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an application of Covid-19 data
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Abstract

In this paper, we investigate the classical and Bayesian estimation of unknown parameters
of the Gumbel type-II distribution based on adaptive type-II progressive hybrid censored
sample (AT-II PHCS). The maximum likelihood estimates (MLEs) and maximum product
spacing estimates (MPSEs) are developed and computed numerically using Newton-Raphson
method. Bayesian approaches are employed to estimate parameters under symmetric and
asymmetric loss functions. Bayesian estimates are not in explicit forms. Thus, Bayesian
estimates are obtained by using Markov chain Monte Carlo (MCMC) method along with
the Metropolis-Hastings (MH) algorithm. Based on the normality property of MLEs the
asymptotic confidence intervals are constructed. Also, bootstrap intervals and highest pos-
terior density (HPD) credible intervals are constructed. Further a Monte Carlo simulation
study is carried out. Finally, the data set based on the death rate due to Covid-19 in India
is analyzed for illustration of the purpose.
Keywords : Adaptive type-II progressive hybrid censoring; Maximum product spacing es-
timation; Markov chain Monte Carlo; Highest posterior density credible interval; Coverage
probability; Covid-19 data set.
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1 Introduction

In recent times, life testing experiments and reliability studies have achieved more accep-
tance. In such experiments, various situations appear where experimental units are elimi-
nated before the time of failure. In these cases, the investigator may not have full information
about the failure times of the whole experimental unit. Such kind of data collected from all
these experiments are called censored data. It is worth mentioning that the censoring was
introduced in practice to save time and reduce the number of failed units in a life-testing
experiment. Censoring can be done with respect to a prefixed time or prefixed number of
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failures or sometimes a combination of both prefixed time and number of failures. Depend-
ing upon these criteria, there are different types of censoring schemes. Let us consider a
life testing experiment with n number of experimental units and Xi:n denotes the time of
i-th failure of the experimental units, where i = 1, . . . , n. Let T be a pre-specified time. If
all the experiments fail before that pre-specified time T , it is known as a type-I censoring
scheme. In the case of the type-II censoring scheme, the experiment will terminate after
m-th number of failures observed, where m ≤ n. Both type-I and type-II censoring schemes
have some disadvantages. In the case of type-I censoring, the number of failures may be
zero, and in the case of type-II censoring, experimental time may be very large. For further
information about these schemes, we refer to Lawless (2011), Sirvanci and Yang (1984) and
Balakrishnan and Chan (1992).

Epstein (1954) introduced a censoring scheme which is a mixture of type-I and type-II
censoring schemes, known as the type-I hybrid censoring scheme. In this scheme, the exper-
iment is terminated at time T ∗ = min{T,Xm:n}, where Xm:n denotes the m-th failure and
T is pre-specified time. Childs et al. (2003) proposed type-II hybrid censoring scheme where
experiment will be terminated at time T ∗ = max{Xm:n, T}. For further studies on these
hybrid censoring schemes, one may read Balakrishnan and Kundu (2013), Kundu (2007),
Kundu and Pradhan (2009) and Dey and Pradhan (2014). In practical life testing exper-
iments, there are many cases when the experimental units are removed from experiments
before failure for other reasons. To overcome such scenarios, a type-II right censoring scheme
is introduced, known as a progressive type-II censoring scheme. It has more flexibility in
allowing the removal of units at time points other than the terminal point of the experi-
ments. For progressive type-II censoring scheme, let us consider that n experimental units
are placed on a life testing experiment. Let Xi:m:n be the failure time of the i-th exper-
imental unit, and m be the number of failures that is fixed before the experiment starts.
After first failure at X1:m:n, R1 number of units are removed randomly from n − 1 surviv-
ing units. After second failure at X2:m:n, R2 number of units are removed randomly from
n − R1 − 2 surviving units. The test continues until m-th failure occurs and all remaining
Rm = n −

∑m
i=1Ri − m surviving units are removed. In the progressive type-II censoring

scheme, the values of Ri’s are pre-fixed. Many researchers have studied statistical inferences
of different distributions under this censoring scheme. For example, see Balakrishnan et al.
(2003), Rastogi and Tripathi (2012) and Maiti and Kayal (2019).

In recent years, progressive type-II censoring scheme gained more popularity in life test-
ing experiments and reliability studies. But there is a major drawback of this censoring
scheme that it may take a large time to complete an experiment. To overcome this draw-
back, Kundu and Joarder (2006) introduced progressive hybrid censoring scheme. Basically,
there are two types of progressive hybrid censoring schemes. Let us consider progressively
censored ordered statistics X1:m:n, . . . , Xm:m:n from a life testing experiments of n units.
Further, (R1, . . . , Rm) are assumed to be the corresponding removals. If the experiment
terminates at a time T ∗ = min{T,Xm:m:n}, where T ∈ (0,∞) is prefixed, then it is called
type-I progressive hybrid censoring scheme (PHCS). In case of type-I PHCS, at the time of
first failure X1:m:n, R1 surviving units are removed randomly from (n− 1) units. At time of
second failure X2:m:n, R2 number of surviving units are removed randomly from (n−R1−2)
units. In similar way if m-th failure occurs before time T , i.e. Xm:m:n < T , then the observed
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failures are X1:m:n, . . . , Xm:m:n and all remaining units Rm = n−m−
∑m−1

i=1 Ri are removed
at termination point Xm:m:n. If Xm:m:n > T, then the observed failures are X1:m:n, . . . , Xj:m:n,
where Xj:m:n < T < Xj+1:m:n and all remaining units R∗

j = n − j −
∑j

i=1Ri at the time
of termination T . In recent years, statistical inference under type-I PHC has been studied
by several authors. One may refer to Lin and Huang (2012), Tomer and Panwar (2015) and
Kayal et al. (2017). There is a drawback of type-I progressive hybrid censoring scheme, since
the effective sample size may turn out to a small number. Thus, it has lower efficiency in
computing statistical inferences for some problems.

To increase such efficiency, Ng et al. (2009) proposed adaptive type-II progressive hybrid
censoring scheme (AT-II PHCS) where the effective sample size m and time T are pre-
specified. This censoring scheme is similar to the type-I progressive hybrid censoring scheme.
It is different when T < Xm:m:n. If Xj:m:n < T < Xj+1:m:n, where j + 1 < m, all remaining
units will be terminated by setting Rj+1 = . . . = Rm−1 = 0 and Rm = n−m−

∑j
i=1Rj. Thus

the experiment will be terminated after getting the expected sample size. In recent years
many authors studied inferences of various lifetime models under AT-II PHCS. Lin et al.
(2009) obtained classical estimates on the Weibull lifetime model based on AT-II PHCS.
Hemmati and Khorram (2013) obtained maximum likelihood and approximated maximum
likelihood estimates of model parameters of two parameters log-normal distribution based on
AT-II PHCS. Nassar and Abo-Kasem (2016) discussed maximum likelihood estimates and
Bayesian estimates of parameters of Burr XII distribution model based on AT-II PHCS.
Panahi and Moradi (2020) discussed classical and Bayesian estimation of parameters of in-
verted exponential Rayleigh distribution. Panahi and Asadi (2021) discussed the maximum
likelihood estimates and Bayesian estimates of parameters of Burr III distribution based on
AT-II PHCS.

