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Abstract 

Coronavirus disease 2019 (COVID-19) has been the main agenda of the whole world, since it came into 

sight in December 2019 as it has significantly affected the world economy and healthcare system. Given 

the effects of COVID-19 on pulmonary tissues, chest radiographic imaging has become a necessity for 

screening and monitoring the disease. Numerous studies have proposed Deep Learning approaches for the 

automatic diagnosis of COVID-19. Although these methods achieved astonishing performance in detection, 

they have used limited chest X-ray (CXR) repositories for evaluation, usually with a few hundred COVID-

19 CXR images only. Thus, such data scarcity prevents reliable evaluation with the potential of overfitting. 

In addition, most studies showed no or limited capability in infection localization and severity grading of 

COVID-19 pneumonia. In this study, we address this urgent need by proposing a systematic and unified 

approach for lung segmentation and COVID-19 localization with infection quantification from CXR 

images. To accomplish this, we have constructed the largest benchmark dataset with 33,920 CXR images, 

including 11,956 COVID-19 samples, where the annotation of ground-truth lung segmentation masks is 

performed on CXRs by a novel human-machine collaborative approach. An extensive set of experiments 

was performed using the state-of-the-art segmentation networks, U-Net, U-Net++, and Feature Pyramid 

Networks (FPN). The developed network, after an extensive iterative process, reached a superior 

performance for lung region segmentation with Intersection over Union (IoU) of 96.11% and Dice 

Similarity Coefficient (DSC) of 97.99%. Furthermore, COVID-19 infections of various shapes and types 

were reliably localized with 83.05% IoU and 88.21% DSC. Finally, the proposed approach has achieved an 

outstanding COVID-19 detection performance with both sensitivity and specificity values above 99%. 

Keywords: COVID-19, Chest X-ray, Lung Segmentation, Infection Segmentation, Convolutional Neural 

Networks, Deep Learning 

1 Introduction  

The novel coronavirus 2019 (COVID-19) is an acute respiratory syndrome that has already caused 

over 2.6 million causalities and infected more than 117 million people, as of March 11, 2021 [1]. The 

business, economic, and social dynamics of the whole world were affected. Governments have imposed flight 

restrictions, social distancing, and increasing awareness of hygiene. However, COVID-19 is still spreading at 

a very rapid rate. The common symptoms of coronavirus include fever, cough, shortness of breath, and 

pneumonia. Severe cases of coronavirus disease result in acute respiratory distress syndrome (ARDS) or 

complete respiratory failure, which requires support from mechanical ventilation and an intensive-care unit 

(ICU). People with a compromised immune system or elderly people are more likely to develop serious 

illnesses, including heart and kidney failures and septic shock [2]. 



Intuitively, reliable detection of COVID-19 disease has the utmost importance. However, the diagnosis 

procedures are not straightforward, as the common symptoms of COVID-19 are generally indistinguishable 

from other viral infections [3, 4]. Currently, the primary diagnostic tool to detect COVID-19 is reverse-

transcription polymerase chain reaction (RT-PCR) arrays, where the presence of Severe Acute Respiratory 

Syndrome Related Coronavirus 2 (SARS-CoV-2) Ribonucleic acid (RNA) is tested on collected respiratory 

specimens from the suspected case [5, 6]. However, RT-PCR arrays have a high false alarm rate caused by 

sample contamination, damage to the sample, or virus mutations in the COVID-19 genome [7, 8]. Therefore, 

several studies suggested using chest computed tomography (CT) imaging as a primary diagnostic tool since 

it shows higher sensitivity values compared to RT-PCR [9, 10]. Besides, several studies [9-11] suggest 

performing CT as a secondary test if the suspected patients with shortness of breath or other respiratory 

symptoms showed negative RT-PCR findings. Despite the superior performance, CT scans pose difficulties 

and certain limitations. Their sensitivity is limited for early COVID-19 cases, slow in image acquisition, less 

applicable, and bear high costs. On the other hand, X-ray imaging is a cheaper, faster, and readily available 

method, where the body gets exposed to smaller amounts of harmful radiation compared to CT [12]. Chest 

X-ray (CXR) imaging is widely used as an assistive diagnostic tool in COVID-19 screening, and it is reported 

to have high potential prognostic capabilities [13].  

The majority of early COVID-19 cases show similar features on radiographic images, including bilateral, 

multi-focal, ground-glass opacities with posterior or peripheral distribution, mainly in the lower lung lobes, 

while it develops to pulmonary consolidation in the late stage [14, 15]. Even though chest radiographs can 

help in the early screening of the suspected case, the images of several viral pneumonia are similar. They 

show a high overlap with other inflammatory lung diseases. Therefore, it is difficult for medical doctors to 

distinguish COVID-19 infection from other viral pneumonia. Hence, this symptom similarity can lead to the 

wrong diagnosis in the current situation, which may cause delayed treatment or even cost human lives. 

The tremendous development in Deep Learning techniques in recent years led to state-of-the-art 

performance in several Computer Vision tasks, such as image classification, object detection, and image 

segmentation. This breakthrough led to increased utilization of AI-based solutions in various life fields, 

including biomedical health problems and complications. Specifically, Convolutional Neural Network (CNN) 

has been proven extremely beneficial in several biomedical imaging applications, such as skin lesion 

classification [16], brain tumor detection [17], breast cancer detection [18], and lung pathology screening [19, 

20]. Deep Learning techniques on chest X-ray images are gaining popularity with the availability of deep 

CNNs, showing promising results in various applications. Rajpurkar et al. [21] proposed the CheXNet 

network, one of the top-performing architectures for CXR, by training Densenet121 on the ChestX-ray14 

dataset [22], the largest public CXR dataset with over 100 thousand X-ray images for 14 different pathologies. 



