaluated in ξ is given by F (ξ; ξ, δ) =
(1/2)α(q) = q. Therefore, fixing α(q) = − log(q)/ log(2), q ∈ (0, 1), we have that ξ represents

the 100×qth quantile of the distribution and similarly to the work of Lemonte and Bazán (2016),

δ also can be interpreted as a dispersion parameter. We will refers to this parametrization as

RPGJSB2q(ξ, δ).

In both cases, the RPGJSB1q and RPGJSB2q models can be used to define a rich class to perform

quantile regression for data in the (0, 1) interval (not only for median regression). The advantage of

RPGJSB1q model is that α, for a fixed quantile ψ, controls the shape of the distribution (different

α’s produce different shapes). However, in this parametrization the shape of the model also depends

on ψ. As we will perform regression on ψ, this indicates that the shape of the quantile depend on

the covariates. A second problem is the computational costs, because evaluate 2 can be hard to

compute for some combinations of g and Q. On the other hand, the advantage of RPGJSB2q is the

parsimonious (because one parameters is not estimated) and the reduction in the computational costs,

because α is considered fixed. However, in the RPGJSB2q model the shape of the distribution is

maintained (because the model belongs to the location-scale family of distributions) because such

shape is “fixed”.

Figure 1 shows the density function for the RPGJSB1q(ψ, δ = 1, α) model with logit link and G = Φ
under different combinations of q, ψ and α. From Figure 1, note that the proposed model is very

flexible since its density can assume different shapes.

3 Inference and its associated diagnostic analysis

In this section, we discuss some aspects related to the inference, residuals and diagnostic analysis

of the RPGJSB1q and RPGJSB2q quantile regression models.

3.1 Inference

Suppose the 100×qth quantile ψ for the RPGJSB1q model and the dispersion parameter δ satisfies

the following functional relations

Q(ψi) = η1i = x
⊤

i β and log(δi) = η2i = z
⊤

i ν, (3)
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Figure 1: Pdf for RPGJSB1q(ψ, δ = 1, α) model with logit link and G = Φ. Left panel: q = 0.25,

α = 0.5 and varying ψ; center panel: q = 0.5, α = 0.5 and varying ψ; right panel: q = 0.5, ψ = 0.4
and varying α.

or

Q(ξi) = η1i = x
⊤

i β and log(δi) = η2i = z
⊤

i ν, (4)

for the RPGJSB2q model, where β = (β1, . . . , βp)
⊤ and ν = (ν1, . . . , νr)

⊤ are vectors of unknown

regression coefficients which are assumed to be functionally independent, β ∈ R
p and ν ∈ R

r, with

p + r < n, η1i and η2i are the linear predictors, and xi = (xi1, . . . , xip)
⊤ and zi = (zi1, . . . , zir)

⊤

are observations on p and r known regressors, for i = 1, . . . , n. Furthermore, we assume that the

covariate matrices X = (x1, . . . ,xn)
⊤ and Z = (z1, . . . , zn)

⊤ have rank p and r, respectively. The

log-likelihood function for the RPGJSB1q model is given by

ℓ1(θ) =

n∑

i=1

{
log(δi) + log(α) + (α− 1) log

{
G
(
δi[Q(yi)−Q(ψi)] + x∗q(α)

)}

log
{
g
(
δi[Q(yi)−Q(ψi)] + x∗q(α)

)}
+ log

∣∣∣∣
dQ(yi)

dyi

∣∣∣∣
}
, (5)

whereas for the RPGJSB2q is given by

ℓ2(θ) =
n∑

i=1

{
log(δi) + log(α) + (α− 1) log [G (δi[Q(yi)−Q(ξi)])]

log {g (δi[Q(yi)−Q(ξi)])}+ log

∣∣∣∣
dQ(yi)

dyi

∣∣∣∣
}
. (6)

Note that θ = (β⊤,ν⊤, α) and θ = (β⊤,ν⊤) is the vector of parameters for the RPGJSB1q and

RPGJSB2q models, respectively. The ML estimator of θ, say θ̂, is obtained maximizing equation

(5) or (6), depending on the considered model are presented in Section . We considered the maxi-

mization procedure based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method initialized with

a vector of zeros. To validate a solution, we checked: i) If the convergence is attached and; ii) if the

determinant of the hessian such matrix is positive. If the two conditions are not satisfied, we rerun

the procedure based initialized with a random vector generated by independent standard normal vari-
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ables until i) and ii) are satisfied. Under usual regularity conditions (see Cox and Hinkley, 1974) θ is

consistent. Moreover,

ı−1(θ̂)
[
θ̂ − θ

]
D
→ Np+r (0p+r, Ip+r) , as n→ +∞,

where ı(θ̂) = −∂2ℓl(θ)/∂θ∂θ
⊤
∣∣
θ=θ̂

is minus the estimated hessian matrix for the RPGJSB1q (l = 1)

and RPGJSB2q (l = 2) models, respectively.

