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Abstract 
The COVID-19 pandemic continues to have a devastating effect on the health and well-being 
of the global population. Apart from the global health crises, the pandemic has also caused 
significant economic and financial difficulties and socio-physiological implications. Effective 
screening, triage, treatment planning, and prognostication of outcome plays a key role in 
controlling the pandemic. Recent studies have highlighted the role of point-of-care ultrasound 
imaging for COVID-19 screening and prognosis, particularly given that it is non-invasive, 
globally available, and easy-to-sanitize. Motivated by these attributes and the promise of 
artificial intelligence tools to aid clinicians, we introduce COVIDx-US, an open-access 
benchmark dataset of COVID-19 related ultrasound imaging data. The COVIDx-US dataset was 
curated from multiple sources and its current version, i.e., v1.2., consists of 150 lung 
ultrasound videos and 12,943 processed images of patients infected with COVID-19 infection, 
non-COVID-19 infection, other lung diseases/conditions, as well as normal control cases. The 
COVIDx-US is the largest open-access fully-curated dataset of its kind that has been 
systematically curated, processed, and validated specifically for the purpose of building and 
evaluating artificial intelligence algorithms and models.  
 

Background & Summary 
The novel Coronavirus Disease 2019 (COVID-19), which appeared first in December 2019 and 
was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to a 
pandemic of severe and deadly respiratory illness, affecting human lives and well-being. The 
SARS-CoV-2 virus, now observed in different variants, can emerge in various forms and levels 
of severity, ranging from asymptomatic infection to an acute illness with organ failure risk and 
death1. Ebadi and colleagues2 investigated the temporal evolution of COVID-19 related 
research themes and confirmed dynamic changes in the response of the scientific community 
to the disease evolution. The rapid growth of confirmed cases over several waves of a 
pandemic highlights the importance of effective screening and risk stratification of infected 
patients as a means to minimize spread and identify those that need a higher level of care3. 
The reliable and effective identification of infected patients with a low rate of false negatives 
contributes to controlling the disease transmission rate and mitigating the spread of the virus. 
A low false-positive rate is also desirable to not quarantine and treat people unnecessarily, 
removing burdens from the healthcare system as well as the society4.  
 
The reverse transcription-polymerase chain reaction (RT-PCR) test, performed on biological 
samples taken from the patient, is the main screening method used for COVID-19 detection5. 
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Although RT-PCR is used in many countries, it requires a long complicated manual processing3,4 
that is a huge disadvantage for an effective fight against the pandemic. Moreover, there is no 
consensus about the sensitivity of RT-PCR testing, with highly variable rates reported in the 
literature6–8. These obstacles are compounded by a lack of necessary equipment and expertise 
to perform this test in many countries, an issue that also leads to improper management of 
infected patients9. Finally, RT-PCR tests do not provide additional information that supports 
clinical decision-making with respect to the triage of infected patients, treatment options, and 
predictions of patient outcomes that may assist in resource allocation. Therefore, finding 
complementary solutions for COVID-19 screening and alternative solutions for risk 
stratification and treatment planning has attracted the attention of the scientific community.  
 
Radiography is an alternative imaging method utilized for COVID-19 screening and risk 
stratification. This modality entails an acute care physician and a radiologist visually inspecting 
radiographic images, e.g., chest X-ray (CXR) or computed tomography (CT) scans, to find 
indicators that are associated with SARS-CoV-2 viral infection, and that may assess the severity 
of infection. Biomedical imaging can accelerate diagnostic and prognostic decision-making 
processes by facilitating rapid assessment of patient condition and severity, as well as guiding 
the ordering of subsequent tests, if necessary10. It was reported in recent studies that patients 
infected with COVID-19 present abnormalities in their chest radiography images11,12. 
Additionally, some studies observed a higher sensitivity of CT scans for COVID-19 detection in 
their examined cohort compared to RT-PCR7,13.  
 
Although radiography examination is confirmed as a potential complementary method for 
conventional diagnostic techniques such as RT-PCR10, some studies even suggest that it could 
be used as a primary COVID-19 screening tool in epidemic areas13. To this end, CT imaging is 
known to provide greater image detail and is considered as the gold standard for pneumonia 
detection14.  It has also been shown to be effective for screening7,13,15. However, CXR imaging 
remains the first-line examination10, especially in resource-limited and heavily-infected areas, 
mainly due to its lower cost, high availability, accessibility, and potential for rapid triaging of 
patients suspected of the infection3. Furthermore, CXR imaging has been demonstrated to be 
effective for both screening3 and risk stratification16.  
 