Gumbel (2004) introduced a two-parameter distribution, known as Gumbel type-II distri-
bution, which is very useful to model meteorological phenomena such as floods, earthquakes,
and natural disasters. Also it can used in life expectancy tables, hydrology and rainfall. The
cumulative distribution function (CDF) of Gumbel type-II distribution is

F (x) = e−βx
−α

, x > 0, α, β > 0, (1.1)

where α is the shape parameter, β is the scale parameter. The corresponding probability
density function (PDF) is

f(x) = αβx−(α+1)e−βx
−α

, x > 0, α, β > 0. (1.2)

The hazard rate function of Gumbel type-II distribution is given by

h(x) =
αβx−(α+1)

eβx−α − 1
, x > 0, α, β > 0. (1.3)

Figure 1 represents graphs of the PDFs and hazard rate functions of the Gumbel type-II
distribution based on different values of the parameters α and β. It is noticed that the
shape of the hazard rate function of Gumbel type-II distribution is decreasing and upside-
down bathtub (UTB). Due to these shapes of the hazard rate function, the Gumbel type-II
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Figure 1: (a) PDF and (b) Hazard rate functions of Gumbel type-II distribution for different
values of α and β.

distribution is very flexible to use in different research areas such as clinical, reliability and
survival studies. Recently, many authors have studied statistical properties of the estimators
of the model parameters of Gumbel type-II distribution. As example, Abbas et al. (2013)
discussed Bayesian estimation of the model parameters. Reyad and Ahmed (2015) studied
E-Bayesian estimation of the unknown model shape parameter. Sindhu et al. (2016) ob-
tained Bayes estimates and corresponding risk of the unknown model parameters based on
left-censored data. Abbas et al. (2020) proposed Bayesian estimation of the model parame-
ters under type-II censored sample with some medical applications.

Due to importance of the Gumbel type-II distribution and the AT-II PHCS, in this paper,
we have considered the problem of estimation of the parameters of Gumbel type-II distribu-
tion under AT-II PHCS. To the best of our information, this problem has not been studied
yet. The rest of the article is organized as follows. In Section 2, MLEs and MPSEs are com-
puted by using the Newton-Raphson method. The Bayesian estimates are obtained under
symmetric and asymmetric loss functions using the Markov chain Monte Carlo (MCMC)
technique in Section 3. In Section 4, the asymptotic confidence intervals using the normality
property of the MLEs and bootstrap confidence intervals are constructed. Also, MCMC
samples are used to build HPD credible intervals. A Monte Carlo simulation study is carried
out to compare the performance of different estimates in Section 5. Section 6 deals with a
real data set based on the death rates due to Covid-19 in India. Finally, conclusions of this
paper have been drawn in Section 7.

2 Classical estimation

In this section, classical estimation of unknown model parameters of Gumbel type-II dis-
tribution is obtained by using two methods: (a) maximum likelihood estimation and (b)
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maximum product spacing.

2.1 Maximum likelihood estimation

Let x1:m:n < . . . < xj:m:n < T < xj+1:m:n < . . . < xm:m:n be an adaptive type-II progressive
censored ordered sample from (1.2) along with a censoring scheme (R1, . . . , Rj, 0, . . . , 0, R

∗
j ),

where R∗
j = n −m −∑j

i=1Ri and T is pre-specified. Then, the likelihood function can be
written as

L(α, β|x) ∝
m∏

i=1

f(xi:m:n)

j∏

i=1

[1− F (xi:m:n)]
Ri [1− F (xm:m:n)]

R∗

j . (2.1)

Whenever xm:m:n < T , then R∗
j = 0 and the likelihood function becomes

L(α, β|x) ∝
m∏

i=1

f(xi:m:n)[1− F (xi:m:n)]
Ri . (2.2)

Replacing F (x) and f(x) from Equations (1.1) and (1.2) in Equation (2.1) we get,

L ∝ αmβm
m∏

i=1

[
xi

−(α+1)e−βx
−α
i

] j∏

i=1

[
1− e−βx

−α
i

]Ri
[
1− e−βx

−α
m

]R∗

j

, (2.3)

where xi represents the i-th failure time xi:m:n. The log-likelihood function is given as

logL ∝ m logα +m log β − (α + 1)

m∑

i=1

log xi − β

m∑

i=1

xi
−α +

j∑

i=1

Ri log(1− e−βx
−α
i )

+R∗
j log(1− e−βx

−α
m ). (2.4)

After differentiating (2.4) partially with respect to α and β respectively, and equating to
zero we get

∂l

∂α
=
m

α
−

m∑

i=1

log xi + β

m∑

i=1

x−αi log xi − β

j∑

i=1

Rix
−α
i e−βx

−α
i log xi

1− e−βx
−α
i

− β
R∗
jx

−α
m e−βx

−α
m log xm

1− e−βx
−α
m

= 0, (2.5)

∂l

∂β
=
m

β
−

m∑

i=1

x−αi +

j∑

i=1

Rix
−α
i e−βx

−α
i

1− e−βx
−α
i

+
R∗
jx

−α
m e−βx

−α
m

1− e−βx
−α
m

= 0. (2.6)

The maximum likelihood estimates of unknown parameters α and β can be obtained from
Equations (2.5) and (2.6), which are not in closed form, thus need to be solved numerically.

The maximum likelihood estimates of the unknown parameters are denoted by α̂ and β̂.
Further, when computing MLEs numerically, it is always of interest to study the existence
and uniqueness of the MLEs of the parameters. In order to achieve this, one requires to
show two conditions proposed by Mäkeläinen et al. (1981). These are difficult to establish
due to the complicated nature of the expressions of the second order partial derivatives of
the log-likelihood function. To have a rough idea of that, the profile log-likelihood functions
for the parameters α and β are presented in Figure 2. These figures represent that the MLEs
may exist uniquely.
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Figure 2: Profile log-likelihood functions of α and β for the real data set.