Rahman et al. [23] investigated several pre-trained CNNs to classify the CXR images as having manifestations 

of pulmonary tuberculosis (TB) or as healthy. The proposed model was trained over a dataset of 3,500 infected 

and 3,500 Normal CXR images. A high detection performance was achieved by the best performing model, 

DenseNet201, with 98.57% sensitivity and 98.56% specificity. 

Recently, many studies have reported Deep Learning approaches to automate COVID-19 detection from 

chest X-ray images [24-34]. They have reported high detection performance for the disease; however, they 

also present certain issues and drawbacks. First of all, all of them have used a limited amount of COVID-19 

data, e.g., the largest dataset includes only a few hundred CXR samples. As mentioned earlier, such a data 

scarcity yields a lack of proper evaluation, and thus it is difficult to generalize their results in practice. 

Moreover, they only aimed for COVID-19 detection and/or classification among other types without further 

assessment and localization. Due to these issues, their usability and robustness for a clinical usage will be very 

limited.  

On the other hand, few studies [33, 34] considered lung segmentation as the first stage in their detection 

system. This ensures reliable decision-making in the classification phase and guards the network against 

irrelevant features from non-lung areas, such as heart, bones, background, or text. However, the previous 

segmentation approaches were trained on a mixture of medium and high-quality CXR images, mainly from 

Montgomery [35] and Shenzhen [36] CXR lung mask datasets which combinedly creates 704 X-ray images 

for Normal and TB cases. Therefore, the segmentation performance degrades in unseen scenarios such as 

severe COVID-19 cases or low-quality images with poor signal-to-noise (SNR) levels. Hence, lung areas can 

be partially or incompletely segmented for severe COVID-19 infections such as bilateral consolidation or 

fluid accumulation at lower-lung lobes, which degrades the classification performance. Therefore, creating a 

large benchmark CXR dataset with ground-truth lung segmentation masks is of high importance, and will 

help the research community to provide a more reliable detection system for COVID-19 and other lung 

pathologies.  

Along with COVID-19 detection, infection localization is another crucial task that helps in evaluating 

the status of the patient and in the treatment process [37]. Therefore, several studies utilized class activation 

maps which are generated from Deep Learning models trained for COVID-19 classification tasks to localize 

infected lung regions. Those localized regions are potential signatures for COVID-19. However, more precise 

and reliable localization can be provided by ground-truth infection mask from expert radiologists. Therefore, 

Degerli et al. [38] proposed a novel approach for COVID-19 infection map generation by compiling a 

COVID-19 dataset consisting of 2,951 CXR images with annotated ground-truth infection segmentation 

masks. Several encode-decoder (E-D) CNNs were trained and evaluated on the generated dataset, where the 

best performing network achieved an 85.81% f1-score for infection localization. However, their proposed 



approach is limited only to infection localization. Therefore, there is room to revisit the problem with both 

lung and infection segmentation models to both localize and quantify infection regions by computing the 

overall percentage of infected lungs. This can help medical doctors to quantify the severity and track the 

progression of COVID-19 pneumonia. 

In this work, in order to overcome the aforementioned limitations and challenges, we have accomplished 

the following objectives: 

- The largest COVID-19 benchmark dataset, namely COVID-QU, has been created with 11,956 

COVID-19, 11,263 Non-COVID, and 10,701 Normal (healthy) chest X-ray (CXR) images. This 

will not only provide the most reliable evaluation ever performed for COVID-19 detection, 

localization, and quantification; it will also help to investigate the state-of-the-art deep network 

models more reliably and accurately. 

- For the first time, the ground-truth lung segmentation masks for the entire COVID-QU dataset 

have been created by using a novel human-machine collaborative approach that significantly 

reduces human labor to annotate the images. Both the dataset and the ground-truth masks will be 

released along with this study as public benchmark dataset. We believe that COVID-QU will be 

extremely beneficial for researchers, doctors, and engineers around the world to come up with 

innovative solutions for the early detection of COVID-19 with the help of the large benchmark 

COVID-19 CXR images with their ground-truth lung masks. 

- Furthermore, we have investigated the three state-of-the-art image segmentation architectures, 

U-Net, U-Net++, and Feature Pyramid Networks (FPN) with different backbone encoder 

structures starting from shallow to deep structures: ResNet18, ResNet50, DenseNet121, 

DenseNet161, and InceptionV4 for both lung and infection segmentation tasks and thus found 

out which model is the best for each task accomplished.  

- Finally, we have proposed a novel and robust system for lung segmentation and COVID-19 

localization with infection quantification from CXR images. This is a crucial accomplishment 

for a reliable diagnosis and assessment of the disease with the highest accuracy ever reached. 

2 The Benchmark COVID-QU Dataset  

In this section, we will first show the data compilation process; then, we will present the proposed 

approach for ground-truth lung mask generation.  



