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A MULTILAYER NETWORK MODEL IMPLEMENTATION FOR

COVID-19
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Abstract. We present a numerical implementation for a multilayer network used to model
the transmission of Covid-19 or other diseases with a similar transmission mechanism. The model
incorporates different contact types between individuals (household, social contacts, and strangers),
which allows flexibility compared to standard SIR type models. The algorithm described in this
paper is a simplification of the model used to give public health authorities an additional tool for the
decision-making process in Costa Rica, by simulating extensive possible scenarios and projections.
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1. Introduction. Throughout the Covid-19 pandemic, mathematical and sta-
tistical models have been used as a way to forecast or analyze the behavior of the
disease in various parts of the world [1, 2, 3, 4, 5]. Different mathematical tools have
been implemented to understand the disease transmission and to plan for strategic
sanitary measures to minimize the burden on the public health system [1, 5, 6]. De-
terministic models have been widely used to model infectious diseases in the past
[7, 8, 9, 10, 11, 12]. However, due to human mobility, unpredictable human behavior
and other factors, adaptable models are better suited to evolve with the ever-changing
behavior of the population during the pandemic as sanitary measures are implemented
in a particular region of interest.

In this paper, we consider an adaptive multilayer network, capable of managing
large populations efficiently; see [13, 14]. A probability of infection is computed on
a daily basis for each node independently, permitting a parallel implementation for
real-life applications. We count daily interactions per individual and determine if the
virus is transmitted depending on the attributes of each interaction.

One of the main advantages of a network model is its flexibility when taking into
account individual and social behavior, that allows us to mimic sanitary measures and
evaluate possible impacts on the population. As the pandemic progresses, it is possible
to incorporate early or ongoing behavioral changes such as reductions in community
interactions, mask use, mobility restrictions, network contacts, and lockdowns. We
include a Matlab app with the algorithm implementation that can be found in [15],
where several attributes and parameters can be modified1.

The model we present in this paper is a simplification of the model that has
been developed and taken into consideration by the health authorities in Costa Rica.
It includes the entire population (approximately five million individuals) and the
812 municipalities of the country. The model also considers different scenarios with
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gradual re-openings, mobility restrictions, different percentages for mask use, as well
as short and long-term projections of the disease. Results were delivered to the public
health authorities as part of the decision-making process [16, 17, 18, 19]. The model
takes into account local data, public health policies pertinent to the country and more
specific details than the model described in this work.

The rest of the paper is organized as follows. In Section 2, we describe the
algorithm. A pseudo-code is presented in Section 3 with a discussion of the imple-
mentation. In Section 4, we present two toy examples, in order to show the behaviour
of the model. Finally, we include some conclusions and future work in Section 5.

2. Preliminaries. Consider a constant population that lives in a fixed number
of counties. Mathematically, we consider a graph (a set of nodes that are connected
by edges) where each node represents one individual. Interactions are classified into
three layers, which represent a different type of contact with particular characteristics
that account for the virus transmission. These layers are: (1) a household network

(people that live in the same house), (2) a social network (known contacts such as
friends and colleagues), and (3) a sporadic network (strangers that you may encounter
in short periods of time when you visit random locations).

An edge between two nodes represents a feasible interaction between two indi-
viduals at a particular time, with specific attributes for its interaction depending on
the layer. These layers are randomly generated. Layers 1 and 2 are fixed for each
simulation and layer 3 can change for each time step, since usually a node has no
control on sporadic encounters.

For the first layer, it is assumed that we know the total number of households
per county, and the average number of individuals per household per county; the
information for Costa Rica is available at [20]. We then group all the individuals
into families. The number of members per household is chosen by using a Poisson
distribution with mean equal to the average number of individuals per household per
county. We assume total connectivity for each family and no edges between different
families. It is possible to randomly assign an age group to each family member if data
is available, in order to include differences in interactions accordingly; see further
details in Section 3.1.