2.2 Maximum product spacing estimation

Cheng and Amin (1983) proposed maximum product spacing estimation (MPSE) method as
an alternative to the MLE. Almetwally et al. (2019) discussed MPSE method under AT-II
PHCS for generalized Rayleigh distribution. The product spacing under AT-II PHCS can
be written as

M =
m+1∏

i=1

Di

j∏

i=1

[
1− F (xi;α, β)

]Ri
[
1− F (xm;α, β)

]R∗

j

, (2.7)

where

Di =





F (x1), i = 1

F (xi)− F (xi−1), i = 2, 3, . . . , m

1− F (xm), i = m+ 1,

(2.8)

such that
∑
Di = 1. Then, the product spacing function under AT-II PHCS based on

Gumbel type-II model can be written as

M = e−βx1
−α

[
1− e−βxm

−α

] m∏

i=2

[
e−βxi

−α − e−βxi−1
−α

][
1− e−βxm

−α

]R∗

j

. (2.9)

Now, the logarithm of space function can be written as

logM =−βx1−α + log(1− e−βxm
−α

) +
m∑

i=2

log
(
e−βxi

−α − e−βxi−1
−α)

+

j∑

i−1

Ri log(1− e−βxi
−α

) +R∗
j log(1− e−βxm

−α

). (2.10)
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To obtain the normal equations from the above Equation (2.10), differentiate partially with
respect to unknown parameters and equating to zero, we get

∂ logM

∂α
=− βxm

−αe−βxm
−α

(1− e−βxm−α)
+ β

m∑

i=2

[
xi

−αe−βxi
−α

log xi − xi−1
−αe−βxi−1

−α

log xi−1

e−βxi−α − e−βxi−1
−α

]

− β

j∑

i=1

Rixi
−αe−βxi

−α

log xi
(1− e−βxi−α)

−
R∗
jβxm

−αe−βxm
−α

log xm

(1− e−βxm−α)
+ βx1

−α log x1 = 0.

(2.11)

∂ logM

∂β
=− x1

−α +

m∑

i=2

xi−1
−αe−βxi−1

−α − xi
−αe−βxi

−α

e−βxi−α − e−βxi−1
−α +

j∑

i=1

Rixi
−αe−βxi

−α

(1− e−βxi−α)

+
R∗
jxm

−αe−βxm
−α

(1− e−βxm−α)
+
xm

−αe−βxm
−α

(1− e−βxm−α)
= 0. (2.12)

Above these two equations can not be solved analytically, so numerical method will be
applied to obtain the MPSEs of the unknown parameters α and β, as α̂MPS and β̂MPS,
respectively.

3 Bayesian estimation

In this section, Bayes estimates of unknown parameters of Gumbel type-II distribution are
obtained with respect to symmetric and asymmetric loss functions under AT-II PHCS. To
obtain the Bayes estimates of α and β, squared error loss function (SELF), which is sym-
metric and general entropy loss function (GELF) and LINEX loss function (LLF), which are
asymmetric, are considered. Let θ̃ be an estimator of θ. Then, SELF, LLF and GELF are
respectively given by

LSE(θ̃, θ) = (θ̃ − θ)2 (3.1)

LLI(θ̃, θ) = ep(θ̃−θ) − p(θ̃ − θ)− 1, p 6= 0 (3.2)

and

LGE(θ̃, θ) =

(
θ̃

θ

)q

− q log

(
θ̃

θ

)
− 1, q 6= 0. (3.3)

Under the loss functions given by (3.1), (3.2) and (3.3), the Bayes estimates of θ can be
respectively written as

θ̂SE =Eθ(θ|x), (3.4)

θ̂LI =− p−1 log[Eθ(e
−pθ|x)], (3.5)

and

θ̂GE =[Eθ(θ
−q|x)], q 6= 0. (3.6)
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In Bayesian estimation, choosing priors for the unknown model parameters is an important
as well as challenging problem. There is no clear methodology to choose best priors for
Bayesian estimation problem. Here, we assume the prior distributions for the parameters as
α ∼ Gamma(a, b) and β ∼ Gamma(c, d), where Gamma(a, b) denotes gamma distribution
with shape parameter a and scale parameter b. The joint prior density of α and β can be
written as

π∗(α, β) = αa−1βc−1e−(bα+dβ), α, β > 0, a, b, c, d > 0. (3.7)

Based on the likelihood function (2.3) and the joint prior density function (3.7), the posterior
density function of α and β can be written as

π(α, β|x) = k−1αm+a−1e−α(b+
∑m

i=1 log xi)βm+c−1e−β(d+
∑m

i=1 xi
−α)

(
1− e−βxm

−α)R∗

j

×
j∏

i=1

(
1− e−βxi

−α)Ri , (3.8)

where

k =

∫ ∞

0

∫ ∞

0

k−1αm+a−1e−α(b+
∑m

i=1 log xi)βm+c−1e−β(d+
∑m

i=1 xi
−α)

(
1− e−βxm

−α)R∗

j

×
j∏

i=1

(
1− e−βxi

−α)Ri dαdβ (3.9)

and all the hyper-parameters a, b, c, d are non-negative and known. Now, consider a function
of parameters α and β, say ψ(α, β). Then, from (3.4), (3.5) and (3.6), the Bayes estimates
of ψ(α, β) with respect to SELF, LLF and GELF are given by

ψ̂SE =

∫ ∞

0

∫ ∞

0

ψ(α, β)π(α, β|x) dαdβ, (3.10)

ψ̂LI = −
(
1

p

)
log

[ ∫ ∞

0

∫ ∞

0

e−pψ(α,β)π(α, β|x) dαdβ
]
, (3.11)

and

ψ̂GE =

[ ∫ ∞

0

∫ ∞

0

(ψ(α, β))−qπ(α, β|x) dαdβ
]− 1

q

. (3.12)

respectively. To derive Bayes estimates of α and β in respect of loss functions given by (3.1),
(3.2) and (3.3), ψ(α, β) is replaced by α and β respectively in Equations (3.10), (3.11) and
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(3.12). Then, the Bayes estimates of α are given by

α̂SE = k1
−1

∫ ∞

0

∫ ∞

0

αm+ae−α(b+
∑m

i=1 log xi)βm+c−1e−β(d+
∑m

i=1 xi
−α)

×
(
1− e−βxm

−α)R∗

j

j∏

i=1

(
1− e−βxi

−α)Ri dαdλ, (3.13)

α̂LI = −
(
1

p

)
log

[
k1

−1

∫ ∞

0

∫ ∞

0

αm+a−1e−α(b+p+
∑m

i=1 log xi)βm+c−1e−β(d+
∑m

i=1 xi
−α)

×
(
1− e−βxm

−α)R∗

j

j∏

i=1

(
1− e−βxi

−α)Ri dαdλ

]
, (3.14)

and

α̂GE =

[
k1

−1

∫ ∞

0

∫ ∞

0

αm+a−q−1e−α(b+
∑m

i=1 log xi)βm+c−1e−β(d+
∑m

i=1 xi
−α)

×
(
1− e−βxm

−α)R∗

j

j∏

i=1

(
1− e−βxi

−α)Ri dαdλ

]− 1
q

. (3.15)

In a similar way, by replacing ψ(α, β) as β in Equations (3.10), (3.11) and (3.12) Bayes

estimates β̂SE , β̂LI and β̂GE can be obtained. There are ratios of two integrals given in
Equations (3.13), (3.14) and (3.15) which can not be obtained in a closed form. To overcome
such situations, MCMC technique will be used to obtain desired Bayes estimates.