2.1 Data Compilation  

Due to the emerging nature of the pandemic, initially, little efforts have been made by highly infected 

countries on sharing clinical and radiography data publicly. Therefore, a group of researchers from Qatar 

University (QU) and Tampere University (TU), have created two datasets, the so-called COVID-QU [39] 

and QaTa-Cov19 datasets [38]. The COVID-QU dataset consists of 3,616 COVID-19, 8,851 Non-COVID 

cases, and 6,012 Normal cases. While QaTa-Cov19 dataset includes 2,951 COVID-19 CXR along with 

their ground-truth infection masks. Gradually, more X-rays have become publicly available. Hence, we 

extended COVID-QU to include over 33,000 CXR images, from three different classes: 

1) 11,956 COVID-19  

2) 11,263 Non-COVID infections (viral or bacterial pneumonia)  

3) 10,701 Normal (healthy) 

In this study, only posterior-to-anterior (PA) or anterior-to-posterior (AP) chest X-rays were 

considered as this view of radiography is widely used by the radiologist. This dataset was created by 

utilizing numerous publicly available datasets and repositories, all of which are scattered, and with varying 

formats. Authors ensured the quality of the provided information; duplicates, extremely low-quality, and 

over-exposed images were identified and removed in the preprocessing stage. Consequently, the dataset 

encapsulates images of high interclass dissimilarity with varying resolution, quality, and SNR levels, as 

shown in Figure 1.  



 

Figure 1. Sample chest X-ray images from the COVID-QU dataset for COVID-19, Non-COVID, and Normal 

classes. 

Details of different data sources are given below: 

COVID-19 CXR dataset: The dataset contains 11,956 positive COVID-19 CXR images: 10,814  

images are collected from BIMCV-COVID19+ dataset [40], 183 images from a German medical school 

[41], 559 X-ray image from SIRM, Github, Kaggle, and Tweeter [42-45], and 400 X-ray images from 

another COVID-19 chest X-ray repository [46].  

RSNA CXR dataset (Non-COVID infections and Normal CXR): RSNA pneumonia detection 

challenge dataset [47] consists of 26,684 chest X-ray images, where 8,851 images are normal, 11821 are 

abnormal, and 6012 are lung opacity images. All images are in DICOM format. In this study, we used 8851 

normal and 6012 lung opacity X-ray, where lung opacity images are used as a Non-COVID class.  



Chest-Xray-Pneumonia dataset: This is a Kaggle dataset [48] that encapsulates 1,300 viral 

pneumonia, 1,700 bacterial pneumonia, and 1,000 normal X-rays. In this study, viral and bacterial 

pneumonia are considered as Non-COVID-19 class.    

PadChest dataset: PadChest [49] dataset comprises more than 160,000 X-ray images from 67,000 

patients that were collected and reported by radiologists at Hospital San Juan (Spain) from 2009 to 2017.  

In this study, we used 4,000 normal, and 4,000 pneumonia/infiltrate (Non-COVID-19) cases.   

Montgomery and Shenzhen CXR lung masks dataset: This dataset consists of 704 CXR images 

with their corresponding lung segmentation masks. It was used as initial ground truth masks to train the 

lung segmentation model in the first stage of the proposed human-machine collaborative approach. The 

dataset was acquired by Shenzhen Hospital in China [36], and the tuberculosis control program of the 

Department of Health and Human Services of Montgomery County, MD, USA [35]. Montgomery dataset 

consists of 80 normal and 58 tuberculosis CXR with lung segmentation masks. While Shenzhen dataset 

compromises 326 normal and 336 tuberculosis CXR, where 566 out of 662 CXR are provided with their 

corresponding masks.  

QaTa-Cov19 CXR infection mask dataset [38]: This dataset was created by a research group 

from Qatar University and Tampere University. It consists of nearly 120K CXR images, including 2,913 

COVID-19 images with their corresponding ground-truth infection masks. In this study, the ground-truth 

infection masks were used to train and evaluate the infection segmentation models.  

2.2 Collaborative Human-Machine Segmentation Approach for Lung Ground-Truth Mask Generation  

Recent advancements in Deep Learning techniques led to remarkable success; however, supervised 

Deep Learning approaches require large and annotated data for training. Otherwise, scarcity of data 

degrades their performance, resulting in poor generalization capabilities. Nevertheless, the process of 

producing ground truth segmentation masks is an exhaustive task, where human experts need to delineate 

pixel-wise masks. This is not only a demanding task for a human; however, the resultant segmentation 

masks will suffer from the varying subjectivity and hand-crafting levels of the human annotators.  

To overcome this issue, a collaborative human-machine segmentation approach is proposed to 

accurately produce the ground-truth lung segmentation masks for CXR images.  

The human-machine collaborative approach was performed in four main stages. 

Stage Ⅰ (Initial Training): 

In the first stage, three variants of the U-Net [50] segmentation model, are trained on 704 CXR 



images and ground-truth lung masks publicly available from Montgomery and Shenzhen dataset mentioned 

previously. The ground-truth CXR lung masks are referred to as the CXR lung mask repository in Figure 

2, and it is enlarged throughout the mask creation process. Next, the best performing network in terms of 

Dice Similarity Coefficient (DSC) is selected as the main network for Stage Ⅱ, which is referred to as the 

CXR-Segmentation network in Figure 2.   

Stage Ⅱ (Collaborative Evaluation): 

In the second stage, an iterative training is utilized to create lung masks for a subset of 3,000 CXR 

samples (~10% of the full dataset) that well represent the diversity of the COVID-QU dataset. Firstly, A 

subset of 500 samples is selected and inferred using the CXR-Segmentation model. The predicated lung 

masks are then evaluated by researchers as, “accept”, “reject”, “unsure”, or “exclude”. Accepted masks that 

accurately cover the lung areas are added into the CXR-lung-mask-repository. Rejected masks either miss 

certain parts of the lung or include irrelevant parts. Those rejected masks are then manually modified by 

the researchers, and the corrected masks are finally added to the CXR-lung-mask-repository. The ”unsure” 

masks are those severe cases with highly infected areas. They are usually consolidations or fluid 

accumulation at lower lung lobes with a whitish color, which makes them indistinguishable from 

neighboring organs. The unsure masks are first assessed by MDs; then, researchers adjust the masks based 

on their recommendations. Finally, the “excluded” masks are the ones where the quality is extremely bad 

for a proper lung segmentation. Finally, the CXR-Segmentation (best-performing) network is re-trained on 

the extended mask dataset. Then the second subset of 500 samples is selected, and the steps of Stage Ⅱ are 

repeated. This process is repeated until generating ground-truth masks for 3,000 CXR samples is completed.  

