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Abstract

Biosignals are nowadays important subjects for scientific researches from both the-
ory and applications especially with the appearance of new pandemics threatening
the humanity such as the new Coronavirus. One aim in the present work is to prove
that Wavelets may be a successful machinery to understand such phenomena by
applying a step forward extension of wavelets to multiwavelets. We proposed in a
first step to improve multiwavelet notion by constructing more general families us-
ing independent components for multi-scaling and multiwavelet mother functions.
A special multiwavelet is then introduced, continuous and discrete multiwavelet
transforms are associated, as well as new filters and algorithms of decomposition
and reconstruction. The constructed multiwavelet framework is applied for some
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experimentations showing fast algorithms, ECG signal and a strain of Coronavirus
processing.

Key words: Wavelets; Multiwavelets; Wavelet Filters; Wavelet Algorithms; ECG;
Coronavirus.
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1 Introduction

Image processing is a discipline of computer science and applied mathematics
that studies digital images and their transformations, with the aim of improv-
ing their quality or extracting information from them and in applied fields
such as medicine, geography, town planning to model and understand real
life.

This is a subset of signal processing dedicated to images and derived data
such as video (as opposed to parts of signal processing devoted to other types
of data: notably sound and other one-dimensional signals), while operating in
the digital domain (as opposed to analog signal processing techniques, such as
traditional photography or television). The image processing must be carried
out purely digital, leading to a well description, sophisticated analysis and
ease application in quantitative forms.

In theory, image/signal processing is a domain of science that is not recent,
but in contrast, it is developed till the early discovery of Fourier analysis. T'wo
large concepts are distinguished. Classical image/signal processing known as
analogical and digital or numerical image/signal processing which is the cur-
rent revolution in the field. It consists of a box of techniques and/or methods,
mathematical and/or physical, theoretical and/or applied that aim to mod-
ify or to convert an image in another form in order to improve it and/or to
extract information. As a result, the image processing is the set of methods
and techniques operating on them, in order to make operations possible, easy,
more effective, to improve the visual appearance of the image and to extract
relevant informations (See [10,33,58]).

Signal /image processing is the discipline that develops and studies the tech-
niques for processing, analyzing and interpreting signals. Among the types
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of operations possible on these signals / images, we can denote control, fil-
tering, compression and transmission of data, noise reduction, deconvolution,
prediction, identification, classification, etc.

Although this discipline has its origin in the engineering sciences (particularly
electronics and automation), today it makes extensive use of many areas of
mathematics, such as signal theory, stochastic processes, vector spaces and
linear algebra and applied mathematics, in particular information theory, op-
timization or numerical analysis. In this context, linear transformations have
always played a very important role, and among these, the best known and
oldest is of course the Fourier transform. See for example [9,10,33,58] .

Images and signals especially biomedical ones as we said previously continue
to be an important task for scientific researches from both theoretical and
practical point of view. Some new pandemics appeared recently have for ex-
ample to be understood as they constitute a real and strong threatening of the
humanity such as SRAS, H2N2 and the new Coronavirus. One of the powerful
tools in such topics is wavelet theory which has been proved to be challenging
since its discovery. Indeed, the notion of wavelets has known since its discov-
ery a great growing up especially in the field of signal and image processing.
Recently, a step forward has been conducted to extend wavelets to multi-
wavelets to cover some multidimensional cases of signals. In the present work
we propose to improve multiwavelet notion by adopting more general fami-
lies of multiwavelets explicitly constructed using independent components for
multidimensional scaling functions leading to a new more flexible 2-scale re-
lation. Readers may also consult [10,7,26,27,28,29,64] for more applications of
wavelets and multiwavelets on biosignals.

Multimedia documents constitute also a category of applications in signal and
image processing. They also present essential tools in the fields of biomedical,
satellite and astronomical imagery, film production, and industrial computing
as solutions to problems related to the transmission of confidential data, big,
fuzzy, missing and cloud data, cryptography, watermarking, steganography, ...
In this context, the image undergoes transformations and the resulting image
is then tested by a detection process which extracts the mark or points out its
presence. In watermarking for example, some methods operate in the spatial
or transformed domain and others use hybrid techniques. Methods based on
transformations consist of transforming the signal of the space-time domain
to another domain (for example Fourier, wavelets, ...). It is done by inserting
the mark in some coefficients in this field. Then the inverse transformation
is performed to return to the space-time domain. Concerning the frequency
transform, the insertion of the mark in the low frequencies generally provides
good robustness but induces distortions in the time domain. On the other
hand, the insertion in the high frequency components does not keep the quality
and moreover it makes the mark fragile to the attacks. This was a motivation



for researchers to develop and ensure a compromise between the robustness
and invisibility of the transform. See [5,9,10,33,58] .