As an established method for monitoring and detecting pneumonia17, lung point-of-care 
ultrasound (POCUS) is an emerging imaging modality that is receiving growing attention from 
the scientific community in recent years18. Due to its many desirable properties, i.e., high 
portability, non-ionizing radiation nature, and being used as the preferred lung infection 
diagnosis and prognosis method in resource-limited settings/environments, e.g., in 
emergency rooms or developing countries19, POCUS is showing considerable promise as an 
alternative imaging solution to CXR as the first-line screening approach20,21, and tool that aids 
in prognostication22.  
 
Unfortunately, the literature on the applicability of POCUS for COVID-19 screening and 
prognosis assessment remains scarce. However, it is suggested that lung ultrasound (LUS) can 
play a key role in the context of the COVID-19 epidemic10,23. Changes in lung structure, such as 
pleural and interstitial thickening, are identifiable on LUS and help to detect viral pulmonary 
infection in the early stages24. For COVID-19 screening, recent studies reported identifiable 
lesions in the bilateral lower lobes and abnormalities in bilateral B-lines on LUS as the main 
attributes of the disease25,26. The LUS findings in other diseases, e.g., flu virus pneumonia, 
together with current clinical evidence, suggest that the LUS patterns of COVID-19 patients 
are quite characteristic, and LUS has a high potential for evaluating early lung-infected patients 
in various settings, including at home, patient triage, the intensive care unit, and for 
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monitoring treatment effects23. Furthermore, studies have also found POCUS to be applicable 
for predicting mortality and whether a patient is in need of intensive care admission22.   
 
Artificial-intelligence (AI) powered decision support systems, mostly based on deep neural 
network architectures, have shown exemplary performance in many computer vision 
problems in healthcare27,28. By extracting complex hidden patterns in healthcare images, deep 
learning (DL) techniques may find relationships/patterns that are not instantly available to 
human analysis29. Compared to CXR and CT, lung ultrasound deep learning studies are 
comparably limited due to the lack of well-established, organized, carefully labelled LUS data 
sets30. Motivated by recent open-source efforts of the research community in the fight against 
COVID-19 and to support alternative screening, risk stratification, and treatment planning 
solutions powered by AI and advanced analytics, we introduce COVIDx-US, an open-access 
benchmark dataset of ultrasound imaging data that was carefully curated from multiple 
sources and integrated systematically specifically for facilitating the building and evaluation of 
AI-driven analytics algorithms and models. Another publicly available LUS dataset comprising 
of 200+ videos and ~60 images (as of April 2021 on their GitHub repository) built for COVID-
19 detection is the work of Born and his colleagues10. As one of the main contributions of our 
work, in COVIDx-US we offer a systematic framework for data curation, data processing, and 
data validation to dataset creation for creating a unified, standardized POCUS dataset. We also 
tried our best to design our systematic framework to be very easy-to-use and easy-to-scale, 
even for users without deep computer science/programming knowledge. The current version 
of the COVIDx-US dataset comprises 150 videos and 12,943 processed ultrasound images of 
patients diagnosed with COVID-19 infection, non-COVID-19 infection, other lung 
diseases/conditions, as well as normal control patients. The COVIDx-US dataset was released 
as part of a large open-source initiative, the COVID-Net initiative15,16,31, and will be 
continuously growing, as more data sources become available. To the best of the authors’ 
knowledge, COVIDx-US is the first and largest open-access fully-curated benchmark LUS 
imaging dataset that is reproducible, easy-to-use, and easy-to-scale thanks to the modular 
well-documented design.  
 

Methods 
The COVIDx-US dataset continues to grow as new POCUS imaging data is continuously curated 
and added as part of the broader initiative. All versions of the dataset will be made publicly 
available. Although this study represents the current snapshot of the dataset in terms of 
coverage, all the steps, including the data collection and processing pipeline that are 
introduced in this section in detail, will remain similar in the upcoming versions. Fig. 1 shows 
the flow of processes and the steps taken to generate the COVIDx-US dataset. 
 

https://github.com/jannisborn/covid19_ultrasound/tree/master/data
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Fig. 1 The conceptual flow of COVIDx-US data set integration. The current version of COVIDx-
US contains 150 ultrasound videos and 12,943 processed ultrasound images from the 
following four data sources: 1) Butterfly Network, 2) GrepMed, 2) The POCUS Atlas, and 4) 
LITFL. Original ultrasound videos are extracted from these data sources and are curated and 
integrated systematically in a unified and organized structure. 
 