3.2 Residuals

In order to assess if the posited model is correct, we will consider the randomized quantile residuals

(RQRs) proposed by Dunn and Smyth (1996). For the RPGJSB1q model, such residuals are given by

r̂i = Φ−1
(
[G(δ̂i[Q(yi)−Q(ψ̂i)] + x∗q(α̂))]

α̂
)
, i = 1, . . . , n,

whereas for the RPGJSB2q model, the RQRs are given by

r̂i = Φ−1
(
[G(δ̂i[Q(yi)−Q(ξ̂i)])]

α(q)
)
, i = 1, . . . , n.

δ̂i, ξ̂i and ψ̂i, i = 1, . . . , n, correspond to the expressions in equations (3) and (4) evaluated in β̂ and

ν̂, for each model, respectively. If the model is correctly specified, the distribution of r̂1, . . . , r̂n is

standard normal, which can be validated considering different normality tests, such as Kolmogorov-

Smirnov (KS), Shapiro-Wilks (SW), Anderson-Darling (AD) and the Cramér-Von-Mises (CVM)

tests. See Yap and Sim (2011) for a discussion about such tests.

3.3 Local influence

The local influence method suggested by Cook (1986) evaluates the simultaneous effect of ob-

servations on the ML estimator without removing it from the data set, based on the curvature of the

plane of the log-likelihood function. Consider ℓ1(θ1;w) and ℓ2(θ2;w) the log-likelihood functions

corresponding to the RPGJSB1q and RPGJSB2q models, respectively, but now perturbed by w, a

vector of perturbations. w belongs to a subset Ω ∈ R
n and w0 is a non-perturbed n × 1 vector,

such that ℓl(θ;w0) = ℓl(θ), for all θ, l = 1, 2. In this case, the likelihood displacement (LD) is

LD(θ) = 2(ℓl(θ̂) − ℓl(θ̂w)), where θ̂w denotes the ML estimate of θ on the perturbed regression

models, that is, θ̂w is obtained from ℓl(θ;w). Note that ℓl(θ;w) can be used to assess the influence

of the perturbation of the ML estimate. Cook (1986) showed that the normal curvature for θ̂ in the

direction d, with ||d|| = 1, is expressed as Cd(θ̂) = 2|d⊤∇⊤Σ(θ̂)−1∇d|, where ∇ is a (p + r)× n

matrix of perturbations with elements ∇ji = ∂2ℓl(θ;w)/∂θj∂wi, evaluated at θ = θ̂ and w = w0,

for j = 1, . . . , p + r and i = 1, . . . , n. A local influence diagnostic is generally based on index plots.

For example, denoting Σ(θ) the observed Fisher information matrix, the index graph of the eigen-

vector dmax corresponding to the maximum eigenvalue of B(θ) = −∇⊤Σ(θ)−1∇, say Cdmax
(θ),
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evaluated at θ = θ̂, can detect those cases that, under small perturbations, exert a strong influence

on LD(θ). Another important direction of interest is di = ein, which corresponds to the direction of

the case i, where ein is an n × 1 vector of zeros with value equal to one at the ith position, that is,

{ein, 1 ≤ i ≤ n} is the canonical basis of Rn. In this case, the normal curvature is Ci(θ) = 2|bii|,

where bii is the ith diagonal element of B(θ) given above, for i = 1, . . . , n, evaluated θ = θ̂. If

Ci(θ̂) > 2C̄(θ̂), where C̄(θ̂) =
∑n

i=1Ci(θ̂)/n, it indicates case i as potentially influential. This

procedure is called total local influence of the case i and can be carried out for θ, β or ν, which

are denoted by Ci(θ), Ci(β) and Ci(ν), respectively. We calculate the matrix ∇ for three different

perturbation schemes, namely: case weighting perturbation, response perturbation and explanatory

variable perturbation.

3.3.1 Perturbation of the case weights

In this case the perturbed log-likelihood function is given by ℓl(θ;w) =
∑n

i=1wiℓl(θ) for

RPGJSB1q (l = 1) and RPGJSB2q (l = 2), respectively, with 0 ≤ wi ≤ 1, for i = 1, . . . , n, and

w0 = 1
⊤ (all-ones vector). Hence, the perturbation matrices for the RPGJSB1q and RPGJSB2q

models are given by

∇̂1 =

(
X⊤D̂1D̂3

Z⊤D̂2D̂4

)
and ∇̂2 =

(
X⊤D̂5D̂7D̂9

Z⊤D̂6D̂8D̂9

)
,

respectively, with D1 = [aiιij ], D2 = [biιij ], D3 = [ḋψιij ] and D4 = [ḋδιij ] where ai = ∂ψi/∂ηi1
and bi = ∂δi/∂ηi2 defined from (3); ḋψ = ∂ℓ1(ψi, δi)/∂ψi, ḋδ = ∂ℓ1(ψi, δi)/∂δi defined from the