3.1 MCMC method

In this section, the Bayes estimates of the unknown parameters α and β are computed. To
generate samples from (3.8), MCMC method has been used. From posterior probability
density function given by (3.8), the conditional posterior densities of the parameters can be
written as

π1(α|β, x) ∝ αm+a−1e−α(b+
∑m

i=1 log xi)e−β(d+
∑m

i=1 xi
−α)

D∏

i=1

(1− e−βxi
−α

)Ri

×(1− e−βxm
−α

)R
∗

j (3.16)

and

π2(β|α, x) ∝ βm+c−1e−β(d+
∑m

i=1 xi
−α)

D∏

i=1

(1− e−βxi
−α

)Ri(1− e−βxm
−α

)R
∗

j . (3.17)

Note that the density functions π1(α|β, x) and π2(β|α, x) can not be brought into some well
known classes of distributions. Thus, the MCMC samples for α and β can not be generated
directly. In this context, the Metropolis-Hastings algorithm (see Chen et al. (2012)) is used
to generate samples from (3.16) and (3.17). This method has been discussed as follows:

Step 1 Set i = 1 and choose initial guesses as α(1) = α̂ and β(1) = β̂.
Step 2 Generate new samples and β(i) with proposal distribution α(i) ∼ N(α(i−1), var(α̂))
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and β(i) ∼ N(β(i−1), var(β̂)).

Step 3 Compute h = min{1, π(α(i),β(i)|x)

π(α(i−1),β(i−1)|x)
}.

Step 4 Generate a sample u from U(0, 1).
Step 5 Set (α, β) = (α(i), β(i)), if u ≤ h; otherwise (α, β) = (α(i−1), β(i−1)).
Step 6 Set i = i+ 1.
Step 7 Repeat Steps (2-6) N number of times to get α(1), . . . , α(N) and β(1), . . . , β(N).

Then, the Bayes estimates of the parameters under SELF are given by

α̂SE =
1

N

N∑

i=1

α(i) and β̂SE =
1

N

N∑

i=1

β(i). (3.18)

The Bayes estimates of the parameters under LLF are obtained as

α̂LI = −
(
1

p

)
log

(
1

N

N∑

i=1

e−pα
(i)

)
and β̂LI = −

(
1

p

)
log

(
1

N

N∑

i=1

e−pβ
(i)

)
, p 6= 0. (3.19)

Further, the Bayes estimates of the parameters under GELF are proposed as

α̂GE =

[
1

N

N∑

i=1

(α(i))−q
]−q

and β̂GE =

[
1

N

N∑

i=1

(β(i))−q
]−q

, q 6= 0. (3.20)

4 Confidence intervals

In this section, three types of confidence intervals for α and β, namely asymptotic confi-
dence intervals, bootstrap confidence intervals and highest posterior density intervals are
constructed.

4.1 Asymptotic confidence interval

The 100(1 − γ)% asymptotic confidence intervals for α and β can be constructed by using

asymptotic normality property of the MLEs α̂ and β̂. In doing so, variance of α̂ and β̂ are
required. These can be obtained from main diagonal elements of the inverse of the observed
Fisher information matrix Î−1(α̂, β̂), where

Î(α̂, β̂) =

[
−l20 −l11
−l11 −l02

]

(α,β)=(α̂,β̂)

(4.1)

and lij =
∂2logL
∂θi∂θj

, Θ = (θ1, θ2) = (α, β). Therefore, the 100(1− γ)% approximate confidence

intervals for α and β are respectively given by

(
α̂ + z γ

2

√
V ar(α̂)

)
and

(
β̂ + z γ

2

√
V ar(β̂)

)
,

where z γ
2
is the upper γ

2
-th percentile point of a standard normal distribution.
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4.2 Bootstrap confidence interval

The approximate confidence intervals are acceptable when the effective sample sizem is large.
When m is small, efficiency of construction of the asymptotic confidence intervals may not
work properly. Bootstrap re-sampling may produce approximate confidence intervals with
more accuracy. Here, two types of parametric bootstrap confidence intervals are constructed.

4.2.1 Percentile bootstrap (Boot-p) confidence interval

Step 1 Compute α̂ and β̂.
Step 2 Use these α̂, β̂ and same T , Ri’s and m to generate a bootstrap re-sample.
Step 3 Obtain bootstrap estimates α̂B and β̂B from these bootstrap sample.
Step 4 Repeat Steps 2-3 up to N times to get α̂B[1], . . . , α̂B[N ] and β̂B[1], . . . , β̂B[N ].
Step 5 Rearrange these bootstrap estimates in ascending order as α̂B(1), . . . , α̂B(N) and
β̂B(1), . . . , β̂B(N).

The 100(1−γ)% percentile bootstrap confidence intervals for α and β are respectively given
by

(
α̂B(Nγ/2), α̂B(N(1−γ/2)

)
and

(
β̂B(Nγ/2), β̂B(N(1−γ/2)

)
.

4.2.2 Bootstrap-t (Boot-t) confidence interval

Steps 1-2 are similar to above discussed Boot-p method. Thus, we only state Steps 3 and 4
below:
Step 3 Set t-statistics as T1 =

α̂B−α√
V ar(α̂B)

and T2 =
β̂B−β√
V ar(β̂B)

and then compute.

Step 4 Repeat Steps 2-3 up to N times to get T1
[1], . . . , T1

[N ] and T2
[1], . . . , T2

[N ] and then
rearranging these to get T1

(1), . . . , T1
(N) and T2

(1), . . . , T2
(N).

Then, 100(1− γ)% bootstrap-t confidence intervals are obtained as
(
T1

(Nγ/2), T1
(N(1−γ/2))

)
and

(
T2

(Nγ/2), T2
(N(1−γ/2))

)
,

respectively.