For the second and third layers, choosing the contacts of a node requires some
assumptions. It is natural to expect a different number of interactions depending
on age, location, density, socioeconomic factors and more. In our implementation,
for every node we need to: (1) define the degree of the node (number of contacts)
per layer, given by a uniform distribution on an interval with endpoints equal to the
minimum and maximum number of allowed contacts per county per layer, and (2)
choose randomly its contacts from different counties based on a given connectivity
distribution between counties; see Section 3.3.

Each node on the graph includes several attributes. We classify them in two
classes: (1) fixed parameters, such as county, household members, age group, degree
and graph connectivity for layer 2, and (2) variable attributes such as connectivity for
layer 3, epidemiological state, number of days at current epidemiological state, number
of interactions with social contacts per day, mask use and self-care behaviour. The
former are defined at the beginning of each simulation, and the latter can take random
values every time step accordingly.

For simplicity, the propagation in our model is based on an SIR type model with
seven compartment states defined by the following epidemiological variables: suscep-
tible (S), exposed (E), diagnosed or observed (O), undiagnosed or not observed (U),
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Fig. 2.1: Model compartment states and transitions.

hospitalized (H), recovered (R), and dead (D) states; see Figure 2.1. Modifications
with additional states and transitions are straightforward to include.

Once the multilayer network is defined, we model the transmission of the virus
by computing probabilities of infection pi for interactions between infectious and sus-
ceptible nodes; see Section 3.4. For a given initial set of exposed nodes, we consider
their contacts via the different layers; see Figure 2.2a. Depending on pi, adjacent
nodes of infectious nodes can become exposed; see Figure 2.2b. We then increase the
network by including new exposed nodes and their contacts as shown in Figure 2.2c,
continuing the process on a daily basis; see Figure 2.2d.

Remark 2.1. The degree of each node in layer 2 is fixed for each simulation.
Nevertheless, on each time step a subset of edges is selected because only a small
number of daily contacts is expected to occur. As mentioned before, layer 3 changes
daily.

Remark 2.2. If the population has a large number of individuals, it is not
recommended to create the whole graph initially due to execution times. Instead, at
every time step we add new nodes and their edges on the graph in order to achieve
faster running times; see Figure 2.2 and Section 3.3 for further details.

3. Implementation. In this section we present a pseudo-code for the modeling
of Covid-19 as described in Section 2; see Algorithm 1. We describe each step in the
following sections in a general and simplified setting.

3.1. Creation of household network. In this implementation we assume that
the following data is available: total number of households per county, average number
of individuals per household per county and age groups; see a toy example in Table
4.1. We then create all the households and assign their inhabitants by using a Poisson
distribution with mean equal to the average number of individuals per household per
county; see Figure 3.1.

Each individual is labeled with an ID from 1 to N , where N is the size of the
population. We create the arrays IDtoCounty, IDtoFamily and IDtoAge that return
the county, family and age group of a given ID, and the cells familyToIDs and
countyToIDs that return the IDs for a given family or county, respectively. These
arrays allows us to directly access required information to construct the graph.
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(a) An infectious node and its network.
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(b) Two new infected nodes.
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(c) Augmented network.
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(d) Four new infected nodes.

Fig. 2.2: Modeling the transmission of the virus. The network adapts on a daily basis
depending on new exposed nodes, imitating the evolution of new cases.
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Fig. 3.1: Three families with 4, 5 and 1 members. A fully connected graph for
each component is assumed. Colors represent different age groups.
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Algorithm 1 Multilayer network model

1: procedure networkModel

2: Create household network. ⊲ See Section 3.1
3: Define initial conditions. ⊲ See Section 3.2
4: for day = 1, 2, 3 . . . do
5: for all new exposed nodes E do ⊲ See Section 3.3
6: if family has not been added then

7: Read connections in the family layer.
8: Store edge connectivity.
9: end if

10: if node requires more contacts in layer 2 then

11: Create list of eligible contacts.
12: Choose random nodes for layer 2.
13: Store edge connectivity for layer 2.
14: end if

15: end for

16: for all infectious nodes do
17: Create list of eligible contacts.
18: Choose random nodes for layer 3.
19: end for