Data Sources 
The COVIDx-US dataset is heterogeneous in nature, containing ultrasound imaging data of 
various characteristics, e.g., convex and linear US probes, from multiple sources. The current 
version, i.e. COVIDx-US v1.2., curates ultrasound video data of four categories, i.e., COVID-19 
infection, non-COVID-19 infection (e.g., bacterial infection, non-SARS-CoV-2 viral infection, 
etc.), other lung diseases/conditions, and normal control, from four different sources: 1) The 
POCUS Atlas (TPA), 2) GrepMed (GM), 3) Butterfly Network (BN), and 4) Life in the Fast Lane 
(LITFL). The POCUS Atlas is a collaborative education platform for sharing ultrasound 
education. GrepMed is an open-access medical image and video repository. Butterfly Network 
is a health-tech company that developed a technology to miniaturize ultrasounds and 
launched a portable ultrasound device. LITFL is a repository of emergency and critical care 
education materials. Users are also provided with metadata to define their analytics problems 
as binary (COVID vs non-COVID), 3-class (COVID, non-COVID, normal), and 4-class classification 
problems. Table 1 shows the distribution of the LUS video files per data source in the current 
version of the dataset, i.e. COVIDx-US v1.2. The COVID-19 US video files account for 39% of 
the data, although the pandemic is recent. 
 
Table 1 Distribution of the collected ultrasound video files per source and class in COVIDx-US 
v1.2. 

Data 
source 

Website Categories Total 

COVID-19 Non-
COVID-19 

Normal Other 

TPA www.thepocusatlas.com  18 9 5 0 32 

GM www.grepmed.com  8 9 3 0 20 

BN www.butterflynetwork.com  33 0 2 0 35 

LITFL www.litfl.com  0 19 3 41 63 

 Total 59 37 13 41 150 

https://www.thepocusatlas.com/
https://www.thepocusatlas.com/
https://www.grepmed.com/
https://www.butterflynetwork.com/
https://litfl.com/
http://www.thepocusatlas.com/
http://www.grepmed.com/
http://www.butterflynetwork.com/
http://www.litfl.com/
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Fig. 2 shows sample ultrasound frames captured from the ultrasound video recordings in the 
COVIDx-US dataset. The examples are processed by the COVIDx-US scripts. These few 
examples illustrate the diversity of ultrasound imaging data in the dataset. The choice of the 
four different data sources and the heterogeneity in the structure and format of their hosted 
videos resulted in a highly diverse set of videos and images in the COVIDx-US dataset that is 
key to the generalizability of the AI-driven solutions that are built on the COVIDx-US dataset. 
We will continuously grow the dataset by adding more data points and/or data sources.   
 

  

 

 

 

 

  
Fig. 2 Sample ultrasound frames captured from the curated ultrasound video recordings in the 
COVIDx-US dataset which comprises 150 ultrasound videos, collected and curated 
systematically from four different data sources, and ~13,000 carefully curated ultrasound 
images in the current version.  
 

Data Curation 
The data were curated from four data sources, each with a different structure. To support 
reproducibility and ease of use, we developed data curation engines, personalized for each of 
the target data sources, to automatically curate lung POCUS video recordings as well as 
associated metadata from the target data sources and to integrate them locally in a unified, 
organized structure. No original data is hosted in the COVIDx-US repository and the data is 
rather curated and integrated locally via our publicly released COVIDx-US scripts and the 
parameters set by the user.  The metadata provides information on the video files, e.g., 
dimension and framerate, along with their category, i.e., COVID-19, non-COVID-19, other lung 
diseases/conditions, or normal control. The scripts are designed to be highly extensible such 
that more data sources can be added to the pipeline, supporting the scalability of the dataset. 
The scripts are made available to the general public as part of each release of the dataset.  
 

Data Cropping 
The curated data contains video recordings captured with linear and convex US probes (N=38 
and 112, respectively) that are the most common probes used in medical settings. This 
provides users with higher flexibility to filter in the video files based on the probe types, if 
required. It also enables higher generalizability of the models that are trained on the COVIDx-

a) b) c) 

d) e) f) 
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a) b) 

US dataset by covering data of different types. Fig. 3 shows examples of linear and convex US 
images, i.e. single snapshots of the respective video recordings. The linear probe has a flat 
array and appearance and provides images of higher resolution but with less tissue 
penetration. Convex probes, also called curved linear probes, provide a deeper and a wider 
view and are mostly used for abdominal scans32. The original data, collected from multiple 
sources, contains artifacts, such as measure bars, symbols, or text (Fig. 3-a). We initially 
processed the collected videos and cropped them to remove these peripheral artifacts.  
 

     
Fig. 3 Sample frame of an ultrasound video captured with a) a convex, and b) a linear probe. 
 