Over the past few years, there has been a renewed interest in multiresolution
representations, surface filtering, contour detection and information retrieval.
When it is sought to analyze an image, it is very common to establish, explic-
itly or implicitly, a time-frequency representation of it. The Fourier transform
is not the appropriate tool to carry out this analysis since it masks the tem-
poral evolution of the signal. In the eighteenth, wavelet theory has been re-
discovered and proved to be a powerful tool in signal/image processing. Since
its discovery, wavelets were related to the theory of signals/images as applied
during the study of a reflected oil extracting signal. The reflected signal is not
stationary! Next, wavelet transform has been the subject of numerous studies
in signal processing and geometrical computing. Indeed, most of the signals of
the real world are not stationary, and it is just in the evolution of their char-
acteristics (statistics, frequency, temporal, spatial) that resides the essential
information that they contain. Local signals and images are exemplary. In this
context, wavelet transforms provide information about the frequency content
while preserving the localization in time in order to obtain a time-frequency
representation or a space-scale of the signal. Unlike the Fourier transform, the
wavelet transform and its extensions provide interesting solutions in this con-
text. Approximations of signals are obtained as results of a convolution with a
scaling function (a low-pass filter) and a wavelet function, and then reducing
the number of points used in the process. The principle idea is to iterate this
process and transform the current approximation into a new approximation
with fewer points for the representation. We obtain a temporal as well as a
frequency decomposition of the source object. It is well known that the fre-
quency decomposition of a signal is interesting for the analysis of the different
levels of detail present in the signal. It also applies to filtering, compression
and progressive transmission. See [5,9,17,10,33,58].

In the present work we propose to serve from explicit multiwavelets already
introduced in [64] and next applied in [65] to improve firstly the theoretical
findings and in modeling biomedical signals. The basic idea is consists in a sim-
ple change in the well-known 2-scale relation by writing it in a vector form.
This makes almost all existing constructions of multiwavelets to look-like as
modified representations of the same original wavelets. See [1,2,3,8,41,43,55].
In our work, based on the well-known wavelets of Haar and Faber-Schauder
we developed a simple variant of multiwavelets that are not issued from
one source as existing ones. Haar and Schauder explicit functions are ap-
plied in our case. This choice permits exact computations of necessary co-
efficients applied in the processing. They also permit to reduce the number
of such coefficients and obtain the next generations recursively. However, we
recall that other examples of multiwavelets may be also obtained even ex-
plicitly by applying other scaling functions and/or wavelet mothers different



from the present case. Some interesting cases may be found in [0,?]. See also
[15,23,25,32,38,44,46,47 A8 54,57 59,60,61] for more methods and applications.

Next, to show the performance of our extension, some experimentations will
be developed. A first one deals with the development of a Fourier type mode
to show how fast are algorithms based on the new variant of multiwavelets. A
second experimentation will be concerned with the well known ECG signals.
Recall that the technique of ECG consists of measuring the differences of
potentials due to the dipole field, at different points of the body. It produces
a graphical representation of the heart electrical activity. The main problem
for such a signal is the presence of noise. Hence, a denoising step has to be
conducted using our new multiwavelets to lead next to a good analysis. See
[33,58,1] for some existing methods. The last experimentation is concerned
with the processing of a Coronavirus strain for an associated membrane protein
signal. We propose to develop a wavelet analysis of an isolated or purified strain
of human coronavirus associated with SARS already recorded and studied in
[56]. Precisely, we intend to conduct a reconstruction process and to localize
membrane helices of the strain based on the hydrophobic character of the
amino acids constituting the proteins’ series associated to such a strain and
issued from the well known Kyte-Dolittle method [31].

The present paper is organized as follows. The next section is devoted to the
review of wavelet theory. Section 3 is devoted to the development of multi-
wavelet concepts in order to provide a Haar-Schauder multi-wavelet and its
associated filters. Instead of introducing the multiwavelet scaling function as
the vector composed of the translated copies of the same single scaling function
appearing in the 2-scale relation a new concept of multiwavelet scaling function
is introduced based on finitely many possibly independent scaling functions
components. It looks like a system of many cameras working simultaneously
and independently in each direction. In section 4, some experiments have been
developed to show the performance of multiwavelets against wavelets for both
the rapidity of algorithms and biosignals processing. An ECG signal and a
proteins’ strain issued from a coronavirus case are considered.

2 Brief review on wavelets

A wavelet may be defined simply and especially for a non mathematicians com-
munity as a short wave function and which has major difference from Fourier
sine and cosine by its ability of being localized in time-frequency and/or time-
space. Wavelet analysis of signals is based also on the so-called wavelet trans-
form which is a convolution of the analyzed signal with copies of a source
function called mother wavelet. Wavelets,differently from Fourier modes, are
not necessarily periodic, they may be also compactly supported.