RPGJSB1q model and ιij is the Kronecker delta for i, j = 1, 2, . . . , n. Similarly, D5 = [ciιij ],
D6 = [diιij ], D7 = [ḋξιij ], D8 = [ḋδιij ] and D9 = [ḋαιij ] where ci = ∂ξi/∂ηi1 and di = ∂δi/∂ηi2
defined from (4); ḋξ = ∂ℓ2(ξi, δi, α)/∂ξi, ḋδ = ∂ℓ2(ξi, δi, α)/∂δi and ḋα = ∂ℓ2(ξi, δi, α)/∂α defined

from the RPGJSB2q model.

3.3.2 Perturbation of the response

Now consider an multiplicative perturbation of the ith response by making yi(wi) = yiwisy, where

sy represents a scale factor and wi ∈ R, for i = 1, . . . , n. Then, under the scheme of response per-

turbation, the log-likelihood function is given by ℓ1(θ;w) =
∑n

i=1 ℓ1(ψi, δi, α;w) for the RPGJSB1q
model and ℓ2(θ;w) =

∑n
i=1 ℓ2(ξi, δi;w) for the RPGJSB2q model, where

ℓ1(ψi, δi, α;w) = (α− 1) log(G(τ1i)) + log(αδi) + log(g(τ1i)) + log(|wisyQ̇y(yiwisy)|)

ℓ2(ξi, δi;w) = (α− 1) log(G(τ2i)) + log(αδi) + log(g(τ2i)) + log(|wisyQ̇y(yiwisy)|)

with τ1i = δi(Q(yiwisy)−Q(ψi)) and τ2i = δi(Q(yiwisy)−Q(ξi)) + x∗q(α).

7



The disturbance matrices of the RPGJSB1q and RPGJSB2q models here take the form

∇̂1 =

(
X⊤D̂1D̂10S

Z⊤D̂2D̂11S

)
and ∇̂2 =

(
X⊤D̂5D̂12D̂14S

Z⊤D̂6D̂13D̂14S

)

where S = [syιij ], the ith element of matrices D10 and D11 for model RPGJSB1q and matrices D12,

D13 and D14 for model RPGJSB2q are detailed in Section A.1 of the supplementary material.

3.3.3 Perturbation of the predictor

Now consider an multiplicative perturbation of the ith predictor by making xi(wi) = x⊤

i wi and

zi(wi) = z⊤

i wi, for wi ∈ R, i = 1, . . . , n. Then, under the scheme of prediction perturbation, the log-

likelihood function is given by ℓ1(θ;w) =
∑n

i=1 ℓ1(ψ
⋆
i , δ

⋆
i ) for the RPGJSB1q model and ℓ2(θ;w) =∑n

i=1 ℓ2(ξ
⋆
i , δ

⋆
i , α) for the RPGJSB2q model, where Q(ψ⋆i ) = x⊤

i βwi and δ⋆i = exp{z⊤

i νwi} for the

RPGJSB1q model and Q(ξ⋆i ) = x⊤

i βwi and δ⋆i = exp{z⊤

i νwi} for the RPGJSB2q model.

The disturbance matrices of RPGJSB1q and RPGJSB2q models here take the form

∇̂1 =

(
X⊤D̂15

Z⊤D̂16

)
and ∇̂2 =

(
X⊤D̂17D̂19

Z⊤D̂18D̂19

)

where the ith elements of matrices D15 and D16 for RPGJSB1q model and matrices D17, D18 and

D19 for RPGJSB2q model are detailed in Section A.2. of the supplementary material.

4 Simulation studies

In this section, we present a simulation study to assess the performance of θ = (β,ν, α)⊤ under

different scenarios. First, we assume that G and the link function are correctly specified. The data

were drawn motivated by the scheme for the anchoveta data set presented in Section C of the supple-

mentary material. We considered xi = zi, where both matrices includes an intercept and a covariate.

Such covariates were drawn from the U(−5.478,−2.305) distribution. We considered the logistic

and normal models for G and the logit and loglog link functions. The true values for parameters were

considered as the estimated parameters for three values for q = {0.1, 0.5, 0.9}. We also considered

three sample sizes: 100, 200 and 500.