20: for all susceptible nodes S do ⊲ See Section 3.4
21: Compute probability of infection.
22: Determine if current node has been infected.
23: end for

24: Determine transitions between states. ⊲ See Section 3.5
25: Store results for current day.
26: end for

27: end procedure

3.2. Initial conditions. For simplicity, we assume an initial graph given by
all the exposed individuals at time zero and their contact networks; see Figure 2.2a
for the case of one initial exposed node. If data is available, we can include chains
of transmission for a fixed time as an initial condition, by creating edges among
identified clusters. Before community transmission in Costa Rica, the public health
authorities were able to keep track of chains of transmission for approximately four
months. This data allowed us to create accurate contact networks for the early stages
of the pandemic.

3.3. Updating the network. As mentioned in Remark 2.1, creating a particu-
lar graph and its structure for a large population is both time and memory consuming.
Instead, our graph evolves over time. In order to keep track of the transmission of the
disease, we only need to include the edges between new exposed individuals E and
their contacts.

We choose layer 2 contacts for new added nodes as follows. We first create a list
of eligible nodes based on a connectivity distribution between counties. For instance,
density, demographic information or mobility data could be used for this purpose.
For simplicity, we consider a binary symmetric matrix where its entry (m,n) is equal
to 1 if there are connections between counties m and n, and 0 otherwise; see a toy
example in Table 4.1. This means that the eligible list for a node includes all IDs
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from counties that have connectivity with its county. We then randomly choose the
remaining number of contacts for each node from the eligible list. Further restrictions
can be added when defining the eligible list, such as age group, density and distance
between counties. Edges on layer 3 are daily updated in a similar way, excluding
preassigned contacts.

3.4. Probability of infection. If the probability that node j infects a suscep-
tible node i at a given day is βij , then the probability of infection pi for node i is
given by

pi = 1−
∏

j 6=i

(1− βij)

where j includes all the indices of nodes that can infect node i that particular day.
The value βij can depend on the layer, epidemiological state, social distancing, mask
use and self-care behaviour, among other factors. Transmission of the virus can also
include imported cases where infection occurs in an external location. Non-periodic
events can also be considered (as massive events or the creation of clusters due to
super spreader events) to study their impact and possible scenarios, where different
probabilities pi can be defined for each particular case.

In our implementation, we consider two binary random variables useMask and
selfCare that indicate whether or not an encounter between two nodes includes mask
use and self-care, respectively. We assume that a fixed fraction of diagnosed cases do
not isolate and that hospitalized individuals cannot infect susceptible nodes. We then
have different values for βij depending on the interaction between the two nodes and
their attributes. We only need to check susceptible nodes that have infectious contacts.
Once pi is determined, a uniformly distributed pseudo-random number ri ∈ (0, 1) is
generated. If ri < pi, then node ni is marked as an exposed individual at the current
time step.

3.5. Transitions between states. At each time step, every node has one of the
following states: susceptible, exposed, diagnosed, undiagnosed, hospitalized, recovered
or dead; see Figure 2.1. The event where a susceptible becomes exposed is given by
the probability of infection as discussed in Section 3.4. Any other event depends on a
probability of transition. Every node has a different probability to move to a feasible
next state depending on the period of time at its current epidemiological state. If such
event should happen, we then store the new state and day; if not, the state remains
unchanged.

We show a toy example of probabilities of transition for the diagnosed class O in
Table 3.1. In this case, if a node has one day as O, it has a 40% chance that it will
be hospitalized. Otherwise, it will remain as O on day 2. On day three, there are
three possibilities: remain at O (50%), move to H (10%) or recover R (40%). Note
that each row adds up to 1 (one state should always be chosen according to these
probabilities), and eventually all nodes that have been exposed should end up as R

or D. This approach allows us to include variable stay periods on each class if data
is available; average stay periods can be considered otherwise.