In mathematics, a mother wavelet ¢ is a square-integrable function with
enough vanishing moments (oscillating) with necessary zero mean. The copies
applied next in the signal analysis are issued from the mother wavelet by act-
ing the so-called real affine group G, also called the ax + b group, consisting
of transformations of R of the type © — gx = ax + b, x € R, where a > 0,
b € R equipped by the multiplication rule

Gig2 = (b1 + arby, a1a2), g1 = (a1,b1), g2 = (a2, b2) € G

Denote Tyf(z) = f(x —b), Dof(x) = vaf(ax), a > 0 and (U(a,b)f) =
D,—1Tyf. It holds that

1 x—b
b = —f(——).
V(b)) = = ()
The wavelet transform of f at the scale a > 0 and the position b € R is
Crla,b) = (f,U(a,b)y) = (f, D1 Tpy)). (1)
This transform is invertible and its inverse is
1
f(.) - Iw<0f<a7 b)a U(CL, b)l/}(.»du(a,b) (2>

where Ay is the admissibility constant due to the mother wavelet 1) expressed
as

A= | W’(;” dg < oo, (3)

(See [5,17,40]).

In the sequel we will denote

Vap(x) = (U(a, b)) (z) = \;aw(x —b

. 4

=) ()
The wavelet processing of signals is based on their wavelet transform which
may be continuous or discrete. Given a finite energy signal F', a > 0 known
as the scale and b € R known as the position, the CWT of F'is (at the scale
a and the position b) is as introduced in (1) and recalled here-after

Crla.8) = [ F@baslt)it 9

The analyzed signal F' may be reconstructed using the inverse transform as in
(2) as

F(t)

1 e dadb
- | Crla a5 (6)

— 00

See [5,17].



A restrictive version of the CWT is the so-called discrete wavelet transform
called also wavelet coefficient which is the restriction of the continuous form
to a discrete set of the scale and the position parameters. In fact there is no
essential difference between the discrete grids used and the most commonly
used one is the dyadic grid constituted by a = 277 and b = k277, j. k € Z.
The copy v, becomes is this case

W (t) = 20724p(20 — k) (7)

and the discrete wavelet transform (DWT) (or the wavelet coefficient) will be

+oo
diF) = [ Pttt (®)
These coefficients are also known in wavelet theory as the detail coefficients at
the level j and the position k. It holds also in wavelet theory that (v;);kez
constitutes an orthonormal basis of L*(R) and consequently any element F
may be decomposed in a series

F =3 din(F)dj (9)

known as the wavelet series of I’ and which replaces the reconstruction formula
(6) in the discrete form.

This decomposition into an orthogonal-wise components series leads to a func-
tional framework associated to the ,other wavelet 1) known as the multiresolu-
tion analysis (MRA). Indeed, let for j € Z, W; = spann(v; ; k € Z) known
as the detail spaces and V; = @;<;W; called approximation spaces. There ex-
ists a source function ¢ known as the scaling function or the father wavelet
satisfying V; = spann(p;i ; k € Z), where the ¢;;’s are defined similarly to
the 1 ;. The father and mother wavelets are related by the so-called 2-scale
relation stating that

©=> hppir and ¥ =Y gepix (10)
k€Z kEZ
where
me= [ ettt and g = (=1 s, (11)
See [17,10] for more details. These relations permit to compute the wavelet

coefficients from level to level. Indeed, denote
+oo
ain(F) = [ FOpu(tdt

—00

known as the approximation or the scaling coefficient of F' at the level j and



the position k, we have

ajk(F) = ajiio0n(F) (12)
leZ
and
dik(F) =Y qiaji1a420n(F). (13)
leZ

This means that the decomposition at the level 7 may be deduced from the
level (j+1) by means of the filters H = (hg)x (discrete wavelet low-pass filter)
and G = (gx)r (discrete wavelet high-pass filter). Similarly, we have an inverse
scheme stating that

aj1k(F) =D okt (F) + > giokDju(F). (14)
[ l

For backgrounds on wavelet filters, the readers may refer to [5,17,10].

3 Generalized multiwavelet analysis

Multwavelets have been introduced since the early 1990s as another view of
wavelets permitting to re-write wavelet analysis in a vector form to reduce
may be mathematical formulations. It resembles in some sense to the reduc-
tion of higher order differential equqtions into first order ones by considering
the vector X = (y,9,9",...,y™) where n € N is an integer constituting the
order of the original differential equation in y and where ¢/, 3", ...,y are the
derivatives of y to such an order. The major existing multiwavelet construc-
tions consider the vector ® = (¢(.), (. — 1),...,¢(. — N)) where N is the
length of the filters H and G.