As mentioned previously, to validate a solution, we checked: If the convergence is attached and

if the determinant of the hessian such matrix is positive. If the two conditions are not satisfied,

we rerun the procedure initialized with a random vector generated by independent standard normal

variables until both conditions are satisfied. For each combination of G, link, q and sample size, we

considered 5,000 replicates and in each case the estimation is performed based on the same G and

link function. Based on the 10,000 replicates, we report the bias for each estimator, the standard

error of the estimates (SE1), the mean of the estimated standard errors (SE2) and the 95% coverage

probabilities (CP). Tables 2 and 3 summarizes such results. Note that the bias of the parameters is

8



Table 1: True parameters used for simulation studies.

logistic normal

link q β0 β1 ν0 ν1 log(α) β0 β1 ν0 ν1 log(α)
logit 0.1 4.9 2.6 2.2 0.4 −0.7 4.4 2.4 1.5 0.3 −1.4

0.5 4.8 2.1 2.2 0.4 −0.7 4.6 2.1 1.5 0.3 −1.4

0.9 4.7 1.8 2.2 0.4 −0.7 4.8 1.9 1.5 0.3 −1.4

loglog 0.1 1.3 0.8 0.8 −0.3 0.1 1.2 0.7 −0.1 −0.3 1.1

0.5 2.1 0.9 1.0 −0.2 0.1 2.0 0.9 0.0 −0.3 1.0

0.9 2.8 1.0 1.1 −0.2 0.1 2.8 1.0 0.1 −0.2 1.0

reduced and the terms SE1 and SE2 are closer when n is increased, suggesting that the estimators

are consistent in finite samples. Additionally, when the sample size is increased the CP are closer

to the nominal value used. Finally, Table 4 presents the percentage of times where the algorithm

converges when is initialized with a vector of zeros. Note that the maximization procedure converged

at least in 89.43% of the generated samples and such percentages are increased when the sample size

is increased.
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Table 2: Recovery parameters when G and the link are correctly specified (case G is the cdf of the

logistic distribution).

G link q parameter bias SE1 SE2 CP bias SE1 SE2 CP bias SE1 SE2 CP

logistic logit 0.1 β0 −0.034 0.753 0.728 0.938 −0.017 0.538 0.529 0.946 −0.007 0.345 0.339 0.946

β1 −0.015 0.238 0.229 0.934 −0.007 0.166 0.163 0.942 −0.003 0.104 0.102 0.947

ν0 0.041 0.381 0.367 0.935 0.020 0.269 0.263 0.942 0.009 0.171 0.170 0.947

ν1 −0.001 0.088 0.085 0.939 0.000 0.061 0.060 0.946 0.000 0.039 0.038 0.946

log(α) −0.004 0.355 0.331 0.947 −0.002 0.232 0.224 0.946 −0.002 0.140 0.138 0.948

0.5 β0 −0.017 0.485 0.472 0.941 0.001 0.322 0.319 0.946 −0.003 0.204 0.205 0.950

β1 −0.005 0.146 0.142 0.939 0.000 0.096 0.095 0.946 −0.001 0.061 0.061 0.949

ν0 0.046 0.452 0.443 0.946 0.027 0.296 0.294 0.948 0.007 0.183 0.182 0.949

ν1 0.002 0.107 0.106 0.946 0.002 0.068 0.068 0.949 0.000 0.042 0.042 0.951

log(α) 0.004 0.352 0.331 0.952 −0.001 0.231 0.224 0.948 0.000 0.142 0.139 0.947

0.9 β0 −0.001 0.620 0.591 0.930 −0.002 0.369 0.363 0.942 0.002 0.237 0.236 0.950

β1 0.004 0.177 0.169 0.932 0.002 0.112 0.111 0.943 0.001 0.072 0.072 0.948

ν0 0.060 0.461 0.443 0.943 0.024 0.289 0.283 0.943 0.007 0.184 0.182 0.946

ν1 0.006 0.103 0.100 0.938 0.002 0.066 0.065 0.946 0.000 0.043 0.043 0.945

log(α) 0.010 0.362 0.334 0.946 0.003 0.234 0.224 0.949 0.002 0.140 0.139 0.949

loglog 0.1 β0 0.008 0.175 0.168 0.931 0.002 0.116 0.113 0.938 0.000 0.071 0.071 0.949

β1 0.001 0.039 0.037 0.935 0.000 0.026 0.025 0.937 0.000 0.016 0.016 0.948

ν0 0.020 0.413 0.398 0.944 0.005 0.280 0.275 0.946 −0.001 0.165 0.167 0.950

ν1 0.000 0.096 0.092 0.939 −0.002 0.067 0.065 0.942 −0.001 0.039 0.039 0.949

log(α) 0.153 1.175 2.515 0.964 0.035 0.349 0.324 0.961 0.014 0.178 0.174 0.956

0.5 β0 −0.002 0.130 0.128 0.944 −0.003 0.090 0.090 0.951 0.001 0.061 0.061 0.946

β1 0.000 0.031 0.030 0.945 −0.001 0.021 0.021 0.949 0.000 0.014 0.014 0.947

ν0 0.007 0.386 0.376 0.944 0.003 0.264 0.261 0.947 0.006 0.175 0.175 0.950

ν1 −0.003 0.093 0.091 0.945 −0.002 0.063 0.062 0.949 0.000 0.041 0.041 0.950

log(α) 0.143 1.070 2.042 0.965 0.041 0.306 0.290 0.962 0.012 0.177 0.174 0.951

0.9 β0 −0.005 0.178 0.175 0.939 −0.004 0.141 0.139 0.942 −0.002 0.082 0.082 0.947