Stage Ⅲ (Collaborative Selection): 

In the third stage, six deep segmentation networks from the models of U-Net [50], U-Net++ [51], 

and FPN [52], are trained using the 3,000 ground-truth masks generated in Stage Ⅱ by the proposed 

approach. The trained networks are used to predict segmentation masks for the rest of the COVID-QU 

dataset, which is around 30,900 unannotated samples (~90% of the full dataset). Among the six predictions, 

researchers select the best one as the ground-truth or deny if none of the masks segments the lung properly. 

The latter is a minority case that included less than 5% of unannotated data. The most selected network is 

considered as the best-performing network and used for a new training with the extended masks repository. 

The denied cases are then inferred by the main segmentation network and evaluated manually following 

the steps in Stage Ⅱ. As a result, the ground-truth masks for 33,920 CXR images are gathered to construct 

the benchmark COVID-QU lung masks dataset. 

Stage Ⅳ (Final Verification): 

In the final stage, a final verification is performed by MDs on randomly selected 6,788 CXR 

samples (20% of the full dataset) that well presents the diversity of the COVID-QU dataset. The samples 



are selected from COVID, Non-COVID, and Normal classes, with different resolution, quality, and SNR 

levels. In this study, the verified subset (20%) was considered as a test set for all the experimental 

evaluations, while the remaining data (80%) were considered as train and validation sets. 

 

 

 



 

Figure 2. Collaborative human-machine approach to create ground-truth lung segmentation masks for 

COVID-QU CXR dataset. Stage Ⅰ: Three segmentation networks are trained on a repository of 704 CXR lung 

segmentation masks, and the best network in terms of DSC is selected for the subsequent stages.  Stage Ⅱ: An iterative 

training is utilized to create lung masks for a subset of 3,000 CXR samples from COVID-QU dataset. Firstly, A subset 

of 500 samples is inferred by CXR segmentation model and the outputs are evaluated manually as accept, reject, 

modify, or exclude. Next, the modified masks are added to the lung repository and the network is re-trained on the 

extended dataset. These steps are repeated until generating ground-truth masks for the 3,000 CXR samples is 

completed. Stage Ⅲ: six deep segmentation networks are trained using the 3,000 ground-truth masks generated in the 

previous stage. The trained networks are used to predict segmentation masks for the rest of the COVID-QU dataset 

(30,900 images). Stage Ⅳ: a final verification is performed by MDs on randomly selected 6,788 CXR samples (20% 

of the full dataset) that well presents the diversity of the COVID-QU dataset. 
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3 Methods 

In this section, we describe the proposed unified approach for lung segmentation and COVID-19 

localization with infection quantification from the CXR images. As the schematic representation of the 

pipeline of the proposed COVID-19 recognition system is shown in Figure 3, a binary lung mask is first 

generated from the input CXR image using the 1st encoder-decoder (E-D) CNN. In parallel, the input CXR 

is fed to the 2nd E-D CNN to generate COVID-19 infection masks. Then, the generated lung and infection 

masks are superimposed with the CXR image to localize and quantify COVID-19 infected lung regions. 

Finally, the generated infection mask is used to detect COVID-19 positive cases from COVID-19 negative 

cases. We will detail each process next.  

 
Figure 3. Schematic representation of the pipeline of the proposed system. The input CXR image is fed to 

two ED-CNNs in parallel, to generate two binary masks: lung, and COVID-19 infection masks. Next, the generated 

masks are superimposed with the CXR image to localize and quantify COVID-19 infected lung regions. Finally, the 

generated infection mask is used to detect COVID-19 positive cases from COVID-19 negative cases. 

3.1 Network models for lung and COVID-19 infection segmentation 

Lung and COVID-19 infection segmentation were performed on CXR images using three state-of-

the-art deep E-D CNNs: U-Net [50], U-Net++ [51], and FPN [52], with different backbone (encoder) 

models using the variants of ResNet [53], DenseNet [54], and InceptionV4 [55] networks. Five variants of 

LUNG SEGMENTATION 

Lung Mask E-D CNN

E-D CNN

COVID-19 PNEUMONIA SEGMENTATION

Infection  Mask 

INFECTION LOCALIZATION 

& QUANTIFICATION

COVID-19 Negative

COVID-19 Positive

COVID-19 DETECTION

Superimpose

Input CXR

37.6% Infection 



the backbone models were considered starting from shallow to deep structures: ResNet18, ResNet50, 

DenseNet121, DenseNet161, and InceptionV4.  

The deployed encoder-decoder blocks provide a firm segmentation model that captures the context 

in the contracting path and empowers precise localization by the expanding path. The U-Net architecture 

has a classical decoder part that is symmetric to the encoder part, where max-pooling operations are 

replaced with up-sampling operations. Besides, high-resolution features from the encoder path are merged 

with the up-sampled output from the corresponding decoder path through skip connection. On the other 

hand, the U-Net++ is a recent implementation that has further developed the decoder block. The encoder 

and decoder blocks are connected through a series of nested dense convolutional blocks. This ensures a 

firm bridge between the encoder and decoder parts of the network, where information can be transferred to 

the final layers more intensively compared to the conventional U-Net. Both U-Net and U-Net++ 

architectures utilize 1×1 convolution to map the output from the last decoding block to two-channel feature 

maps, where a pixel-wise SoftMax activation function is applied to map each pixel into a binary class of 

background or lung for Lung segmentation task, and background or lesion for infection segmentation task. 