To do data cropping, we treated convex and linear US video files separately. For the convex 
and linear US video files, we used square and rectangular windows to crop the frames, 
respectively. We used rectangular windows for linear US video files to include a larger portion 
of the original file in the processed video file. Publicly available processing scripts that we 
release as part of COVIDx-US to automatically perform data cropping on the benchmark 
dataset.  The parameters of the square and rectangular windows can be modified by the end-
user, if desired. However, using the default parameters for the defined windows will remove 
artifacts such as bars and texts visible on the side or top of the collected US video files. The 
output of this step is a video file containing frames that were processed using the above-
mentioned cropping process, along with a metadata file that includes information about the 
video file properties such as dimension and framerate, as well as the type of artifacts observed, 
e.g., static symbols or moving pointers. The cropped files are stored locally by the provided 
processing scripts.   
 

Ultrasound Image Extraction 
As mentioned in the previous sections, the videos were curated from multiple data sources, 
hence, their properties differ. To ensure maximum flexibility of the COVIDx-US dataset and as 
part of each release, we provide end users with highly flexible data processing scripts, allowing 
them to extract frames from the initially processed video files based on their research 
objectives and requirements, using a set of parameters as follows:  
 

 The maximum number of frames to extract from each video. 

 Extract frames from either all classes or a subset of classes from the set of [‘COVID-
19’, ‘Non-COVID-19’, ‘Other’, ‘Normal’]. 

 Extract frames from either all data sources, i.e. [‘BN, ‘GM, ‘LITFL’, ‘TPA’] or a subset of 
them. 

 Extract frames from all videos or those captured with a specific probe, i.e. convex or 
linear. 

 
We set the default parameters to extract all frames from all videos. Using the defined 
parameters, the frames are extracted from the videos and are stored locally. 
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Data Processing 
After extracting frames from the videos and using the metadata file from the data cropping 
stage, the frames are further processed as follows: 
 

1. Videos with moving pointers are identified.  
2. If the video contains a moving pointer: 

a. Delete frames with a moving pointer on the lung region. 
b. For the remaining frames, generate and store a frame-specific mask. 

3. If the video does not contain a moving pointer: 
a. Make a generic mask (suitable for all the extracted frames) and store it. 

4. Use the generated masks to process the frames, removing the remaining artifacts. 
 
The generated masks are provided as part of the COVIDx-US release. Using the generated 
masks, we leveraged the inpainting technique introduced by Bertalmio and colleagues33 to 
remove the remaining peripheral artifacts from the frames by replacing bad marks, i.e. pixels 
in the masked regions, with their neighboring pixels. The clean frames as well as the clean 
video file, generated by appending the clean frames, are stored locally on the user’s device. 
Fig. 4 shows an example of a US frame, the mask generated for this specific frame, and the 
final clean frame obtained by applying the mask to the original frame. 
 

  

 

 
Fig. 4 a) A sample frame with a blue symbol on the top-left of the image, b) the mask generated 
for the frame, and c) the clean frame resulted from applying the generated mask to the original 
frame. 
 

Data Records 
The COVIDx-US benchmark dataset is available to the general public at 
https://github.com/nrc-cnrc/COVID-US. The repository also includes the generated masks and 
metadata. The current version of the data set contains 150 processed and clean ultrasound 
videos, divided into 59 videos of COVID-19 infected patients, 37 videos of non-COVID-19 
infected patients, 41 videos of patients with other lung diseases/conditions, and 13 videos of 
normal patients, along with 12,943 ultrasound images extracted from the clean video files, 
divided into 7,170 images of COVID-19, 3,159 images of non-COVID-19, 1,636 images of 
patients with other diseases/conditions, and 978 images of normal patients, using default 
parameters. As mentioned in the ultrasound image extraction section, users can extract 
frames from the US videos according to their projects’ objectives and requirements, using the 
codes provided and by setting their own parameters. This makes the COVIDx-US data set highly 
flexible for various research objectives. Meanwhile, the modular design of the scripts allows 
adding/removing data sources, if required.  
 
Running the scripts provided in COVIDx-US will extract original videos from BN, GM, TPA, and 
LITFL and will store them locally on the user’s device in the ‘/data/video/original’ folder. The 
cropped videos are stored locally in the ‘/data/video/cropped’ folder, the clean videos in the 

a) b) c) 

https://github.com/nrc-cnrc/COVID-US
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‘/data/video/clean’ folder, and the clean images in the ‘/data/image/clean’ folder. Table 2 lists 
video files included in COVIDx-US v1.2., and presents their properties and the number of 
frames extracted using the default parameters. Complementary information about the file 
properties can be found in the metadata files located in the ‘/utils’ folder in the COVIDx-US 
GitHub repository. Users may refer to the data dictionary file located in the ‘/utils’ folder for 
detailed information/description of all the metadata files. The original video files extracted 
from the four above-mentioned data sources are named such that the filename contains 
information on the source and class of the video file. This naming convention was respected 
for all the other generated data such as clean videos and images. 
 