4.3 HPD credible intervals

In this section, using MCMC samples α(1), . . . , α(N) and β(1), . . . , β(N) and the method given
by Chen et al. (2012), HPD credible intervals for model parameters are obtained. After
ordering the MCMC samples in increasing way, these samples can be written as α(1), . . . , α(N)

and β(1), . . . , β(N). The 100(1− γ/2)% credible intervals are obtained as

(α(k), α(k+(1−γ)N)) and (β(k), β(k+(1−γ)N))

where k = 1, . . . , [γN ], where [·] represent the greatest integer function and the correspond-
ing interval lengths are l1k = α(k+(1−γ)N)−α(k) and l2k = β(k+(1−γ)N)−β(k) . Then, put away
these intervals for which l1k and l2k become the smallest to obtain the HPD credible intervals.
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5 Simulation study

In this section, a Monte Carlo simulation study is carried out to compare the performance of
different estimates of parameters for Gumbel type-II distribution based on adaptive type-II
progressive hybrid censoring schemes. The performance of all estimates has been compared
in terms of their absolute bias (AB) and mean squared errors (MSEs). For this purpose,
10000 AT-II progressive hybrid censored samples are generated by using different values of
n,m, T along with three following censoring schemes:

Scheme 1 : R1 = . . . = Rm−1 = 0, Rm = n−m.
Scheme 2 : R1 = n− 2m+ 1, R2 = . . . = Rm = 1.
Scheme 3 : R1 = n−m− 5, R2 = . . . = Rm−5 = 0, Rm−4 = . . . = Rm = 1.

The average bias and MSEs of the MLEs, MPSEs and Bayesian estimates are computed
for α = 1.5 and β = 0.75. These are presented in Table 1, Table 2 , Table 4 and Table
5. The Bayesian estimates are computed by using MCMC method along with 5000 MCMC
samples. The hyper parameters in gamma prior are considered as a = 3, b = 2, c = 3,
and d = 4. Further, the 95% confidence interval lengths and coverage probabilities for
asymptotic confidence intervals, bootstrap intervals and HPD credible intervals are computed
and tabulated in Table 3 and Table 6. From the tables, the following conclusions are made :

(i) For fixed values of n and T , when value of m increases, then the values of absolute
bias and MSEs of MLEs, MPSEs and the Bayes estimates decrease.

(ii) For different values of n and T , when m = 10, then Scheme 2 performes better than
other two schemes; but when m = 15, then Scheme 3 performes better than other two
schemes.

(iii) In most of the cases, for fixed values of n and m, when T deceases the values of MSEs
of the estimates increase.

(iv) For fixed values of n and T , when value of m increases the values of the average lengths
increase.

(v) It have been noticed that the Bayes estimates perform better than the classical esti-
mates in terms of the absolute bias and MSEs. In classical estimates, MPSEs perform
better than MLEs in terms of the absolute bias and MSEs.

(vi) Bayes estimates with respect to the LLF when p = 0.25 provide superior performance
than other Bayes estimates.

(vii) The performance of the HPD credible intervals is better than other confidence intervals
in the sense of the average lengths and coverage probabilities.

6 Real data

In this section, a real data set is considered to illustrate the established estimates. Gumbel
type-II distribution can be used as an alternative to some well known two parameter distri-

12



Table 1: Absolute bias and MSE of estimates of α when T = 1.5.

(n,m) scheme α̂ α̂MPS α̂LI α̂GE α̂SE

p = −0.25 p = 0.25 q = −0.25 q = 0.25

(30,10) I 0.5098 0.3317 0.1786 0.1772 0.1778 0.1780 0.1778
0.3336 0.1986 0.0501 0.0489 0.0492 0.0490 0.0495

II 0.3658 0.2987 0.1803 0.1789 0.1795 0.1796 0.1795
0.2691 0.1588 0.0508 0.0497 0.0499 0.0498 0.0503

III 0.3563 0.2919 0.1765 0.1754 0.1761 0.1765 0.1759
0.2490 0.1479 0.0492 0.0482 0.0485 0.0484 0.0486

(30,15) I 0.3191 0.2568 0.1701 0.1687 0.1692 0.1693 0.1694
0.3577 0.1085 0.0458 0.0446 0.0448 0.0446 0.0452

II 0.3053 0.2747 0.1732 0.1723 0.1731 0.1735 0.1727
0.2005 0.1168 0.0473 0.0465 0.0468 0.0469 0.0469

III 0.2913 0.2779 0.1756 0.1751 0.1761 0.1767 0.1753
0.1617 0.1174 0.0484 0.0478 0.0482 0.0485 0.0481

(40,10) I 0.4630 0.3317 0.1688 0.1675 0.1679 0.1680 0.1681
0.9015 0.1990 0.0451 0.0439 0.0441 0.0439 0.0445

II 0.3432 0.2854 0.1710 0.1696 0.1700 0.1699 0.1703
0.2281 0.1437 0.0458 0.0447 0.0448 0.0447 0.0453

III 0.3344 0.2797 0.1708 0.1696 0.1702 0.1703 0.1702
0.2124 0.1367 0.0455 0.0455 0.0447 0.0446 0.0450

(40,15) I 0.3484 0.2588 0.1641 0.1628 0.1631 0.1630 0.1634
0.5966 0.1110 0.0427 0.0416 0.0417 0.0415 0.0422

II 0.2876 0.2627 0.1647 0.1637 0.1643 0.1645 0.1642
0.1702 0.1066 0.0429 0.0421 0.0423 0.0423 0.0425

III 0.2745 0.2666 0.1668 0.1661 0.1669 0.1667 0.1664
0.1353 0.1081 0.0437 0.0431 0.0434 0.0435 0.0434

Table 2: Absolute bias and MSE of estimates of β when T = 1.5.

(n,m) scheme β̂ β̂MPS β̂LI β̂GE β̂SE

p = −0.25 p = 0.25 q = −0.25 q = 0.25

(30,10) I 0.9689 0.1753 0.0827 0.0826 0.0828 0.0831 0.0826
0.5365 0.0479 0.0108 0.0107 0.0107 0.0108 0.0107

II 0.2237 0.1899 0.0859 0.0858 0.0862 0.0865 0.0859
0.1384 0.0575 0.0115 0.0114 0.0115 0.0116 0.0115

III 0.2251 0.1919 0.0852 0.0850 0.0854 0.0857 0.0851
0.1251 0.0582 0.0114 0.0113 0.0114 0.0115 0.0114

(30,15) I 0.2694 0.1414 0.0818 0.0816 0.0819 0.0821 0.0817
0.2713 0.0319 0.0106 0.0105 0.0105 0.0106 0.0105

II 0.1815 0.1586 0.0835 0.0834 0.0836 0.0838 0.0835
0.0855 0.0404 0.0110 0.0109 0.0109 0.0110 0.0109

III 0.1879 0.1690 0.0848 0.0846 0.0849 0.0850 0.0847
0.0669 0.0459 0.0113 0.0112 0.0113 0.0114 0.0113

(40,10) I 1.2630 0.1804 0.0826 0.0825 0.0828 0.0831 0.0826
0.7557 0.0505 0.0107 0.0106 0.0106 0.0107 0.0106

II 0.2193 0.1923 0.0859 0.0858 0.0861 0.0863 0.0858
0.1234 0.0589 0.0114 0.0113 0.0115 0.0116 0.0114

III 0.2218 0.1965 0.0863 0.0862 0.0866 0.0869 0.0862
0.1054 0.0608 0.0116 0.0115 0.0116 0.0117 0.0115

(40,15) I 0.7871 0.1412 0.0805 0.0804 0.0806 0.0807 0.0805
0.5675 0.0313 0.0102 0.0101 0.0101 0.0102 0.0102

II 0.1807 0.1601 0.0833 0.0831 0.0834 0.0835 0.0832
0.0809 0.0412 0.0109 0.0108 0.0109 0.0109 0.0108

III 0.1844 0.1709 0.0846 0.0845 0.0847 0.0849 0.0846
0.0591 0.0470 0.0113 0.0112 0.0112 0.0113 0.0113
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Table 3: Average length and coverage probability of 95% C.I. for α and β when T = 1.5.