In contrast, the FPN employs the encoder-decoder as a pyramidal hierarchy by generating prediction masks 

at each spatial level of the decoder path. All predicted feature maps are upsampled to the same size, 

concatenated, convolved with a 3×3 convolutional filter, and then SoftMax activation is applied to generate 

the final prediction mask. 

To ensure efficient training and faster convergence, transfer learning was utilized on the encoder side 

of the segmentation networks by initializing the convolutional layers with ImageNet weights. 

3.1.1 Segmentation loss function 

The cross-entropy (CE) loss is used as the cost function for the segmentation networks: 

𝐶𝐸 = −
1

𝐾
∑ ∑ 𝑦𝑘log(𝑝(𝑥𝑘))

𝑐𝑘

 (1) 

where 𝑥𝑘 denotes the kth pixel in the predicted segmentation mask, 𝑝(𝑥𝑘) denotes its SoftMax probability, 𝑦𝑘 

is a binary random variable getting 1 if 𝑦𝑘 = 𝑐, otherwise 0, and 𝑐 denotes the class category, i.e., 𝑐 ∈

{𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, 𝑙𝑢𝑛𝑔} for the lung segmentation task, and 𝑐 ∈ {𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, 𝑙𝑒𝑠𝑖𝑜𝑛} for the infection 

segmentation. 

3.2 Post-processing 

The predicted segmentation masks, Ŷ, by the segmentation models are defined as Ŷℎ,𝑤 ∈ [0,1], where 

ℎ and 𝑤 represent the size of the image. In the post-processing step, binary segmentation masks are first 



generated by thresholding with a fixed value of 0.5. The predicted pixels are classified as lung if 𝑦̂ > 0.5 

for the lung segmentation task, while classified as COVID-19 infection if 𝑦̂ > 0.5 for the infection 

segmentation task. The binary lung masks are further processed by hole filling and removal of small regions, 

<5% of the total positive predicted pixels. As a result, we increase the true-positives while minimizing the 

false-positives, non-lung regions that are falsely predicted as a lung. In contrast, infection masks are and 

operated with post-processed lung masks to ensure that the infection region falls within the lung area and 

remove the false positives outside the lung region.  

3.3 COVID-19 detection and quantification  

The detection of COVID-19 is performed based on the prediction maps generated by the infection 

segmentation network. Accordingly, a CXR image is classified as COVID-19 positive if at least one pixel 

of lung areas is predicted as COVID-19 infection, i.e., 𝑝(𝑥_𝑘) > 0.5. Otherwise, the image is considered 

as COVID-19 negative, healthy people or patients with Non-COVID pneumonia. Furthermore, COVID-19 

infection is quantified by computing the overall percentage of infected lungs. Equivalently, the sum of 

predicted infection pixels over the sum of predicted lung pixels. In addition, the infection percentage of 

each lung is computed, enabling doctors to assess the progression of COVID-19 for each lung individually.  

3.4 Experimental Setup 

The lung segmentation task was conducted over the benchmark COVID-QU dataset. In contrast, the 

infection segmentation and COVID-19 detection tasks were conducted over a subset of 2,913 CXR samples 

from the COVID-QU dataset with corresponding infection masks from the QaTa-Cov19 dataset [38], which 

was a sub-set of the COVID-QU dataset. The CXR images are resized to have a fixed dimension of 256×256 

pixels to be used as the input for deep networks. All tasks were done with a 20% test set, an 80% train set, 

and five-fold cross-validation, where 20% of training data was used as a validation set to avoid overfitting. 

Table 1 summarizes the number of images per class used for training, validation, and testing.  

 

 

 

 



Table 1. Number of mages per class and per fold used for lung segmentation, infection segmentation, and 

COVID-19 detection tasks 

DATASET NAME TASK CLASS # OF 

SAMPLES 

TRAINING 

SAMPLES 

VALIDATION 

SAMPLES 

TEST 

SAMPLES 

 

COVID-QU 

dataset 

Lung  

Segmentation  

 

COVID-19 11,956 7,658 1,903 2,395 

Non-COVID 11,263 7,208 1,802 2,253 

Normal 10,701 6,849 1,712 2,140 

Total 33,920 21,715 5,417 6,788 

COVID-QU  

and  

QaTa-Cov19 

[38] datasets 

Infection  

Segmentation 

and 

COVID-19 

Detection 

COVID-19 positive 2,913 1,864 466 583 

 

COVID-19 

negative 

Non-COVID 1,457 932 233 292 

Normal 1,456 932 233 291 

Total 5,826 3,728 932 1,166 

Quantitative evaluations of the proposed approach are performed for the lung segmentation, 

infection segmentation, and COVID-19 detection tasks. The segmentation tasks are evaluated on the pixel-

level, where the foreground (lung or infected region) was considered as the positive class and background 

as the negative class. For the COVID-19 detection task, the performance was computed per CXR sample, 

where X-rays with COVID-19 infection were considered as the positive class and X-rays of healthy people 

or patients with Non-COVID pneumonia were considered as the negative class. 

The performance of deep CNNs was assessed using different evaluation metrics with 95% 

confidence intervals (CIs). Accordingly, CI for each evaluation metric was computed as follows: 

𝑟 = 𝓏√𝑚𝑒𝑡𝑟𝑖𝑐(1 − 𝑚𝑒𝑡𝑟𝑖𝑐)/𝑁 (2) 

where, N is the number of test samples, and 𝓏 is the level of significance that is 1.96 for 95% CI.   