Table 2 Ultrasound video files included in the COVIDx-US v1.2. data set. 

No Original filename File 
type 

Src Prb Class Original 
dimension 

Final 
dimension 

#Fr 

1 1_butterfly_covid Mp4 BN Con COVID-19 880 * 1080 820 * 820 64 

2 2_butterfly_covid Mp4 BN Con COVID-19 720 * 1236 624 * 624 158 

3 3_butterfly_covid Mp4 BN Con COVID-19 1928 * 1080 1055 * 1055 90 

4 4_butterfly_covid Mp4 BN Con COVID-19 880 * 1080 820 * 820 108 

5 5_butterfly_covid Mp4 BN Con COVID-19 860 * 1080 810 * 810 249 

6 6_butterfly_covid Mp4 BN Con COVID-19 720 * 1236 642 * 642 169 

7 7_butterfly_covid Mp4 BN Con COVID-19 880 * 1080 820 * 820 125 

8 8_butterfly_covid Mp4 BN Con COVID-19 880 * 1080 820 * 820 109 

9 9_butterfly_covid Mp4 BN Con COVID-19 1928 * 1080 1055 * 1055 80 

10 10_butterfly_covid Mp4 BN Con COVID-19 736 * 1080 640 * 640 147 

11 11_butterfly_covid Mp4 BN Con COVID-19 624 * 1080 544 * 544 114 

12 12_butterfly_covid Mp4 BN Con COVID-19 880 * 1080 820 * 820 111 

13 13_butterfly_covid Mp4 BN Con COVID-19 880 * 1080 820 * 820 91 

14 14_butterfly_covid Mp4 BN Con COVID-19 880 * 1080 820 * 820 103 

15 15_butterfly_covid Mp4 BN Con COVID-19 1928 * 1080 1055 * 1055 87 

16 16_butterfly_covid Mp4 BN Con COVID-19 720 * 1236 634 * 634 202 

17 17_butterfly_covid Mp4 BN Con COVID-19 1928 * 1080 1055 * 1055 76 

18 18_butterfly_covid Mp4 BN Con COVID-19 880 * 1080 820 * 820 101 

19 19_butterfly_covid Mp4 BN Con COVID-19 880 * 1080 820 * 820 81 

20 20_butterfly_normal Mp4 BN Con Normal 720 * 1236 594 * 594 142 

21 21_butterfly_normal Mp4 BN Con Normal 880 * 1080 820 * 820 99 

22 23_grepmed_pneumonia Mp4 GM Lin Non-COVID-19 816 * 540 408 * 408 252 

23 24_grepmed_covid Mp4 GM Con COVID-19 960 * 720 500 * 500 225 

24 25_grepmed_pneumonia Mp4 GM Con Non-COVID-19 1280 * 720 665 * 665 300 

25 26_grepmed_covid Mp4 GM Con COVID-19 720 * 720 382 * 382 70 

26 27_grepmed_pneumonia Mp4 GM Con Non-COVID-19 480 * 360 345 * 345 91 

27 28_grepmed_normal Mp4 GM Lin Normal 302 * 336 302 * 302 39 

28 29_grepmed_covid Mp4 GM Lin COVID-19 600 * 436 315 * 410 75 

29 30_grepmed_covid Mp4 GM Con COVID-19 800 * 652 625 * 465  69 

30 31_grepmed_covid Mp4 GM Con COVID-19 720 * 1076 608 * 608 365 

31 32_grepmed_pneumonia Mp4 GM Lin Non-COVID-19 816 * 540 300 * 410 302 

32 33_grepmed_covid Mp4 GM Lin COVID-19 960 * 720 435 * 500 116 

33 34_grepmed_pneumonia Mp4 GM Con Non-COVID-19 800 * 600 550 * 550 458 

34 35_grepmed_covid Mp4 GM Con COVID-19 720 * 720 595 * 595 361 

35 36_grepmed_normal Mp4 GM Con Normal 720 * 540 540 * 540 85 

36 37_grepmed_pneumonia Mp4 GM Con Non-COVID-19 962 * 720 653 * 653 187 

37 38_grepmed_pneumonia Mp4 GM Con Non-COVID-19 800 * 600 540 * 540 300 

38 39_grepmed_normal Mp4 GM Lin Normal 1280 * 720 600 * 685 157 

39 40_grepmed_pneumonia Mp4 GM Con Non-COVID-19 500 * 354 354 * 354 114 

40 41_grepmed_pneumonia Mp4 GM Con Non-COVID-19 600 * 406 386 * 386 151 

41 42_grepmed_covid Mp4 GM Con COVID-19 640 * 480 435 * 435 159 

42 43_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 720 * 540 540 * 540 115 