α β

(n,m) scheme ACI boot-p boot-t HPD ACI boot-p boot-t HPD

(30,10) I 1.6866 2.4919 2.6417 0.8570 0.8230 1.2655 1.6682 0.4053
0.9283 0.8129 0.8295 0.9480 0.8701 0.8653 0.9459 0.9492

II 1.5017 2.0124 2.2382 0.8601 0.8981 1.0208 1.5391 0.4114
0.9257 0.8677 0.8739 0.9487 0.8871 0.9006 0.9095 0.9498

III 1.4682 1.9503 1.9832 0.8584 0.9140 1.0408 1.3678 0.4171
0.9210 0.8779 0.8934 0.9473 0.8892 0.9059 0.9190 0.9496

(30,15) I 1.2722 1.6068 1.8069 0.8157 0.7057 1.1223 1.3871 0.3992
0.9426 0.8615 0.8725 0.9515 0.9081 0.9201 0.9234 0.9401

II 1.2325 1.5764 1.7768 0.8344 0.7489 0.8629 1.2013 0.4049
0.9194 0.8924 0.9227 0.9483 0.9033 0.9199 0.9305 0.9492

III 1.1782 1.4872 1.5273 0.8353 0.7883 0.8960 1.0720 0.4113
0.9064 0.9018 0.9186 0.9476 0.9055 0.9178 0.9621 0.9490

(40,10) I 1.7059 2.4172 2.6725 0.8122 0.8322 1.2006 1.9418 0.3977
0.9360 0.7936 0.8493 0.9481 0.8685 0.8387 0.9353 0.9496

II 1.4316 1.8620 1.9062 0.8151 0.8971 0.9866 1.2241 0.4120
0.9258 0.8656 0.9065 0.9475 0.8842 0.8930 0.9019 0.9492

III 1.3989 1.8115 1.8417 0.8209 0.9155 1.0130 1.2131 0.4154
0.9238 0.8702 0.8926 0.9485 0.8876 0.8987 0.9104 0.9492

(40,15) I 1.2829 1.6239 1.8337 0.7890 0.6861 0.8595 0.8488 0.3908
0.9388 0.8591 0.8994 0.9501 0.9026 0.9117 0.9477 0.9501

II 1.1784 1.4744 1.6841 0.7951 0.7468 0.8402 1.0552 0.4038
0.9185 0.8963 0.9163 0.9488 0.9028 0.9159 0.9350 0.9498

III 1.1314 1.4043 1.6104 0.7951 0.7833 0.8786 1.0143 0.4103
0.9077 0.9041 0.9183 0.9483 0.9033 0.9138 0.9368 0.9598

Table 4: Absolute bias and MSE of estimates of α when T = 0.75.

(n,m) scheme α̂ α̂MPS α̂LI α̂GE α̂SE

p = −0.25 p = 0.25 q = −0.25 q = 0.25

(30,10) I 0.4871 0.3250 0.1777 0.1764 0.1770 0.1772 0.1771
1.2142 0.1950 0.0495 0.0483 0.0485 0.0484 0.0488

II 0.3655 0.2971 0.2001 0.2016 0.2039 0.2062 0.2008
0.2699 0.1567 0.0607 0.0615 0.0615 0.0645 0.0611

III 0.3437 0.2863 0.1959 0.1972 0.1994 0.2015 0.1965
0.2349 0.1476 0.0581 0.0588 0.0601 0.0613 0.0584

(30,15) I 0.3245 0.2566 0.1707 0.1691 0.1696 0.1695 0.1699
0.3725 0.1069 0.0456 0.0443 0.0445 0.0442 0.0449

II 0.3572 0.4163 0.2278 0.2314 0.2349 0.2386 0.2296
0.2207 0.2267 0.0768 0.0791 0.0816 0.0842 0.0779

III 0.2671 0.3230 0.1907 0.1924 0.1945 0.1966 0.1915
0.1248 0.1439 0.0543 0.0550 0.0562 0.0573 0.0546

(40,10) I 0.4769 0.3398 0.1676 0.1661 0.1664 0.1663 0.1668
0.9496 0.2050 0.0448 0.0435 0.0436 0.0433 0.0441

II 0.3451 0.2880 0.1874 0.1885 0.1904 0.1921 0.1879
0.2222 0.1429 0.0535 0.0539 0.0550 0.0560 0.0537

III 0.3308 0.2794 0.1823 0.1832 0.1849 0.1865 0.1827
0.2135 0.1412 0.0501 0.0504 0.0119 0.0118 0.0120

(40,15) I 0.3420 0.2571 0.1639 0.1625 0.1629 0.1628 0.1632
0.5346 0.1084 0.0428 0.0416 0.0417 0.0414 0.0422

II 0.3347 0.3945 0.2135 0.2164 0.2192 0.2222 0.2149
0.1797 0.2064 0.0672 0.0689 0.0708 0.0727 0.0681

III 0.2593 0.3116 0.1785 0.1798 0.1815 0.1833 0.1791
0.1121 0.1331 0.0479 0.0485 0.0494 0.0502 0.0482
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Table 5: Absolute bias and MSE of estimates of β when T = 0.75.