3.4.1 Segmentation Evaluation Metrics 

The performance of the lung and lesion segmentation networks were evaluated using three 

evaluation metrics which are Accuracy, Intersection over Union (IoU), and Dice Similarity Coefficient 

(DSC): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

where 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the ratio of the correctly classified pixels among the image pixels. TP, TN, FP, FN 

represent the true positive, true negative, false positive, and false negative, respectively.   

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛 (𝐼𝑜𝑈) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 



𝐷𝑖𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝐷𝑆𝐶) =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5) 

where, both 𝐼𝑜𝑈 𝑎𝑛𝑑 𝐷𝑆𝐶 are statistical measures of spatial overlap between the binary ground-truth 

segmentation mask and the predicted segmentation mask, while the main difference is that DSC considers 

double weight for 𝑇𝑃 pixels (true lung/lesion predictions) compared to IoU.  

3.4.2 COVID-19 Detection Evaluation Metrics 

The performance of the COVID-19 detection scheme was assessed using five evaluation metrics: 

Accuracy, Precision, Sensitivity, F1-score, and Specificity. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇P

𝑇P + 𝐹P
 (6) 

where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is the rate of correctly classified positive class CXR samples among all the samples 

classified as positive samples.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡y =
𝑇𝑃

𝑇P + 𝐹N
 (7) 

where 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 is the rate of correctly predicted positive samples in the positive class samples, 

𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜n × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡y

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜n + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡y
 (8) 

where 𝐹1 is the harmonic average of precision and sensitivity. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇N

𝑇N + 𝐹P
 (9) 

where specificity is the sensitivity of the negative class samples.  

PyTorch [56] library with Python 3.7 was used to train and evaluate the deep CNN networks, with an 

8-GB NVIDIA GeForce GTX 1080 GPU card.  Adam optimizer was used, with the initial learning rate, 

𝛼 = 10−4, momentum updates, 𝛽1 = 0.9 and 𝛽2 = 0.999, an adaptive learning rate which decreases the 

learning parameter by a factor of 5 if validation loss did not improve for 3 consecutive epochs, early 

stopping criterion of 8 epochs, where training stops if validation loss did not improve for 8 consecutive 

epochs, and mini-batch size of 4 images with 40 back propagation epochs.  

4 Experimental Results  

In this section, both numerical and qualitative results are reported with an extensive set of comparative 

evaluations for lung segmentation, infection segmentation, and COVID-19 detection tasks. 



4.1 Results - Lung Segmentation 

The performance of the lung segmentation models over the test (unseen) set is tabulated in Table 

2. Each model was evaluated with five different encoder structures. For all models, it was observed that 

DenseNet encoders achieve the top-segmentation performances as they can share pieces of collective 

knowledge by densely connecting convolutional layers to their subsequent layers, therefore, preserving the 

information coming from the earlier layer through the output layer. The FPN model with DenseNet121 

encoder holds the leading performance with 96.11% IoU, and 97.99% DSC.  

Table 2. Performance metrics (%) for lung region and COVID-19 infected region segmentation computed 

over test (unseen) set with three network models and five encoder architectures. 

Task Model Encoder Accuracy IoU DSC 

 

 

 

 

 

 

 

 

Lung 

Segmentation 

U-Net 

ResNet18 99.07 ± 0.23 95.91 ± 0.47 97.88 ± 0.34 

ResNet50 99.08 ± 0.23 95.93 ± 0.47 97.89 ± 0.34 

DenseNet121 99.1 ± 0.22 96.06 ± 0.46 97.96 ± 0.34 

DenseNet161 99.1 ± 0.22 96.02 ± 0.47 97.94 ± 0.34 

InceptionV4 99.07 ± 0.23 95.9 ± 0.47 97.88 ± 0.34 

U-Net ++ 

ResNet18 99.07 ± 0.23 95.9 ± 0.47 97.88 ± 0.34 

ResNet50 99.1 ± 0.22 96.04 ± 0.46 97.95 ± 0.34 

DenseNet121 99.11 ± 0.22 96.1 ± 0.46 97.98 ± 0.33 

DenseNet161 99.09 ± 0.23 95.98 ± 0.47 97.92 ± 0.34 

InceptionV4 99.08 ± 0.23 95.96 ± 0.47 97.91 ± 0.34 

FPN 

ResNet18 99.06 ± 0.23 95.86 ± 0.47 97.86 ± 0.34 

ResNet50 99.07 ± 0.23 95.91 ± 0.47 97.88 ± 0.34 

DenseNet121 99.12 ± 0.22 96.11 ± 0.46 97.99 ± 0.33 

DenseNet161 99.09 ± 0.23 96.01 ± 0.47 97.94 ± 0.34 

InceptionV4 99.07 ± 0.23 95.92 ± 0.47 97.89 ± 0.34 

 

 

 

 

 

 

 

 