This view of wavelets has even though some advantages such as short sup-
ports, smoothness, accuracy, symmetry and orthogonality. Moreover, as no-
ticed in [6,65], discrete multiwavelets may require pre-processing and post-
processing steps. These facts themselves constituted main motivations behind
the study developed in [64,65] and continued in the present paper. See also

[ I 9 ) I Y ) 9 9 ) ]‘

In the present paper, we propose to continue in exploiting more the con-
struction of multiwavelets as noticed in [64,65] by considering a vector-valued
scaling function ® = (¢1, s, ..., ¢n)" (T is the transpose), N € N fixed where
the components ¢;, i = 1,2, ..., N are not translations of the same function as
in the most existing case. This leads to a matrix-vector 2-scale relation

=3 H,d,, (15)
k



where in this way the Hy's are (N, N)-matrices, Hy, = (hi,j)K- <
_/[/7.]_

the mother multiwavelet will satisfy a scale relation of the form

U =Y G®, (16)
k

N Similarly,

where the G}’s are also (N, N)-matrices, Gy = (gi’j)lgi,jgN'
Definition 3.1 The sequences of matrices H = (Hy), and G = (Gy)y are
called the discrete high pass and discrete low pass multi-filters respectively.

In the literature review on multiwavelets, there are few developments. So,
complete and full exposition of multiwavelets theory still needs to be devel-
oped. The only reference in this direction is [31]. This is one motivation among
previous ones letting us to develop the present work. The choice of mother mul-
tiwavelets is also strongly related to the ability and flexibility in conducting
experiments Readers may refer to [3,14,22 31 51,66,55]

In the sequel, we fix the multiwavelet order N = 2. Let ¢1(z) = Xjo1(()
be the Haar scaling function and y,(x) = (1 — |2|)x[-1,1{(z) be the Schauder
scaling function. Denote next ® = (¢, 902)T. Simple calculus yield that H;, = 0
whenever |k| > 2 and

O=H 91+ Ho®Pr1o+ Hi Py (17)

where

1 (00 1 (10
H,=H =—— , Hy= — . (18)
V21012 V2 {01

Thus, the mother multiwavelet is

U=> Gy, G =(-1)H_,. (19)
1

The Haar-Schauder multiwavelet processing (decomposition/reconstruction)
of a signal F' consists as in all wavelet processing in estimating the corre-
sponding coefficients of the signal by means of the multiwavelet copies. So
consider for r € N fixed known as the order or the dimension of the signal and
write F = (Fy, Fy,..., F,)". Denote also s in single wavelet analysis A, (F)
and D, (F) the approximation and the detail coefficients of F' relatively to
the Haar-Schauder multiwavelets at the level j and the position k. The signal
F' may be decomposed as a sum

F=A0+ Dy

where Fj is
Ag = ZAOJ(F)QDOJ (20)
1



and

Dy = ZDO,Z(F)\IIOJ. (21)
l

The components Ay and D, are known as the approximation and the detail
components of F' at the level 0. The coefficients Ay ,;(F") and Do ;(F') are (r,2)-
matrices. As in the case of single wavelet theory, we obtain here a MRA
associated to the multiwavelet by considering as approximation space V; the
closure of vector space spanned by the ®,; and as detail space at the level
0 the one spanned by Wg,, | € Z. As a consequence, we obtain multiwavelet
algorithms stating that

A (F) = [Agy(F)Hs—o + Doy (F)Gs_a], (22)
]
Ags(F) =" Ap(F)H; o (23)
!
and
Do s(F Z A11(F)Groas. (24)

To resume, the new general concept will cover some disadvantages of many
existing multiwavelets theory where the scaling multiwavelet function is con-
structed by taking the well known 2-scale relation in single wavelet theory and
introducing the multiwavelet scaling function as the vector composed of the
translated copies of the single source scaling function appearing in the 2-scale
relation. More precisely, let ¢ be a scaling function satisfying an associated
2-scale relation

L-1

the associated multiwavelet is ®(.) = (p(.), (. —1),...,¢(. — L + 1)) where
L is the filter lenth. This is good in some way as it lokks like a system of
L surveillance systems in each direction, but which are indentical or having
the same mechanism. However, it will be best and more efficient to install
different mechanisms’ cameras and thus get a whole system of surveillance
O(.) = (1,92, ..., px) with a number of directional-wise cameras with differ-
ent filters,independent and working simultaneouslyto compose awhole image.
In the present work one of our aims is to apply the last mechanism of multiple
different cameras.