β1 −0.001 0.042 0.041 0.940 −0.001 0.033 0.032 0.943 0.000 0.019 0.019 0.947

ν0 0.012 0.387 0.374 0.940 0.010 0.296 0.288 0.944 0.004 0.174 0.173 0.949

ν1 −0.002 0.094 0.091 0.940 0.000 0.071 0.069 0.944 0.000 0.041 0.041 0.949

log(α) 0.133 0.968 1.596 0.965 0.042 0.311 0.290 0.961 0.014 0.177 0.174 0.952

5 Data analysis

In this section, we present a real data set application related to the mortality rate of the COVID-

19 in different countries to illustrate the performance of the RPGJSB1q and RPGJSB2q regression

models. An additional application related to the reproductive activity of the anchoveta in Chile is

presented in Section C of the supplementary material.

5.1 COVID-19 data set

The COVID-19 pandemic has unprecedentedly affected the entire worldall. Specifically, has

yielded high mortality rates since its emergence in December 2019, generating a disequilibrium soci-

etal, economic, cultural and political. It has been shown by early studies that statistical analysis can

be applied to COVID-19 problems to build predictive models that can assess risk factors and mortality
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Table 3: Recovery parameters when G and the link are correctly specified (case G is the cdf of the

normal distribution).

G link q parameter bias SE1 SE2 CP bias SE1 SE2 CP bias SE1 SE2 CP

normal logit 0.1 β0 −0.004 0.725 0.711 0.939 0.000 0.470 0.473 0.952 −0.002 0.289 0.291 0.951

β1 −0.005 0.202 0.198 0.939 −0.002 0.133 0.134 0.951 −0.002 0.081 0.082 0.949

ν0 0.912 2.171 0.730 0.847 0.243 1.024 0.450 0.946 0.045 0.270 0.248 0.954

ν1 0.000 0.083 0.079 0.932 0.001 0.055 0.054 0.945 0.000 0.032 0.032 0.951

log(α) −1.763 4.569 1.650 0.867 −0.462 2.167 1.019 0.960 −0.082 0.612 0.565 0.956

0.5 β0 −0.006 0.464 0.452 0.942 −0.005 0.330 0.324 0.945 0.002 0.196 0.194 0.946

β1 −0.004 0.135 0.131 0.940 −0.002 0.094 0.092 0.941 0.000 0.056 0.056 0.946

ν0 0.944 2.251 0.703 0.841 0.215 0.966 0.450 0.949 0.040 0.281 0.250 0.952

ν1 0.002 0.082 0.079 0.939 0.001 0.056 0.055 0.947 0.000 0.034 0.033 0.950

log(α) −1.806 4.729 1.597 0.862 −0.398 2.046 1.012 0.961 −0.071 0.625 0.564 0.954

0.9 β0 −0.028 0.595 0.550 0.910 −0.001 0.393 0.375 0.934 −0.004 0.244 0.242 0.947

β1 −0.002 0.165 0.153 0.912 0.003 0.111 0.106 0.933 0.000 0.069 0.069 0.949

ν0 0.923 2.248 0.712 0.852 0.235 1.009 0.450 0.947 0.047 0.279 0.253 0.949

ν1 0.006 0.088 0.084 0.937 0.001 0.057 0.055 0.941 0.001 0.035 0.035 0.949

log(α) −1.733 4.706 1.576 0.871 −0.434 2.133 1.008 0.961 −0.083 0.614 0.563 0.956

loglog 0.1 β0 0.005 0.156 0.152 0.935 0.005 0.115 0.114 0.942 0.001 0.070 0.069 0.946

β1 0.000 0.035 0.034 0.936 0.001 0.026 0.026 0.945 0.000 0.016 0.015 0.946

ν0 0.085 0.834 0.530 0.963 0.024 0.371 0.351 0.951 0.006 0.209 0.209 0.952

ν1 −0.004 0.077 0.076 0.942 −0.001 0.059 0.058 0.946 −0.001 0.035 0.035 0.951

log(α) 1.090 23.978 3.284 0.965 0.103 1.677 1.200 0.958 0.027 0.661 0.658 0.961

0.5 β0 0.002 0.116 0.114 0.942 0.000 0.084 0.083 0.946 0.000 0.054 0.053 0.948

β1 0.000 0.026 0.025 0.942 0.000 0.019 0.019 0.947 0.000 0.012 0.012 0.947

ν0 0.123 0.990 0.539 0.954 0.017 0.379 0.348 0.955 0.009 0.212 0.212 0.952

ν1 −0.004 0.082 0.079 0.939 −0.002 0.059 0.059 0.946 −0.001 0.036 0.036 0.950

log(α) 0.612 16.917 3.114 0.964 0.091 1.453 1.150 0.963 0.017 0.654 0.645 0.957

0.9 β0 −0.016 0.224 0.219 0.935 −0.007 0.169 0.167 0.939 −0.004 0.095 0.095 0.943