43 44_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 720 * 540 540 * 540 18 

44 45_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 720 * 540 540 * 540 21 

45 46_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 720 * 540 540 * 540 16 

46 47_litfl_pneumonia Mp4 LITFL Lin Non-COVID-19 720 * 540 465 * 540 18 
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47 48_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 720 * 540 540 * 540 14 

48 49_pocusatlas_covid Gif TPA Con COVID-19 600 * 600 282 * 282 76 

49 50_pocusatlas_covid Gif TPA Con COVID-19 600 * 600 282 * 282 83 

50 51_pocusatlas_covid Gif TPA Con COVID-19 600 * 1025 528 * 528 40 

51 52_pocusatlas_covid Gif TPA Con COVID-19 600 * 1025 528 * 528 40 

52 53_pocusatlas_covid Gif TPA Con COVID-19 598 * 430 400 * 320 41 

53 54_pocusatlas_covid Gif TPA Con COVID-19 590 * 423 420 * 415 39 

54 55_pocusatlas_covid Gif TPA Lin COVID-19 600 * 436 315 * 410 75 

55 56_pocusatlas_covid Gif TPA Con COVID-19 600 * 410 410 * 410 30 

56 57_pocusatlas_covid Gif TPA Lin COVID-19 493 * 368 265 * 300 32 

57 58_pocusatlas_covid Gif TPA Con COVID-19 600 * 450 450 * 450 30 

58 59_pocusatlas_covid Gif TPA Lin COVID-19 240 * 320 140 * 290 30 

59 60_pocusatlas_covid Gif TPA Con COVID-19 600 * 384 384 * 384 30 

60 61_pocusatlas_covid Gif TPA Con COVID-19 600 * 492 472 * 472 21 

61 62_pocusatlas_normal Gif TPA Con Normal 492 * 376 376 * 376 60 

62 63_pocusatlas_covid Gif TPA Lin COVID-19 440 * 312 318 * 310 137 

63 64_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 394 * 394 348 * 348 59 

64 65_pocusatlas_pneumonia Gif TPA Lin Non-COVID-19 600 * 410 245 * 370 60 

65 66_pocusatlas_covid Gif TPA Con COVID-19 309 * 299 299 * 299 41 

66 67_pocusatlas_covid Gif TPA Lin COVID-19 299 * 303 299 * 299 183 

67 68_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 282 * 290 282 * 282 30 

68 69_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 600 * 450 440 * 382 40 

69 70_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 324 * 249 249 * 249 30 

70 71_pocusatlas_normal Gif TPA Con Normal 600 * 450 450 * 450 59 

71 72_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 632 * 414 414 * 414 36 

72 73_pocusatlas_covid Gif TPA Con COVID-19 439 * 595 407 * 407 46 

73 74_pocusatlas_covid Gif TPA Con COVID-19 463 * 480 463 * 463 46 

74 75_pocusatlas_pneumonia Gif TPA Lin Non-COVID-19 600 *409 285 * 350 61 

75 76_pocusatlas_normal Gif TPA Con Normal 600 * 338 338 * 338 60 

76 77_pocusatlas_normal Gif TPA Con Normal 237 * 293 237 * 237 60 

77 78_pocusatlas_normal Gif TPA Lin Normal 480 * 480 260 * 460 109 

78 79_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 442 * 309 309 * 309 31 