Infection 

Segmentation 

U-Net 

ResNet18 98.02 ± 0.8 82.92 ± 2.16 88.1 ± 1.86 

ResNet50 97.84 ± 0.83 81.73 ± 2.22 87.02 ± 1.93 

DenseNet121 97.98 ± 0.81 82.53 ± 2.18 87.74 ± 1.88 

DenseNet161 97.86 ± 0.83 81.95 ± 2.21 87.19 ± 1.92 

InceptionV4 97.98 ± 0.81 82.03 ± 2.2 87.11 ± 1.92 

U-Net ++ 

ResNet18 97.9 ± 0.82 82.9 ± 2.16 88.06 ± 1.86 

ResNet50 97.93 ± 0.82 82.59 ± 2.18 87.78 ± 1.88 

DenseNet121 97.97 ± 0.81 83.05 ± 2.15 88.21 ± 1.85 

DenseNet161 97.95 ± 0.81 81.55 ± 2.23 86.66 ± 1.95 

InceptionV4 97.9 ± 0.82 81.13 ± 2.25 86.22 ± 1.98 

FPN 

ResNet18 97.84 ± 0.83 81.9 ± 2.21 87.25 ± 1.91 

ResNet50 97.84 ± 0.83 80.83 ± 2.26 86.25 ± 1.98 

DenseNet121 97.99 ± 0.81 82.55 ± 2.18 87.71 ± 1.88 

DenseNet161 97.95 ± 0.81 81.89 ± 2.21 87.08 ± 1.93 

InceptionV4 97.99 ± 0.81 83.08 ± 2.15 88.13 ± 1.86 



The outputs of the top three networks compared with the ground-truth are shown in Figure 4. An 

interesting observation is that the three networks can reliably segment lung regions not only for COVID-

19 cases, but for non-COVID-19 pneumonia as well with different severity levels: mild, moderate, or 

severe. This elegant performance is empowered by the large COVID-QU dataset (over 33k samples), which 

encapsulates CXR samples with different quality, resolution, and SNR levels from COVID-19, non-

COVID-19, and normal classes. Therefore, the benchmark dataset can help researchers to overcome the 

challenges and limitations faced, mainly in the lung segmentation phase for COVID-19 or other lung 

pathology problems. As most of the previous approaches were trained over Montgomery [35] and Shenzhen 

[36] CXR lung mask datasets, which comprise medium and high-quality X-ray images from normal and TB 

classes, the previous segmentation approaches were falling in unseen scenarios, such as severe infection or 

low-quality images [33].  



 

Figure 4. Qualitative evaluation of generated lung masks by top three networks. CXR image (1st column), 

ground truth (2nd column), and the lung masks of the top three networks (columns 3-5). 

4.2 Results - Infection Segmentation 

The infection segmentation model was first evaluated over two different configurations: cascaded 

and parallel segmentation. For the cascaded scheme, lung region was first segmented using the lung 

segmentation model; then the segmented CXR was fed to the infection segmentation model. While the plain 



CXR was fed to both models independently for the parallel scheme. FPN model with DenseNet161 encoder 

was trained and evaluated on both schemes. The parallel scheme showed slightly better results with 87.08% 

DSC compared to 86.84% DSC for the cascaded scheme. Therefore, the parallel scheme was used as the 

main configuration for the remaining experiments. The performance of the infection segmentation models 

is presented in Table 2. U-Net++ model with DenseNet121 encoder showed the best performance with IoU 

and DSC values of 83.05% and 88.21%, respectively. Besides, the InceptionV4 encoder showed the highest 

performance among FPN models with 83.08% IoU and 88.13% DSC. In contrast, the shallowest encoder, 

ResNet18 presented the leading performance among U-Net models with IoU and DSC values of 82.92% 

and 88.1%, respectively.  

Figure 5(a) shows the robustness of top-three networks to reliably segment COVID-19 infections of 

various shapes (small, medium, or large infection) with different severity levels (mild, moderate, severe, or 

critical infection). Figure 5(b) shows infection localization and severity grading of COVID-19 pneumonia 

for a 42-year female patient on the 1st day (admission to hospital), 2nd day, and 3rd day using the proposed 

COVID-19 recognition system. 



 

Figure 5. (a) Qualitative evaluation of generated infection masks by top three networks.  CXR image (1st 

column), ground truth (2nd column), and the infection masks of the top three networks (columns 3-5). (b) Infection 

localization and severity grading of COVID-19 pneumonia for a 42-year female patient on the 1st, 2nd, and 3rd days 

using the proposed system. 



4.3 Results - COVID-19 Detection 

The performance of infection segmentation networks for COVID-19 detection from the CXR images 

is presented in Table 3. The sensitivity was considered as the primary metric for the detection task, as 

missing any COVID-19 positive case is critical. All the networks achieved high sensitivity values (>97%), 

where U-Net with DenseNet121 backbone and FPN with ResNet18 backbone achieved the best 

performance with a sensitivity of 99.66%. Similarly, all models showed high specificity values (>97%), 

where U-Net++ with ResNet18 backbone achieved the top performance with 100% specificity, indicating 

the absence of any false alarm. 

Table 3. COVID-19 detection performance results (%) computed over test (unseen) set with three network 

models, and five encoder architectures. 