β1 −0.002 0.051 0.050 0.937 −0.001 0.040 0.039 0.940 −0.001 0.022 0.022 0.946

ν0 0.125 0.934 0.538 0.958 0.029 0.386 0.357 0.951 0.008 0.208 0.207 0.951

ν1 0.000 0.083 0.080 0.940 0.000 0.061 0.060 0.948 0.000 0.035 0.034 0.952

log(α) 0.428 12.877 2.696 0.964 0.088 1.443 1.192 0.957 0.034 0.657 0.647 0.961

Table 4: Percentage of time where the maximization algorithm converges with initial value as the

vector zero.

q = 0.1 q = 0.5 q = 0.9
G link 100 200 500 100 200 500 100 200 500

logistic logit 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

loglog 99.71 100.00 100.00 99.83 100.00 100.00 99.85 100.00 100.00

normal logit 90.77 98.40 100.00 89.43 98.65 99.99 90.38 98.59 99.99

loglog 99.43 99.99 100.00 99.01 99.98 100.00 99.05 99.98 100.00

rates (Ji et al., 2020; Li et al., 2020; Du et al., 2020). Also the overall mortality rate has been about

5%, while the statistics showed a rate of around 20% for senior patients (Livingston and Bucher,

2020). We consider the following information for the countries with at least 1,000 reported cases of
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COVID-19 and at least 100 deaths attributed to COVID-19, totalizing 123 countries at November 3,

2020.

• mort: mortality rate (reported death/reported cases). Mean=0.025, Median=0.020, standard

deviation=0.028, minimum=0.002 and maximum=0.291.

• surface: surface of the country (in km2).

• population: official estimated population of the country.

• cont: continent to which the country belongs (categorized as 1: Africa, Asia u Oceania; 2:

America; 3: Europe; with 56, 28 and 39 countries, respectively).

The information was taken from the World Heatlh Organization (WHO, 2020). It is of interest to

model the mortality rate in terms of the surface and the continent of each country (previous analysis

suggest that the population is not significative to model the mortality rate). Figure 2 shows the plots

for Q(mort) for different link functions versus the log(surface) and separated by cont.
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Figure 2: Descriptive plots for Q(mort) versus log(surface) for different link functions: logit,

probit, loglog and cloglog and separated by continent: Africa, Asia u Oceania (black), America (red)

and Europe (green).

5.1.1 Estimation

In view of the above, we consider to model the mortality rate using morti ∼
RPGJSB1q(ψi, δi, α), with

Q(ψi) = β0 + β1 × log(surfacei) + β2 × Americai + β3 × Europei and

log(δi) = ν0 + ν1 × Americai + ν2 × Europei,

or alternatively, morti ∼ RPGJSB2q(ξi, δi), where Q(ξi) = β0 + β1 × log(surfacei) + β2 ×
Americai + β3 × Europei and δi is modelled in the same way. In Section B.1 of the supplemen-

tary material, we present the AIC and BIC for q ranging in the set {0.05, 0.10, . . . , 0.90, 0.95} and

the RPGJSB1q and RPGJSB2q models. Note that the RPGJSB1q provides the lower AIC than the

RPGJSB2q for all the considered q. Then, hereinafter we focused in the RPGJSB1q model, specif-

ically where G is the cdf of the logistic model and the cloglog link (which provide the lower AIC
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for all q). Table 5 and Section B.2 of the supplementary material present the estimated parameter for

such model for five selected quantiles. Also are presented the KS, SW, AD and CVM tests to check

the normality of the RQRs. Note that the log(surface) is significative to model the quantile (with

a nominal level of 5%) for all the considered q. This can be explained because countries with larger

areas may have greater difficulties in providing medical coverage to their inhabitants in relation to

countries with smaller areas. Also the parameter related to America is significant in both, quantile

and scale parameters. However, the parameter related to Europe is significant to model the quantile

of the mortality for COVID-19 only for small q. On the other hand, the four tests do not reject the

normality assumption for the RQRs, suggesting that the RPGJSB1q model with the logistic distribu-

tion for G and the cloglog link is appropriated to model all the considered quantiles of the mortality

rate.

On the other hand, Figure 3 presented the point estimation and the 95% confidence interval (CI)

for the parameters in terms of the quantile q. From 3, the intercept for the quantile increases as

q increases, whereas the coefficients related to the quantile of America and Europe decreases

when q is increased. Furthermore, the coefficients related to the quantile for log(surface) and

the coefficients related to the scale of America and Europe remain similar for all q. Figure 4

presented the estimated quantiles 0.05, 0.25, 0.50, 0.75 and 0.95 for the mortality rate for different

values of log(surface).