79 80_pocusatlas_pneumonia Gif TPA Con Non-COVID-19 198 * 197 197 * 197 30 

80 81_butterfly_covid Mp4 BN Con COVID-19 760 * 1080 656 * 656 243 

81 82_butterfly_covid Mp4 BN Con COVID-19 760 * 1080 656 * 656 52 

82 83_butterfly_covid Mp4 BN Con COVID-19 632 * 1080 558 * 558 76 

83 84_butterfly_covid Mp4 BN Con COVID-19 624 * 1080 544 * 544 114 

84 85_butterfly_covid Mp4 BN Con COVID-19 736 * 1080 622 * 622 155 

85 86_butterfly_covid Mp4 BN Con COVID-19 760 * 1080 656 * 656 287 

86 87_butterfly_covid Mp4 BN Con COVID-19 736 * 1080 640 * 640 177 

87 88_butterfly_covid Mp4 BN Con COVID-19 760 * 1080 658 * 658 107 

88 89_butterfly_covid Mp4 BN Con COVID-19 736 * 1080 640 * 640 179 

89 90_butterfly_covid Mp4 BN Con COVID-19 760 * 1080 656 * 656 145 

90 91_butterfly_covid Mp4 BN Con COVID-19 736 * 1080 640 * 640 402 

91 92_butterfly_covid Mp4 BN Con COVID-19 736 * 1080 642 * 642 113 

92 93_butterfly_covid Mp4 BN Con COVID-19 736 * 1080 642 * 642 109 

93 94_butterfly_covid Mp4 BN Con COVID-19 760 * 1080 658 * 658 300 

94 95_litfl_other Mp4 LITFL Lin Other 480 * 360 360 * 310 45 

95 96_litfl_other Mp4 LITFL Lin Other 480 * 360 360 * 360 42 

96 97_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 29 

97 98_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 149 

98 99_litfl_other Mp4 LITFL Lin Other 480 * 360 335 * 472 46 

99 100_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 46 

100 101_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 28 

101 102_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 28 

102 103_litfl_other Mp4 LITFL Lin Other 480 * 360 335 * 462 46 

103 104_litfl_other Mp4 LITFL Lin Other 480 * 360 340 * 463 46 

104 105_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 43 

105 106_litfl_other Mp4 LITFL Lin Other 480 * 360 360 * 380 39 

106 107_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 43 

107 108_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 43 
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108 109_litfl_other Mp4 LITFL Lin Other 480 * 360 360 * 480 31 

109 110_litfl_other Mp4 LITFL Lin Other 480 * 360 350 * 468 29 

110 111_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 33 

111 112_litfl_other Mp4 LITFL Lin Other 480 * 360 355 * 470 37 

112 113_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 45 

113 114_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 46 

114 115_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 28 

115 116_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 28 

116 117_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 39 

117 118_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 28 

118 119_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 28 

119 120_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 28 

120 121_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 * 360 360 * 360 27 

121 122_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 * 360 360 * 360 42 

122 123_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 * 360 360 * 360 36 

123 124_litfl_pneumonia Mp4 LITFL Lin Non-COVID-19 480 * 360 355 * 420 36 

124 125_litfl_pneumonia Mp4 LITFL Lin Non-COVID-19 480 * 360 360 * 460 36 

125 126_litfl_pneumonia Mp4 LITFL Lin Non-COVID-19 480 * 360 360 * 460 31 

126 127_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 * 360 360 * 360 24 

127 128_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 * 360 360 * 360 32 

128 129_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 * 360 360 * 360 25 

129 130_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 * 360 360 * 360 41 

130 131_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 * 360 360 * 360 26 

131 132_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 * 360 360 * 360 27 

132 133_litfl_other Mp4 LITFL Lin Other 480 * 360 360 * 410 46 

133 134_litfl_other Mp4 LITFL Lin Other 480 * 360 355 * 400 46 

134 135_litfl_normal Mp4 LITFL Lin Normal 480 * 360 360 * 410 36 

135 136_litfl_other Mp4 LITFL Lin Other 480 * 360 360 * 410 36 

136 137_litfl_other Mp4 LITFL Lin Other 480 * 360 330 * 470 46 

137 138_litfl_normal Mp4 LITFL Lin Normal 480 * 360 360 * 460 46 

138 139_litfl_normal Mp4 LITFL Lin Normal 480 * 384 384 * 430 26 

139 140_litfl_other Mp4 LITFL Lin Other 480 * 384 365 * 428 27 

140 141_litfl_other Mp4 LITFL Con Other 480 * 384 384 * 384 46 

141 142_litfl_other Mp4 LITFL Lin Other 480 * 360 340 * 430 34 

142 143_litfl_other Mp4 LITFL Lin Other 480 * 360 360 * 405 38 

143 144_litfl_other Mp4 LITFL Lin Other 480 * 360 360 * 405 46 

144 145_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 45 

145 146_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 45 

146 147_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 36 

147 148_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 26 

148 149_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 18 

149 150_litfl_other Mp4 LITFL Con Other 480 * 360 360 * 360 28 

150 151_litfl_pneumonia Mp4 LITFL Con Non-COVID-19 480 * 360 360 * 360 42 

       Total 12943 

Note: Src: Data source, Prb: probe type, #Fr: Number of frames. 
 

Technical Validation 
The COVIDx-US is curated from four data sources and contains data of different types and 
characteristics. The scripts provided will perform the processes necessary to clean the 
collected POCUS videos, extract frames, and store them locally on the user’s device. But, they 
do not validate the analyses performed and published by the research community using 
COVIDx-US data. As COVIDx-US will be continuously growing, feedbacks provided by 
researchers will provide information that may be used in the next versions of COVIDx-US to 
perform additional processes/reviews. Such feedbacks may be addressed to 
ashkan.ebadi@nrc-cnrc.gc.ca.  
 