10



4 Experimentation

4.1  Development of a Fourier mode

In this section we aim to develop the wavelet analysis of a special example of
signals consisting of the well known 27-periodic Fourier mode F(t) = sin(t),
t € [0, 27]. Recall that the decomposition de F' at the level J € N is expressed

as
F=> An(F)ese+Y.> Diu(F)jk. (25)
k jzJ k
For a choice of J = 1, the approximation part becomes
Ay = ZALk(F)SOLk- (26)
i
Recall now that
(k+1)/2
A p(F) = /(k—l)/? sin(t) 1,k (1) X[o,2r( (1) dt. (27)

We now compute the values of the position parameter k for which the inter-
section of supports [%51, 2H1[N[0, 2[5 0 which yields that 0 < &k < [47].

We next compute the Normalized Average Quadratic Error (NAQE) to show
the performance of the approximation computed on a grid of N points ¢; in
[0, 27,

> (Ay(t;) — F(t;))?
NAQE;n(A, F) = = : (28)
Z:(F(tz))Q

For a number N = 50 and J = 1, we get an error
NAQFE = 0.0012.

The following figure (Fig.7) illustrates the signal F' and its approximation A;.

Next, to show the role of the projections of the signal F' on the detail spaces we
compute the DWT of F already with J = 1. This will illustrate the dynamics of
F. Similarly to the approximation case, it remains for the position parameter
k the values —1, 0, 1, ..., 13. Recall that the support of ¥ j is [k_zl/Z, k+21/2].
Thus, to get the detail component D; of the signal F' in the detail space W,
we have to compute Dy (F') for k € {—1,0,1,...,13}.

Next, denote Fy = A; + D;. To illustrate the closeness of F} to the original
signal F', we compute as previously the NAQE on a grid of NV points ¢; in

11



[0, 27,

(29)

For a number N = 50, we get an error
NAQFE = 0.00118.

The following figure (Fig. 8) illustrates the signal F' and its approximation Fj.

Similarly, we may compute for J € N the approximation
Fr=A;+Di+Dy+---+Dy. (30)

To illustrate the closeness of these approximations to the original signal F,
we compute the Normalized Average Quadratic Error (NAQE) on a grid of
N points ¢; in [0, 27]. For a number N = 50 and J = 1, we get the following
error estimates (Table 1).

Table 1 summarizes the results of comparisons with the existing method de-
veloped in [11] and the bi-filters based method developed here. We found that

Fig. 1. F' (red) and its approximation A; (blue).

/N
v

Fig. 2. F' (red) and F; (green).
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Method 1 (Ref. [11]) | Bifilters J =1 | Bi-filters J = 2 | Bi-filters J = 3

12.1073 11,8.1073 2.107° 2,4.1076

Table 1
Error Estimates.

NAQE obtained by bi-filters is smaller than the existing one. On the other
hand, it is remarkable that the greater J increases the error decreases.

Next, in order to show more the performance of the new method we proposed
to evaluate the running time of algorithms due to each method. We thus
provided a comparison relatively to the time execution algorithms for the
methods applied for the same Fourier mode signal. For N = 10 and J = 1, we
obtained the following table (Table 2).

The method NAQE | Running Time
Schauder Wavelet 0,0086 123,2s
Schauder Filters 0,0092 73,034,
Haar-Schauder Muliwavelet 0,0033 32,97s
Haar-Schauder Multiwavelet Filters | 0,0003 16,6

Table 2
Time execution.

Table 2 shows a comparison for both the NAQE error and the execution
time between the approximation obtained by the use of the Schauder wavelet,
Schauder Filters, Haar-Schauder Multiwavelet and Haar-Schauder Multiwavelet
Filters. First, by comparing the NAQE and the execution time for the meth-
ods based on the single Schauder wavelet and Schauder filters we noticed that
the NAQE relative to both of them are not enough different. Besides, the sec-
ond one yields a faster convergent algorithm. Next, applying Haar-Schauder
multiwavelets results in more efficient approach. Similarly to the single case,
the new Haar-Schauder multiwavelet filters result in a best error and a best
running time. This shows the performance of the new multiwavelet approach.
Finally, our work proves among the efficiency of multiwavelet approaches, that
using different wavelet cells in the multiwavelet black boxes is more performant
than applying the classical approach. Recall that this latter is on re-writing
the 2-scale relation and thus re-writing the whole signal in a different way by
decomposing it in different bi-signals, which may affect the originality of the
signal processed.

13



4.2  ECG signal processing

ECG signals are graphical representations of the heart electrical activity due
to the variations of electric potential of the specialized cells in the contraction
(myocytes) and specialized cells in the automatism and the conduction of
the influxes. ECG can highlight various cardiac abnormalities and has an
important place in cardiology diagnostic tests, as for coronary heart disease.
We refer to the MIT-BIH Arrhythmia data basis for the application develiped
in this part.

The present ECG signal processing by means of the Haar-Schauder multi-
wavelet yields for each level of decomposition J > 1 a discrete positions grid
0<k<10.27.