P
S

frag
rep

lacem
en

ts

-7

-5

-4

0
.1

8

0
.1

6

0
.1

0

0
.0

8

1
.0

0
.0

0
.8

0
.6

0
.4

-0
.2

-0
.4

1
.2

1
.1

1
.0

0
.8

0
.7

0
.6

0
.2

0
.4

0
.6

0
.8

1
.0

1
.5

1
.2

1
.4

1
.6

-2
.5

-2
.5

-2
.5

0.2 0.4 0.6 0.8
q

β
0
(q
)

P
S

frag
rep

lacem
en

ts-7-5-4

0.18

0.16

0.10

0.08

1
.0

0
.0

0
.8

0
.6

0
.4

-0
.2

-0
.4

1
.2

1
.1

1
.0

0
.8

0
.7

0
.6

0
.2

0
.4

0
.6

0
.8

1
.0

1
.5

1
.2

1
.4

1
.6

-2
.5

-2
.5

-2
.5

0.2 0.4 0.6 0.8
q

β
1
(q
)

P
S

frag
rep

lacem
en

ts-7-5-4

0
.1

8

0
.1

6

0
.1

0

0
.0

8

1
.0

0.0

0
.8

0
.6

0
.4

-0
.2

-0
.4

1
.2

1
.1

1
.0

0
.8

0
.7

0
.6

0
.2

0
.4

0
.6

0
.8

1.0

1
.5

1
.2

1
.4

1
.6

-2
.5

-2
.5

-2
.5

0.2 0.4 0.6 0.8
q

β
2
(q
)

P
S

frag
rep

lacem
en

ts-7-5-4

0
.1

8

0
.1

6

0
.1

0

0
.0

8

1
.0

0
.0

0
.8

0
.6

0
.4

-0.2

-0.4

1
.2

1
.1

1
.0

0
.8

0
.7

0
.6

0
.2

0.4

0.6

0.8

1
.0

1
.5

1
.2

1
.4

1
.6

-2
.5

-2
.5

-2
.5

0.2 0.4 0.6 0.8
q

β
3
(q
)

P
S

frag
rep

lacem
en

ts-7-5-4

0
.1

8

0
.1

6

0
.1

0

0
.0

8

1
.0

0.0

0
.8

0
.6

0
.4

-0
.2

-0
.4

1
.2

1
.1

1
.0

0
.8

0
.7

0
.6

0.2

0
.4

0.6

0.8

1
.0

1
.5

1
.2

1
.4

1
.6

-2
.5

-2
.5

-2
.5

0.2 0.4 0.6 0.8
q

ν
0
(q
)

−0.1

0.1

P
S

frag
rep

lacem
en

ts-7-5-4

0
.1

8

0
.1

6

0
.1

0

0
.0

8

1
.0

0.0

0
.8

0
.6

0
.4

-0
.2

-0
.4

1
.2

1
.1

1
.0

0
.8

0
.7

0
.6

0
.2

0.4

0
.6

0
.8

1
.0

1
.5

1
.2

1
.4

1
.6

-2
.5

-2
.5

-2
.5

0.2 0.4 0.6 0.8
q

ν
1
(q
)

0.5

P
S

frag
rep

lacem
en

ts-7-5-4

0
.1

8

0
.1

6

0
.1

0

0
.0

8

1
.0

0
.0

0
.8

0
.6

0
.4

-0.2

-0.4

1
.2

1
.1

1
.0

0
.8

0
.7

0
.6

0
.2

0.4

0.6

0.8

1
.0

1
.5

1
.2

1
.4

1
.6

-2
.5

-2
.5

-2
.5

0.2 0.4 0.6 0.8
q

ν
2
(q
)

Figure 3: Point estimation and 95% confidence interval for parameters estimated in RPGJSB1q model

for different quantiles (cloglog link and G the cdf of the logistic model).

5.1.2 Local influence analysis

We also presented a local influence analysis for the selected model under the three perturbations

schemes discussed in Section 3.3. Figure 5 shows such analysis for the RPGJSB1 model with q = 0.5
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Table 5: Estimated parameters for different quantile in RPGJSB1q=0.5 model for the COVID-19 data

set with G the cdf of the logistic model and cloglog link. Also are presented the p-values for the

traditional normality test for RQRs.

p-values for quantile residuals

q parameter estimated s.e. t-value p-value KS SW AD CVM

β0 -5.6835 0.3709 -15.32 <0.0001

β1 0.1290 0.0276 4.68 <0.0001

β2 0.4749 0.1248 3.80 0.0001

0.50 β3 0.1886 0.1320 1.43 0.0766 0.995 0.820 0.915 0.969

ν0 0.9060 0.1556 5.82 <0.0001

ν1 0.4294 0.2030 2.12 0.0172

ν2 0.2264 0.1737 1.30 0.0963

logα 0.1164 0.3337 0.35 0.3636
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Figure 4: Estimated 100 × qth quantile in the RPGJSB1q model varying the log(surface) for

countries in Africa, Asia or Oceania (left panel), America (center panel) and Europe (right panel)

considering the cloglog link and G the cdf from the logistic model.