4. Numerical results. In this section we present results for two toy examples
obtained with a parallel code implemented in Matlab and a Lenovo SR650 Server with
two 2.20GHz Intel Xeon Plata 4214 processors. We remark that a generalization of
this implementation has allowed us to study disease projections and different scenarios
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time in O S E O U H R D

1 0.6 0.4
2 1.0
3 0.5 0.1 0.4
4 0.1 0.3 0.6
5 1.0

Table 3.1: Toy example for the probability of transitions between states from the
observed class O; omitted entries are zero. From compartment O, it is possible to
move to states H or R as shown in Figure 2.1.

in Costa Rica, where the total population is approximately five million people with
feasible running times.

4.1. Fixed parameters. We consider four counties with a population of 1300
nodes; its demographic distribution and the connectivity matrix are shown in Table
4.1. We consider initially E0 exposed nodes randomly chosen. Parameters used in
these simulations appear in Table 4.2. We assume that 70% of the population wears a
face mask, 35% respects self-care and 60% of exposed nodes become diagnosed. Values
for the probability of infection are shown in Table 4.2 for layer 2; probabilities are
halved for layer 3. Finally, the probabilities of transitions between states are shown
in Appendix 1.

County HH ANIHH AG1 AG2 AG3
1 140 3.0 20 50 30
2 100 3.5 28 44 28
3 80 4.0 20 40 40
4 60 3.5 40 40 20

County 1 2 3 4
1 1 1 1 1
2 1 1 0 1
3 1 0 1 0
4 1 1 0 1

Table 4.1: (left) Toy demographic distribution considered in Section 4.1. We present
the number of households (HH), the average number of individuals per household
(ANIHH) and age groups (AG) percentage distribution. (right) Connectivity matrix.
Non-zero entries indicate possible connections among counties.

Parameter Interval
Contacts in social network [5, 15]
Contacts in sporadic network [0, 15]
Contacts per day, county 1 [5, 15]
Contacts per day, county 2 [3, 13]
Contacts per day, county 3 [1, 10]
Contacts per day, county 4 [1, 10]

Face mask Self care β

No No 0.21
No Yes 0.15
Yes No 0.08
Yes Yes 0.05

Table 4.2: (left) Network parameters in toy example and (right) probability of infec-
tion depending on the type of encounter between two nodes for layer 2. Values on
layer 3 are halved; see Section 4.1.

We present a simulation for E0 = 1 (only one initial exposed node) in Figure
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4.1a. In Figure 4.1b, we present 1000 curves for the cumulative number of cases. We
remark that in this scenario with only one initial exposed node, there is no outbreak
in 7% of the simulations. Meanwhile, in the remaining 93% there are 700 cumulative
number of cases on average.

0 20 40 60 80 100 120 140
0

200

400

600

800

(a) One simulation (b) Cumulative number of cases

Fig. 4.1: Experiments with E0 = 1. (left) Cumulative number of cases, O, U and
H for one simulation. (right) Cumulative number of cases for 1000 simulations; see
Section 4.1. The variability is due to the fact that there is only one initial exposed
node.

For E0 = 10 and the given parameters, there is a one-wave pattern in the nu-
merical results. We present the mean of 1000 simulations with their 5th and 95th

percentiles in Figure 4.2. Results can also be desegregated by county and/or age
group, but we omit these figures for the sake of brevity. They can be obtained by
using the app given in [15].

4.2. Modeling changes in behaviour. We now consider a population of one
million individuals distributed in 15 counties. We impose restrictions on social be-
haviour by increasing the percentage of individuals that wear a mask and decreasing
the number of daily interactions on an period of two months, starting on day 20,
emulating the effect of mild regulations. We present results for 1000 simulations in
Figure 4.3, where we compare the effect of such restrictions.
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(a) Cumulative number of cases. (b) Observed individuals.

(c) Hospitalized individuals. (d) Undiagnosed individuals.

Fig. 4.2: Mean (black line) for 1000 simulations with E0 = 10. The shaded region
corresponds to values between the 5th and 95th percentiles of 1000 simulations; see
Section 4.1.

(a) Cumulative number of cases. (b) Observed individuals.

(c) Hospitalized individuals. (d) Undiagnosed individuals.