Next, our idea consists in using the Haar-Schauder multiwavelet for the ECG
signal processing as a type of simultaneous loops to guarantee the maximum
information carried in such a signal. The first loop consists in applying a filter-
ing of the signal by means on one of the components of the Haar-Schauder mul-
tiwavelet (Haar for example) and next apply the second one to denoise more
the obtained filtered sub-signal. This raises an interesting question about the
use of independent components in the definition of the multiwavelet analysis
source functions ® and W. This filtering concept could not be realised by using
multiwavelets with non-separable variables and /or dependent components. So,
the idea is a double (multiple in general) surveillance cameras system that is
used to detect best strange objects. The following diagram (Figure 3) shows
the decomposition steps of an ECG signal using Haar-Schauder multiwavelet.

The original signal

Project on V; | | Project on Wy || Project on V; | | Project on W,

N

4 z

N\ L

The reconstructed signal

Fig. 3. The Haar-Schauder multiwavelet principle.

We now explain mathematically the principle of Haar-Schauder multiwavelet
processing. So, denote p and ¢ the Haar and Faber-Schauder scaling functions
respectively and the associated mother wavelets ¢ and 1Z For a level J denote
ay and ay the approximations at the level J due to Haar and Faber-Schauder

14



MRA respectively and similarly d; and d; the projections on the detail spaces
due to Haar and Faber-Schauder MRA respectively. We get the multiwavelet
decomposition of the ECG signal at the level J as

J J
AJ:CLJ‘FEL\:I‘{‘Zdj‘{‘Zdj.
J J

Using the independence between the components of the multiwavelet, the prin-
ciple applied here means that the final decomposition is a superposition of two
decompositions on two approximation spaces and two detail spaces for each
level included in the modeling. In this case, the risk of losing the information
decreases compared with classical wavelet processing. The reconstruction by
multiwavelet will be more efficient. Moreover, it is worth to recall here that
there is no essential difference between being simultaneous or consecutive the
application of the two components of the multiwavelet. Such a problem may
be of great importance when the components are dependent or depending on
non-separable variables.

Table 3 resumes the accuracy of the present method against previous ones by
means of the so-called Normalized Average Quadratic Error (NAQE) as in
(28) or (29).

NAQE J=1 J=2 J=3 J =4
Haar wavelet 0.0012 | 871074 | 546 107* | 5.01 10°*
Schauder wavelet 0.0014 | 8.9510~% |6.1810°%| 3.710°*

Haar-Schauder multiwavelet | 9.8 10~4 | 7.4 10~* | 4.37107* | 1.09 10~*

Table 3
Relative NAQE estimates for ECG signal.

We notice easily from Table 3 that the Haar-Schauder multiwavelet processing
results in more accurate error of closeness NAQE obtained for the best esti-
mates at a level of decomposition J = 4. This proves also that the multiwavelet
processing did not necessitate a higher order of decomposition to reach a good
error. Besides, Figures 4, 5 and 6 illustrate the processing of the ECG signal
using Haar wavelet, Schauder wavelet and Haar-Schauder multiwavelets and
confirm more the efficiency and the performance of the multiwavelet principle.

To finish with the ECG multiiwavelet processing we plotted in Figure 7 the
evolution of the normalized quadratic error with the level of resolution J, for
Haar wavelet, Schauder wavelet and Haar-Schauder multiwavelets. The graph
shows easily the efficiency of wavelet processing in general and more efficiently
the dominance of the new multiwavelet against the single wavelets.
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4.8 A case of coronavirus signal

We consider in this work a strain of coronavirus associated with SARS, from
a sample originally recorded in Hanoi, Vietnam since 2002-2003, See [50]. Re-
call that the coronavirus is not indeed new except that it appears each time
in a new form or a new state. It is for example enveloped and includes, on
its surface, peplomeric structures called spicules. It may and precisely always
includes proteins of unknown encoded function. Such proteins have several
categories. Some are, for example, membrane glycoproteins in the form of
spicules emerging from the surface of the viral envelope. They are respon-
sible for attaching the virus to receptors in the host cell and for inducing
fusion of the viral envelope with the cell membrane. Other proteins of even
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small variable sizes are transmembrane proteins. They play a crucial role in
the budding process of coronaviruses which occurs at the level of the inter-
mediate compartment in the endoplasmic reticulum and the Golgi apparatus.
Membrane proteins constitute more than the quarter of proteins in currently
sequenced complete genomes. They have a very important role in cellular pro-
cesses such as the transportation of molecules and the communication between
cells. Moreover, they are directly and strongly related to drugs. More than the
half of such proteins are targeted by a drug each one. Inside the membrane,
the transmembrane segments may take the form of an alpha helix or the beta
strand form. Generally, the size of the TM segments is of the order of 15 to
30 amino acids with a very large hydrophobic region.