using the cloglog link and G the cdf of the logistic model in the COVID-19 data set. In Section B.3

of the supplementary material is presented the same analysis for other selected quantiles. Note that,

considering all the cases, the observation 121 appear in at least some case, which correspond to Yemen

(Asia). Yemen reported a high mortality rate (29%, 601 accumulated deaths and 2067 accumulated

cases, respectively). Evidently there is a problem in the handling of information about COVID-19 in

the country. Table 6 presents the relative change for the parameters (RC), for its estimated standard

errors (RCSE) and the respective p-value for the estimation without Yemen. We highlight that the

greater variations are obtained for the parameters related to the scale and for logα (excepting the

case for β3(q = 0.90)). However, the estimated quantiles presented in Figure 3 do not depend on

those parameters. Therefore, such plot without the referred observations are similar. We highlight

that the significance of the parameters related to the quantile is maintained for all the cases (excepting

for β3(q = 0.05)), suggesting a robustness of the model to estimate the different quantiles in this

problem.
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Figure 5: Index plots of Ci for β̂ (upper) and ν̂ (lower) under the weight perturbation (left), response

perturbation (center) and covariate perturbation (right) schemes for RPGJSB1q=0.5 model (cloglog

link and G the cdf from the logistic model) in COVID-19 data set.

6 Conclusions

In this paper, we propose two classes of parametric quantile regression models for studying the

association between a bounded response and covariates via inferring the conditional quantile of the

response. The proposed quantile regression models was built based on power Johnson SB distribu-

tion (Cancho et al., 2020) using a new parameterization of this distribution that is indexed by quan-

tile, dispersion and shape parameters (RPGJSB1q(ψ, δ, α)) or quantile and dispersion parameters

(RPGJSB2q(ψ, δ)). The first proposed quantile model has an extra-parameter α > 0 is associated

with the “tailedness”, and the second proposed quantile model has a less computational costs. The

ML inference was implemented to estimate the models parameters, which was satisfactory consider-

ing the simulation studies where parameters were recovered for different sample sizes. Furthermore,

under each proposed quantile regression model, we have developed model diagnostic tools. In or-

der to illustrate our approach, two applications using real data sets were presented and discussed. In

particular, we analyze the mortality rate of COVID-19 and the reproductive activity of the Chilean

anchoveta. Results of the applications showed that the proposed quantile models are adequate. Based

on the results, the RPGJSB1q regression model presents a better fit for the COVID-19 mortality rate

and the anchoveta data sets. As part of future research, there are several extensions of the new mod-

els not considered in this paper that can be addressed in future research, in particular, an extension
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Table 6: RCs (in %) in ML estimates and their corresponding SEs for the indicated parameter and

respective p-values for COVID-19 data set when observation 121 is dropped.

q
parameter 0.10 0.25 0.50 0.75 0.90

RC 7.81 11.06 16.43 23.58 32.58

RCSE β0(q) 0.20 0.10 0.05 0.27 0.66

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 15.58 15.58 15.58 15.58 15.58

RCSE β1(q) 0.28 0.28 0.28 0.28 0.28

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

RC 1.17 13.45 41.56 99.46 266.08

RCSE β2(q) 4.83 7.63 8.81 2.12 28.95

p-value 0.0003 0.0001 0.0001 <0.0001 <0.0001

RC 9.43 30.59 78.19 216.11 2502.37

RCSE β3(q) 6.92 12.61 16.00 1.10 450.43

p-value 0.0526 0.0431 0.0383 0.0359 0.0351

RC 12.54 12.54 12.54 12.54 12.54

RCSE ν0(q) 28.63 28.63 28.63 28.63 28.63

p-value 0.0562 0.0562 0.0562 0.0562 0.0562

RC 45.7 45.7 45.7 45.7 45.7

RCSE ν1(q) 8.75 8.75 8.75 8.75 8.75

p-value 0.1588 0.1588 0.1588 0.1588 0.1588

RC 35.73 35.73 35.73 35.73 35.73

RCSE ν2(q) 11.86 11.86 11.86 11.86 11.86

p-value 0.3219 0.3219 0.3219 0.3219 0.3219

RC 951.62 951.63 951.63 951.61 951.64

RCSE logα(q) 694.77 694.78 694.78 694.76 694.78

p-value 0.3855 0.3855 0.3855 0.3855 0.3855

of the methods developed in this paper would be to consider in (2) a much more general family of

distributions; that is, consider models for zero-inflated and one-inflated data set. Directions related to

random effects in the model also can be addressed in future works.
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