In order to validate the quality of images in the COVIDx-US dataset and ensure the existence 
of markers in the processed ultrasound images, our contributing clinician (S.K.) reviewed a 

mailto:ashkan.ebadi@nrc-cnrc.gc.ca
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randomly selected set of images and reported his findings and observations. Our contributing 
clinician is a practicing Internal Medicine and ICU (Intensive Care specialist), certified in both 
specialties by the Royal College of Physicians of Canada. Fig. 5 shows three select images of 
COVID-19 positive cases, as examples, that were reviewed. The summary of our expert 
clinician’s report is as follows.  
 

  

 

 

 

 

 
Fig. 5 Sample processed ultrasound images of COVID-19 positive cases, reviewed and reported 
on by our contributing clinician.  
 
Case 1 (Fig. 5-a). Our contributing clinician observed multiple pleural irregularities, including 
pleural thickening and the presence of sub-pleural consolidations which have been previously 
described as markers of COVID-19 disease severity34. These findings, together with the 
observed C-line profile, are indicative of a moderate to severe pulmonary disease. 
 
Case 2 (Fig. 5-b). This is an image of lung pleura in short depth. Our clinical expert observed 
abnormalities and irregularities in the pleura as it is thickened and “shredded” with 
hypoechoic signals suggesting consolidations and air bronchograms. Although a deeper view 
to assess for B-lines would be more optimal, these findings together suggest moderate 
airspace disease, most commonly on the basis pneumonia.  
 
Case 3 (Fig. 5-c). This appears to be an image of lung pleura at depth of ~5±2cm. According to 
our contributing clinician, the pleura and underlying lung are abnormal. There is the presence 
of a “waterfall sign”, i.e., subpleural consolidation with a B-line. The pleura is thickened and 
irregular. Despite the observed abnormalities, more imaging data is needed to inform on 
differential diagnosis. In addition, it is not possible to comment on lung sliding as this is a static 
image. 
 
Our expert clinician findings and observations confirmed the existence of identifiers and 
indicators of disease in the COVIDx-US dataset. AI-powered analytics solutions can exploit such 
indicators and patterns to detect COVID-19. Based on our contributing clinician’s evolving 
experience, LUS has significant utility in the management of COVID-19 patients with 
respiratory symptoms. As a safe, rapid, reproducible, low-cost, and highly informative tool for 
assessing the severity of lung involvement, early studies suggest that it can be used to inform 
triage and treatment decisions35. To this end, several published LUS-based protocols are now 
undergoing validation in prospective clinical trials36,37. Furthermore, several groups are now 
evaluating the potential utility of LUS in other settings, including the Intensive Care Unit (ICU) 
where it could be used to track disease progression, and to evaluate patient candidacy and 
clinical response to various interventions including ventilator weaning, prone positioning and 
lung recruitment maneuvers in patients with acute respiratory distress syndrome (ARDS)38. 
 

a) b) c) 
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Known limitations of this modality include the observation that LUS findings are not 
necessarily specific to COVID-19. Moreover, they have yet to be proven as reliable markers of 
clinical outcome in appropriately sized clinical studies. The deployment of LUS in COVID-19 
also requires strict infection control measures. Lastly, LUS requires significant operator 
training and experience before it can be used in the management of potentially unstable 
patients, or in those with suspected infectious syndromes.’ AI-driven solutions can aid 
clinicians with the screening process of COVID-19 patients, reducing the pressure on 
healthcare systems and healthcare providers.  
 

Usage Notes 
We are constantly searching for more data, therefore, the COVIDx-US will be growing over 
time as more data sources become available. We recommend that users check the COVIDx-US 
repository at https://github.com/nrc-cnrc/COVID-US, for the latest version of data and scripts. 
The data collection and processing pipeline is coded in Python (version 3.6.12). Users are 
provided with a Python notebook including all the steps required to collect, process, and 
integrate data, as described in the manuscript. The provided scripts are well-documented 
allowing users to modify parameters for frame extraction from ultrasound videos, based on 
their research objectives and requirements, if required.  
 

Code Availability 
All the codes and materials, e.g. metadata and masks, necessary to reproduce the COVIDx-US 
data set, as described and explained in this manuscript, are available to the general public at 
https://github.com/nrc-cnrc/COVID-US, accessible with no restrictions. The scripts were in 
Python programming language (version 3.6.12), using pandas 1.1.3, selenium 3.141.0, and 
requests 2.24.0 libraries.  
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