When infecting a host cell, the reading frame of the viral genome is translated
into a polyprotein which is cleaved by viral proteases and then releases several
non-structural proteins such as RNA polymerase and ATPase helicase. These
two proteins are involved in the replication of the viral genome as well as in
the generation of transcripts which are used in the synthesis of viral proteins.

With the help of proteins, the virus migrates through the Golgi complex and
leaves the cell and thus attaches to external bodies causing hard damages.
Indeed, coronaviruses are responsible for 15 to 30% of colds for humans and
respiratory or digestive infections for animals by inducing antibodies.

The coronavirus appeared in several forms such as SARS which spread to
different countries in 2002-2003. Very recently a new type of the same category
of epidemics appeared originally in Hanoi, China and presents until now a
challenge for humanity. The severity of these diseases is the rate or the growth
of mortality in the first place and the auto-internal change of the virus althoug
its external form appears the same. Determining the causative agent of the
new category is now the challenge for all of humanity. More informations and
ideas on such type of viruses may be found in [1,13,18,37,39,12 53,62] .

The purpose of this work is to develop a wavelet analysis of an isolated or
purified strain of human coronavirus associated with SARS already recorded
and studied in [56].

Recall that proteins’ sequences are biological series similar and also related
to DNA as they are characters’ series and which also may be generated from
DNA ones. The question of why preferring proteins and not DNA as others do
is already discussed in [64]. One main cause is due to the fact that proteins’
sequences are more volatile. On the other hand, sequences of DNA are always
issued from proteins’ ones as for the example applied here. Moreover, the
communication between living cells such as virus ones are always done by
the intermediary of membrane and precisely transmembrane proteins. The
regions of anomalies and communication constitute some type of helices which
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correspond to the singular and optimum points in the numerical series issued
from the biological ones. See [?,20,24,64] for more details.

In this experimental part, a reconstruction process is developed to localize
the transmembrane helices of the strain of the SARS-associated coronavirus

based on the hydrophobic character of the amino acids developed in [34]. This
permitted to convert proteins into time (numerical) series allowing their pro-
cessing using mathematical tools to be possible (See [11,12,241]). The numerical
conversions due to Kyte-Dolittle in [34] are resumed in Table 4.
Amino Acid Kyte-Doolittle Scale Category
Isoleucine : Ile(T) +4.5 Hydrophobic
Valine : Val(V) +4.2 Hydrophobic
Leucine : Leu(L) +3.8 Hydrophobic
Phenylalanine : Phe(F) +2.8 Hydrophobic
Cysteine : CySH(C) +2.5 Hydrophobic
Methionine : Met(M) +1.9 Hydrophobic
Alanine : Ala(A) +1.8 Hydrophobic
Glycine : Gly(G) -0.4 Neutral
Threonine : Thr(T) -0.7 Neutral
Serine : Ser(S) -0.8 Neutral
Tryptophan : Try(W) -0.9 Neutral
Tyrosine : Tyr(Y) -1.3 Neutral
Proline : Pro(P) -1.6 Neutral
Histidine : His(H) -3.2 Hydrophilic
Glutamine : Gln(Q) -3.5 Hydrophilic
Asparagine : Asn(N) -3.5 Hydrophilic
Glutamic Acid : Glu(E) -3.5 Hydrophilic
Aspartic Acid : Asp(D) -3.5 Hydrophilic
Lysine : Lys(K) -3.9 Hydrophilic
Arginine : Arg(R) -4.0 Hydrophilic
Table 4

Hydrophobicity scale of Kyte-Doolittle.

The protein strain is provided in Appendix 6. To illustrate the closeness of
the reconstructed signal to the original one, we computed as usual the NAQE.
We get the estimates provided in Table 5.
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J| NAQE;,

1 |3.5108 10712

2 | 4.3631 10712

3 | 4.9646 10712

4 | 5.2140 10712

5| 5.380 10712

6 | 4.3631 1012

Table 5

NAQE estimates for the coronavirus signal using Haar-Schauder multiwavelet.

Table 5 shows an optimal reconstruction reached at the level J = 6. Next,
Figure 8 illustrates graphically the decomposition of the numerized coron-
avirus proteins’ series at the level J = 6 using Haar-Schauder multiwavelet.
This shows in some part the efficiency of usig multiwavelets instead of single
wavelets.

Next, as it is now well known that wavelets and multiwavelets are powerful
tools to detect the transmembrane segments in proteins’ series ([?,11,12,24,64])
and in order to prove the applicability and thus the useful aspect of our mul-
tiwavelets we proposed to focus on the possible detection and/or prediction of
alpha-helices in the considered protein. We subsequently propose to predict the
locations of these regions by statistical processing applying the Haar-Schauder
multiwavelet. The optima with scores greater than 1.8 (horizontal line in Fig-
ure 9) indicate possible transmembrane regions. The window position values
shown on the z-axis of the graph reflect the average hydropathy of the entire
window, with the corresponding amino acid as the middle element of that
window. Eight helices (local maxima) appear clearly.