(n,m) scheme β̂ β̂MPS β̂LI β̂GE β̂SE

p = −0.25 p = 0.25 q = −0.25 q = 0.25

(30,10) I 0.7260 0.1730 0.0828 0.0827 0.0831 0.0834 .0828
0.5283 0.0466 0.0107 0.0106 0.0107 0.0108 0.0107

II 0.2716 0.2289 0.0881 0.0877 0.0877 0.0875 0.0879
0.1582 0.0803 0.0123 0.0122 0.0122 0.0121 0.0123

III 0.2475 0.2145 0.0865 0.0862 0.0862 0.0861 0.0864
0.1259 0.0716 0.0117 0.0116 0.0116 0.0115 0.0117

(30,15) I 0.2638 0.1406 0.0819 0.0818 0.0822 0.0824 0.0819
0.3930 0.0316 0.0105 0.0104 0.0105 0.0106 0.0105

II 0.2615 0.2453 0.0873 0.0867 0.0863 0.0859 0.0870
0.1399 0.0910 0.0121 0.0119 0.0118 0.0116 0.0120

III 0.1886 0.1797 0.0831 0.0827 0.0827 0.0825 0.0829
0.0649 0.0516 0.0109 0.0108 0.0108 0.0107 0.0109

(40,10) I 0.3957 0.1840 0.0817 0.0816 0.0819 0.0821 0.0817
0.1709 0.0520 0.0104 0.0103 0.0104 0.0105 0.0104

II 0.2683 0.2361 0.0885 0.0881 0.0880 0.0878 0.0883
0.1397 0.0859 0.0122 0.0121 0.0121 0.0120 0.0122

III 0.2532 0.2250 0.0870 0.0867 0.0867 0.0866 0.0869
0.1260 0.0783 0.0120 0.0119 0.0119 0.0118 0.0120

(40,15) I 0.6908 0.1411 0.0798 0.0797 0.0800 0.0802 0.0797
0.3047 0.0312 0.0100 0.0099 0.0100 0.0101 0.0100

II 0.2547 0.2507 0.0893 0.0887 0.0882 0.0877 0.0890
0.1159 0.0963 0.0126 0.0123 0.0122 0.0120 0.0124

III 0.1914 0.1879 0.0829 0.0825 0.0825 0.0823 0.0827
0.0669 0.0557 0.0108 0.0107 0.0107 0.0106 0.0108

Table 6: Average length and coverage probability of 95% C.I. for α and β when T = 0.75.

α β

(n,m) scheme ACI boot-p boot-t HPD ACI boot-p boot-t HPD

(30,10) I 1.6775 2.0947 2.3369 0.8511 0.8240 1.3510 1.5282 0.4020
0.9348 0.8235 0.8749 0.9479 0.8799 0.8763 0.9409 0.9491

II 1.3180 1.7148 1.9864 0.8880 0.9686 1.2647 1.5943 0.4233
0.8184 0.8494 0.8962 0.9483 0.8686 0.8495 0.9414 0.9490

III 1.2966 1.6360 1.8635 0.8649 0.9847 1.1818 1.4015 0.4133
0.8392 0.8899 0.9162 0.9492 0.8970 0.8661 0.9239 0.9484

(35,15) I 1.2752 1.6161 1.8547 0.8144 0.7048 1.1695 1.3268 0.3988
0.9392 0.8621 0.9034 0.9501 0.9087 0.9198 0.9255 0.9535

II 1.0247 1.2023 1.3168 0.8723 0.8260 1.0679 1.2178 0.4121
0.9053 0.8429 0.8936 0.9493 0.8475 0.8310 0.8752 0.9494

III 1.0743 1.1932 1.3591 0.8290 0.8296 0.9052 1.0084 0.4019
0.8648 0.8968 0.9106 0.9481 0.9464 0.8820 0.9293 0.9495

(40,10) I 1.4135 1.7339 1.8531 0.8191 0.8299 1.2996 1.5237 0.3939
0.9331 0.8825 0.9146 0.9485 0.8541 0.8267 0.9317 0.9499

II 1.2681 1.6423 1.7529 0.8374 0.9665 1.2478 1.3757 0.4231
0.8226 0.8490 0.9205 0.9490 0.8555 0.8464 0.9344 0.9488

III 1.2541 1.5694 1.7325 0.8137 0.9796 1.1670 1.3149 0.4213
0.8426 0.8839 0.9314 0.9478 0.8831 0.8698 0.9208 0.9494

(40,15) I 1.2852 1.6241 1.7638 0.7915 0.6868 1.0593 1.2304 0.3885
0.9434 0.8604 0.9126 0.9501 0.9056 0.9154 0.9415 0.9571

II 0.9953 1.1725 1.2621 0.8439 0.8193 1.0496 1.0636 0.4144
0.8567 0.8665 0.9021 0.9495 0.8337 0.9137 0.9311 0.9575

III 1.0347 1.1417 1.2136 0.7788 0.8264 0.9005 0.9658 0.4015
0.8656 0.8887 0.9054 0.9475 0.9426 0.8857 0.9653 0.9495
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butions such as Burr III , Nandrajah Haghighi (NH) and Inverted Kumaraswamy (Ikum) dis-
tributions. For the purpose of goodness of fit test, negative log-likelihood criterion, Alkaikes-
information criterion (AIC), Bayesian information criterion (BIC), Cramer-von Mises (C∗)
measure and Anderson-Darling (A∗) measure along with p-values are computed and tab-
ulated in Table 7. If we get value of C∗ and A∗ smaller but p-values greater, then the
distribution fits better than other one.

Data : Death rates due to Covid-19 in India.
This following data set is taken from https://www.worldometers.info/coronavirus/country/india/,
which represents the death rates due to Covid-19 in India from March 16 to May 13, 2020.
The data set is provided in the following:

———————————————————————————————————————–
13.33, 17.65, 17.65, 16.67, 17.86, 17.86, 22.58, 22.73, 20, 21.82, 30.77, 21.51, 22.22, 22.13,
23.88, 22.15, 28.16, 27.38, 30.94, 30.18, 26.46, 26.16, 25.48, 26.02, 26.33, 24.34, 22.91, 23.46,
23.26, 22.43, 21.87, 20.22, 19.23, 17.46, 16.38, 15.32, 13.96, 13.48, 12.58, 12.43, 12.20, 11.90,
11.63, 11.51, 11.34, 11.29, 10.89, 10.90, 10.57, 10.87, 10.69, 10.43, 10.12, 9.99, 9.82, 9.54,
9.23, 9, 8.81, 8.65, 8.34, 7.74, 7.60, 7.45, 7.24, 7.03, 6.87, 6.71, 6.64, 6.52, 6.43, 6.33,
6.27,6.23,5.68,5.63,5.56, 5.53, 5.49, 5.53, 5.54, 5.55, 5.53, 5.50, 5.47, 5.44, 5.44, 5.47, 5.45,
5.36.
———————————————————————————————————————–

For the purpose of goodness of fit test, we consider different plots in Figure 3, Figure 4
and Figure 5. In Figure 3, the theoretical CDFs of the distributions are compared with the
empirical CDF of the given real data set. In Figure 4, the QQ-plots are used to compare
the fitted theoretical models. In Figure 5(a), the box plot of the real data set is displayed,
which represents that the distribution is right skewed. The TTT plot for given real data set
is shown by Figure 5(b). From Table 7, it is concluded that Gumbel type-II distribution is
fitted to that data better than NH, Burr III and IKum distributions. From the real data set,
different AT-II progressive hybrid censored samples are considered by using different values
of n, m and T . The computed values of the MLEs, MPSEs and Bayes estimates based on
the real data set are tabulated in Table 8. Further, the confidence intervals are constructed
and tabulated in Table 9. From Table 8, it is observed that the Bayes estimates perform
better than the other estimates. From Table 9, it is seen that the HPD credible interval
performs better than asymptotic confidence intervals.