Fig. 4.3: Percentage of cases with no measures (dashed line) and mild restrictions
(solid line) for two months starting on day 20. We consider a reduction on the number
of daily contacts and an increment in use of masks with E0 = 10. The shaded region
corresponds to values between the 5th and 95th percentiles of 1000 simulations; see
Section 4.2.

5. Conclusions and final remarks. We have presented an implementation
for a multilayer network to support public health authorities during the Covid-19
pandemic. Capturing the transmission dynamics of the SARS-CoV-2 virus is essential
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in order to provide information about disease projections and specific data-driven
scenarios.

The model exhibits a flexible structure that allowed us to include particular at-
tributes for each node and their contact networks, describing the complexities of social
behavior and the specific disease. In this article, the implementation of the general
structure of the model is described which can be used in other social and epidemic
contexts.

With a health emergency such as the one caused by the SARS-CoV-2 virus, public
health authorities were forced to make short-term decisions. Mathematical models
help authorities to systematize the transmission mechanisms of the virus and project
the expected behavior in the short and medium-term under some assumptions. In
particular, a network model is a valuable tool as an input in the decision-making
process for health authorities. It has the capability to include social factors and an
epidemiological structure, enabling a greater level of detail in the study of the disease.
Despite the flexibility of the model, there are limitations that mostly pertain to data
availability and its quality.

Implementing and executing these models can be challenging. The availability
of information is closely related to the specificity of the question that needs to be
answered. Information on the initial conditions for the model and parameter value
estimates can be a limiting factor when data is not available or its quality is not
optimal. Efficient and fast algorithms are necessary due to the on-demand health
scenarios that need to be simulated frequently, and execution times are limited by
computational resources.

In an rapidly evolving epidemic as Covid-19, the model must be calibrated fre-
quently, as social behavior is constantly changing and, in many cases, it is unpre-
dictable. The model we have discussed in this paper allows us to straightforwardly
adapt and include frequent changes on variables that mimic social behavior. Addi-
tionally, the model can be generalized to include other factors, such as the effect of
herd immunity and the role of vaccination, as countries take the necessary steps to
get back to the new normal.
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Appendix A. Probabilities of transition. We present the probabilities of
transition between epidemiological states used in the toy examples of Section 4. We
remark that there are different probabilities that depend on the age group; see Tables
A.1, A.2, A.3, A.4.

Days 1 2 3 4 5 6 7
E 1.0 1.0 1.0 1.0 1.0 0.8
O 0.1 0.6
U 0.1 0.4

Table A.1: Probabilities from E to O and U depending on the number of days at
state E; empty entries are zero.
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Days 1 . . . 12 13 14 15 16 17 18
U 1.0 . . . 1.0 0.9 0.8 0.7 0.5 0.1
R 0.1 0.2 0.3 0.5 0.9 1.0

Table A.2: Probabilities from U to R depending on the number of days at state E;
empty entries are zero.

Age group 1 Age group 2 Age group 3
Days O H R O H R O H R

1 1.000 1.000 1.000
2 1.000 1.000 1.000
3 1.000 1.000 1.000
4 0.978 0.022 0.953 0.047 0.629 0.371
5 1.000 1.000 1.000
...

...
...

...
17 1.000 1.000 1.000
18 1.000 1.000 1.000

Table A.3: Probabilities from O to H and R depending on the number of days at
state E; empty entries are zero.

Age group 1 Age group 2 Age group 3
Days H R D H R D H R D

1 1.00 1.00 1.00
2 1.00 1.00 1.00
3 1.00 1.00 1.00
4 1.00 1.00 1.00
5 1.00 1.00 1.00
6 1.00 1.00 0.75 0.25
7 1.00 1.00 0.75 0.25
8 1.00 1.00 0.75 0.25
9 1.00 1.00 1.00
10 1.00 1.00 1.00
11 1.00 0.96 0.04 1.00
12 1.00 0.96 0.04 1.00
13 1.00 0.96 0.04 1.00
14 1.00 0.96 0.04 0.75 0.25

Table A.4: Probabilities from H to R and D depending on the number of days at
state H ; empty entries are zero.
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