To show the efficiency of the present method, we apply next the new explicit
Haar-Schauder multiwavelet filtering method at the optimal level J = 6. Table
6 illustrates the findings and shows 8 segments. Next, we illustrated graphically
such prediction in Figure 10 which illustrates the predicted results due to the
'new’ Haar-Schauder multiwavelet at the level J = 6. It shows also 8 localized
transmmembrane helices.

Notice that the example studied here is an important case that may be con-
sidered as a model to be applied to the new case of the coronavirus COVID-19
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TMHs | Haar-Schauder multiwavelet localized segments
1 120-134
233-253
359-373
505-523
678-699
824-842
1056-1069
1199-1212

0O 3 O U i W N

Table 6
The TMHs Segments for Haar-Schauder filtering of the coronavirus signal.

when a database is available which is not the case for us. We also mention
that the wavelet/multiwavelet theory has proven effective in discovering and
identifying abnormalities and specialfacts in biological strings such as helices,
knots, .... Thus, with no laboratory study available on the chain used here and
its equivalents in the new COVID-19, we intend that the current study may
be applied to identify such abnormalities and other characteristics for the new
virus COVID-19 chains as well as other cases.
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5 Conclusion

In this paper, multiwavelet procedure has been developed extending the well
known wavelet algorithms applied in image and signal analysis. By improv-
ing the existing ideas on multiwavelets, we constructed new ones and proved
that multi-filters may be associated and applied in signal analysis with more
efficient results compared to the classical ones. Error estimates as well as fast
algorithms have been proved and applied on ECG signals and a coronavirus
case.

6 Appendix: The Coronavirus proteins’ series strain

As we have hardy obtained the strain protein in hand we provided it in this
appendix manually to be in the disposition of readers and researchers.

MPIPLLPLTLTSGSDLDRCTTPDDVQAPNYTQHTSSMRGVYYPDEIPRSDT
LYLTQDLPLPPYSNVTGPHTINHTPGNPVIPPKDGIYPAATEKSNVVRGW
VPGSTMNNKSQSVIIINNSTNVVIRACNPELCDNPPPAVSKPMGTQTHTMI
PDNAPNCTPEYISDAPSLDVSEKSGNPKHLREPVPKNKDGPLYVYKGYQP
IDVVRDLPSGPNTLKPIPKLPLGINITNPRAILTAPSPAQDIWGTSAAAYPVG
YLKPTTPMLKYDENGTITDAVDCSQNPLAELKCSVKSPEIDKGIYQTSNPR
VVPSGDVVRPPNITNLCPPGEVPNATKPPSVYAWERKKISNCVADYSVLYN
STPPSTPKCYGVSATKLNDLCPSNVYADSPVVKGDDVRQIAPGQTGVIADY
NYKLPDDPMGCVLAWNTRNIDATSTGNYNYKYRYLRHGKLRPPERDISNV
PPSPDGKPCTPPALNCYWPLNDYGPYTTTGIGYQPYRVVVLSPELLNAPAT
VCGPKLSTDLIKDQCVNPNPNGLTGTGVLTPSSKRPQPPQQPGRDVSDPTD
SVRDPKTSEILDISPCSPGGVSVITPGTNASSEVAVLY QDVNCTDVSTAITHADQ
LTPAWRIYSTGNNVPQTQAGCLIGAEHVDTSYECDIPIGAGICASYHTVSLLR,
STSQKSIVAYTMSLGADSSIAYSNNTIAIPTNPSISITTEVMPVSMAKTSVDCNM
YICGDSTECANLLLQYGSPCTQLNRALSGIAAEQDRNTREVPAQVKQMYKTP
TLKYPCGPNPSQILPPDPLKPTKRSPIEDLLPNKVTLADACPMKQYECLGDIN
ARDLICAQKPNGLTVLPPLLTDDMIAAYTAALVSGTATAGWTPGAGAALQIPP
AMQMAYRPNGIGVTQNVLYENQKQIANQPNKAISQIQESLTTTSTALGKLQDV
VNQNAQALNTLVKQLSSNPGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQT
YVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDPCGKGYHLMSPPQAAPHG
VVPLHVTYVPSQERNPTTAPAICHEGKAYPPREGVPVPNGTSWPIThQRNPPS
PQIITTDNTPVSGNCDVVIGIINNTVYDPLQPELDSPKEELDKYPKNHTSPDVDL
GDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYVWLGP
IAGLIAIVMVTILLCCMTSCCSCLKGACSCGSCCKPDEDDSEPVLKGVKLHYT.
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