Table 7: The values of MLEs and statistics of different distributions along with goodness-
of-fit measures for Covid-19 data set.

Model α̂ β̂ -logL AIC BIC C∗ A∗ p-value

GT-II 2.0130 82.7737 300.6597 605.3194 610.3190 0.1694 1.2297 0.9674
NH 138.7024 0.0003 311.8292 627.6584 632.6580 0.2528 1.4784 0.8398

Burr III 2.0256 85.8196 300.7166 605.4332 610.4328 0.3204 1.8480 0.6588
IKum 2.2073 163.2839 300.6774 605.3548 610.3544 0.2219 1.3392 0.8927
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Table 8: Average values of the estimates of parameters for real data set.

(n,m) T scheme θ MLE MPSE LLF GELF SELF
p = −0.25 p = 0.25 q = −0.25 q = 0.25

(90,40) 10 (0*39,50) α 1.8701 1.6657 2.0298 2.0291 2.0290 2.0286 2.0294
β 63.4539 52.9911 85.9635 85.9626 85.9631 85.9630 85.9631

15 α 1.9209 1.7090 2.0285 2.0280 2.0279 2.0277 2.0282
β 68.4234 56.2260 86.1488 86.1461 86.1474 86.1475 86.1475

10 (0*35,10*5) α 1.9380 1.7362 2.0310 2.0298 2.0295 2.0289 2.0304
β 71.7506 60.2997 86.0327 86.0322 86.0325 86.0326 86.0325

15 α 2.0281 1.8208 2.0266 2.0257 2.0255 2.0251 2.0262
β 83.0597 69.0278 85.9584 85.9576 85.9580 85.9580 85.9581

10 (0*30,5*10) α 2.1209 1.9269 2.0449 2.0443 2.0442 2.0439 2.0446
β 99.6236 85.2831 86.0510 86.0502 86.0507 86.0506 86.0507

15 α 2.2134 2.0142 2.0692 2.0685 2.0683 2.0680 2.0688
β 115.7839 98.1035 86.1114 86.1075 86.1094 86.1093 86.1095

(90,50) 10 (0*49,40) α 1.7442 1.5885 1.9779 1.9773 1.9772 1.9769 1.9776
β 53.1119 48.2612 86.0341 86.0333 86.0337 86.0337 86.0337

15 α 1.9620 1.7843 2.0283 2.0277 2.0276 2.0273 2.0281
β 73.7502 63.7147 85.9503 85.9502 85.9503 85.9501 85.9503

10 (0*45,5*8) α 1.7442 1.5885 1.9682 1.9678 1.9677 1.9674 1.9680
β 53.1119 48.2612 85.9022 85.8993 85.9008 85.9007 85.9008

15 α 2.0428 1.8740 2.0410 2.0403 2.0402 2.0399 2.0407
β 85.5752 75.4799 85.8843 85.8827 85.8835 85.8834 85.8835

10 (0*40,4*10) α 1.7442 1.5885 1.9857 1.9851 1.9850 1.9847 1.9854
β 53.1119 48.2612 85.8008 85.7989 85.7998 85.7998 85.7999

15 α 2.1158 1.9539 2.0516 2.0510 2.0508 2.0506 2.0513
β 97.8510 87.7249 86.2835 86.2772 86.2803 86.2802 86.2804

Table 9: Confidence intervals of parameters for real data set when T = 15.

α β

(n,m) T scheme ACI HPD ACI HPD

(90,40) 10 (0*39,50) (1.40,2.33) (1.93,2.13) (4.71,122.18) (85.83,86.06)
15 (1.44,2.40) (1.96,2.07) (3.62,133.22) (85.75,86.42)
10 (0*35,10*5) (1.45,2.42) (1.91,2.18) (3.37,140.12) (85.96,86.12)
15 (1.52,2.53) (1.90,2.12) (0.78,165.33) (85.87,86.06)
10 (0*30,5*10) (1.59,2.64) (1.93,2.12) (0,201.80) (85.94,86.16)
15 (1.66,2.76) (1.96,2.16) (0,238.78) (85.94,86.36)

(90,50) 10 (0*49,40) (1.36,2.12) (1.88,2.07) (11.36,94.85) (85.94,86.16)
15 (1.53,2.39) (1.93,2.10) (9.94,137.55) (85.89,86.01)
10 (0*45,8*5) (1.36,2.12) (1.88,2.04) (11.36,94.85) (85.76,86.11)
15 (1.59,2.48) (1.92,2.13) (9.22,161.92) (85.74,86.01)
10 (0*40,4*10) (1.36,2.12) (1.89,2.07) (11.36,94.85) (85.68,86.15)
15 (1.65,2.57) (1.95,2.13) ( 7.96,187.74) (85.91,86.49)

17



5 10 15 20 25 30

0.
0

0.
4

0.
8

ecdf(X)

Gumbel type−II

F
(x

)

(a)

5 10 15 20 25 30

0.
0

0.
4

0.
8

ecdf(X)

Nandrajah Haghihi

F
(x

)

(b)

5 10 15 20 25 30

0.
0

0.
4

0.
8

ecdf(X)

Burr III

F
(x

)

(c)

5 10 15 20 25 30

0.
0

0.
4

0.
8

ecdf(X)

Inverted Kumaraswamy

F
(x

)

(d)

Figure 3: ECDF and CDF comparison for different distributions fitted to given real data
set.

7 Conclusion

In this article, different estimates of the unknown model parameters of the Gumbel type-II
distribution based on AT-II PHCS have been developed. Both classical and Bayesian estima-
tion methods are used to obtain the estimates. It is observed that the MLEs and MPSEs can
not be obtained explicitly. So, Newton Raphson iterative method is employed to compute
these estimates. Bayes estimates are obtained based on the symmetric and asymmetric loss
functions under the assumption of independent gamma priors using MCMC method. Three
types of confidence intervals for unknown parameters are constructed. Then, Monte carlo
simulation study is performed to compare the performance of the estimates in terms of the
absolute bias and MSEs. It is observed that the Bayes estimates under LINEX loss function
perform better than the other estimates. Further, a real data set is considered for illustrative
purposes.
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Figure 4: QQ-plot comparison for different distributions fitted to given real data set.
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