Model Encoder Accuracy Precision Sensitivity F1-score Specificity 

U-Net 

ResNet18 98.89 ± 0.6 99.14 ± 0.53 98.63 ± 0.67 98.88 ± 0.6 99.14 ± 0.53 

ResNet50 98.89 ± 0.6 98.47 ± 0.7 99.31 ± 0.48 98.89 ± 0.6 98.46 ± 0.71 

DenseNet121 98.8 ± 0.62 97.98 ± 0.81 99.66 ± 0.33 98.81 ± 0.62 97.94 ± 0.82 

DenseNet161 98.71 ± 0.65 97.97 ± 0.81 99.49 ± 0.41 98.72 ± 0.65 97.94 ± 0.82 

InceptionV4 98.03 ± 0.8 98.28 ± 0.75 97.77 ± 0.85 98.02 ± 0.8 98.28 ± 0.75 

U-Net ++ 

ResNet18 99.23 ± 0.5 100 ± 0 98.46 ± 0.71 99.22 ± 0.5 100 ± 0 

ResNet50 99.14 ± 0.53 99.83 ± 0.24 98.46 ± 0.71 99.14 ± 0.53 99.83 ± 0.24 

DenseNet121 99.23 ± 0.5 99.14 ± 0.53 99.31 ± 0.48 99.22 ± 0.5 99.14 ± 0.53 

DenseNet161 98.2 ± 0.76 97.95 ± 0.81 98.46 ± 0.71 98.2 ± 0.76 97.94 ± 0.82 

InceptionV4 98.2 ± 0.76 98.45 ± 0.71 97.94 ± 0.82 98.19 ± 0.77 98.46 ± 0.71 

FPN 

ResNet18 98.54 ± 0.69 97.48 ± 0.9 99.66 ± 0.33 98.56 ± 0.68 97.43 ± 0.91 

ResNet50 98.46 ± 0.71 98.46 ± 0.71 98.46 ± 0.71 98.46 ± 0.71 98.46 ± 0.71 

DenseNet121 98.97 ± 0.58 99.65 ± 0.34 98.28 ± 0.75 98.96 ± 0.58 99.66 ± 0.33 

DenseNet161 98.11 ± 0.78 97.3 ± 0.93 98.97 ± 0.58 98.13 ± 0.78 97.26 ± 0.94 

InceptionV4 99.23 ± 0.5 99.31 ± 0.48 99.14 ± 0.53 99.22 ± 0.5 99.31 ± 0.48 

4.4 Computational Complexity Analysis 

Table 4 compares the segmentation models in terms of inference time and the number of trainable 

parameters. The results present the running time per CXR sample. It can be seen that FPN and U-Net models 

are faster than U-Net ++ models, due to their shallow and close structures. FPN with ResNet18 encoder is 

the fastest network taking up to 5.74 ms per image. In contrast, the U-Net++ model is the slowest with the 

largest number of trainable parameters. The most computationally demanding model is UNet++ with 

InceptionV4 encoder with 59.35M trainable parameters. However, UNet++ with DenseNet161 encoder is 

the slowest, with an inference time of 48.62 ms, as it is the deepest model with 161 layers. Moreover, for 

systems with limited computational capabilities, where both lung and infection segmentation cannot be 

used in parallel, the two models can be used consecutively. This will double (×2) the inference time, 



<100ms. However, we can still say that the full system can be used for real-time clinical applications as the 

overall inference time is still less than 100 ms. Therefore, multiple images can be processed within a second 

to take advantage of this state-of-the-art performance.  

Table 4. The number of trainable parameters of the models with their inference time (ms) per CXR sample. 

Model Encoder 
Trainable 

parameters 

Inference Time 

(ms) 

U-Net 

ResNet18 14.32M 5.78 

ResNet50 32.5M 10.44 

DenseNet121 13.60M 22.86 

DenseNet161 38.73M 29.74 

InceptionV4 48.79M 26.53 

U-Net ++ 

ResNet18 15.96M 8.30 

ResNet50 48.97M 19.90 

DenseNet121 30.06M 25.13 

DenseNet161 79.04M 48.62 

InceptionV4 59.35M 32.53 

FPN 

ResNet18 13.04M 5.74 

ResNet50 26.11M 10.34 

DenseNet121 9.29M 22.68 

DenseNet161 29.49M 29.62 

InceptionV4 43.57M 26.08 

5 Conclusion  

Early identification and isolation of highly infectious COVID-19 cases play a vital role in preventing the 

spread of the virus. X-ray imaging is a low-cost, easily accessible, and fast method that can be an excellent 

alternative for conventional diagnostic methods such as RT-PCR and CT scans. Therefore, numerous studies 

proposed AI-based solutions for automatic and real-time detection of COVID-19. In general, these methods 

showed outstanding performance for early detection and diagnosis. However, they have used limited CXR 

repositories for evaluation with a small number, a few hundreds, of COVID-19 samples. Thus, the 

generalization of the achieved results on large cohort dataset is not guaranteed. In addition, they showed 

limited performance in infection localization and severity grading of COVID-19 pneumonia. In this study, we 

propose a robust system to segment the lung, detect, localize, and quantify COVID-19 infections from the 

CXR images. To accomplish this, we compiled the largest CXR dataset, COVID-QU, which consists of 

11,956 COVID-19, 11,263 Non-COVID pneumonia, and 10,701 Normal images. Moreover, we constructed 

ground-truth lung segmentation masks for the benchmark dataset using an elegant collaborative human-

machine approach, which can save valuable human labor time and minimize subjectivity in the annotation 

process. The publicly shared dataset will help researchers to investigate deep CNN on a comparatively larger 

dataset, which can provide more reliable solutions for COVID-19 and other lung pathology problems. 



Extensive experiments on COVID-QU showed superior lung segmentation performance with 96.11% IoU 

and 97.99% DSC. Moreover, the proposed system proved reliable in localizing COVID-19 infection of 

various severity, achieving IoU and DSC values of 83.05% and 88.21%, respectively. Furthermore, an 

unprecedented COVID-19 detection performance was achieved with sensitivity and specificity values >99%. 

To the best of our knowledge, this is the first study that utilizes both lung and infection segmentation to 

detect, localize and quantify COVID-19 infection from X-ray images. Therefore, it can assist the medical 

doctors to better diagnose the severity of COVID-19 pneumonia and follow up the progression of the 

disease easily.  

In the future, we plan to explore robust quantization and model compression techniques to further reduce 

the model complexity and accelerate the inference process, using the new generation of heterogeneous 

network models such as Self-Organized Operational Neural Networks [57, 58]. 
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