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Abstract

Policymakers commonly employ non-pharmaceutical interventions to manage the scale
and severity of pandemics. Of non-pharmaceutical interventions, social distancing policies
-- designed to reduce person-to-person pathogenic spread -- have risen to recent
prominence. In particular, stay-at-home policies of the sort widely implemented around the
globe in response to the COVID-19 pandemic have proven to be markedly effective at
slowing pandemic growth. However, such blunt policy instruments, while effective,
produce numerous unintended consequences, including potentially dramatic reductions in
economic productivity. Here we develop methods to investigate the potential to
simultaneously contain pandemic spread while also minimizing economic disruptions. We
do so by incorporating both occupational and network information contained within an
urban environment, information that is commonly excluded from typical pandemic control
policy design. The results of our method suggest that large gains in both economic
productivity and pandemic control might be had by the incorporation and consideration of
simple-to-measure characteristics of the occupational contact network. However we find
evidence that more sophisticated, and more privacy invasive, measures of this network do
not drastically increase performance.

Introduction

Containment of infectious disease requires implementation of strategies to reduce the
spread of the disease. Without widespread availability of a robust vaccine, as is likely to
be the case for the COVID-19 epidemic in the immediate future, the leading
Non-Pharmaceutical Intervention (NPI) is social distancing including closure of
businesses': a reduction of the number of people in physical proximity.

Since the European Industrial Revolution workers have increasingly migrated to towns
and cities to convene in centralised workplaces.? A large literature of work relates growth,
creativity and other metrics of economic performance directly to the increasing returns
and economies of scale made possible by the density and proximity of workers in regions,
cities and workplaces.>***Therefore, social distancing is unavoidably disruptive to these
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workers, workplaces and economies. The highly infectious nature of COVID-19 along with
the disease’s long incubation period®’ have shown the cost of such disruption even more
starkly than previous epidemics. As a result, working hour losses globally could be as
high as 12% in the third quarter of 2020° and a 6:6% drop in global GDP in 2020.° For this
among other reasons, scholars have noted that the COVID-19 epidemic has the potential
to affect the future of work substantially over the long term."*"

More precisely, social distancing policies affect workplaces directly and workers indirectly.
While some work environments are conducive to social distancing (e.g. construction
sites), others are inherently not (e.g. gyms & nightclubs).™ As a result, social distancing
requirements have produced heterogeneous effects on workers that are primarily
determined by workers’ ability to socially distance in their workplace and/or to work from
home (WFH)."™

Thus policymakers have the difficult task of moving beyond coarse economic
interventions e.g. furloughing all workers, to more targeted interventions that balance the
human toll of infection with the economic cost of interventions. Stated precisely, workers
should be partitioned into groups who may respectively (i) remain working in their
workplaces (ii) work effectively from home or (iii) be furloughed, such that the spread of
the epidemic is minimised while also minimising economic disruption associated with the
intervention.

This optimization task is currently impossible on a practical level for many reasons. These
include the lack of sufficiently detailed information on human mobility and social
interactions, the complex network dynamics of disease spread,' the interconnected
nature of modern economies,''®"” and divergent opinions on the proper balance between
human and economic loss."®

Epidemics typically pose differing levels of risk to individuals based on demographic
categories, such as age groups. This may be due to characteristics of the specific disease
or due to differing physical contact patterns encoded in contact matrices.' This
heterogeneity in the spread between members of a population also contributes to the
overall complexity of accurately modeling the disease spread.

It is notoriously difficult to measure, at scale, physical proximity as it relates to airborne or
droplet mediated transmission of infectious disease.?*?" Deriving a network of contacts is
even more challenging compared to a simple count of the number of contacts. This is due
to privacy concerns and limitations of measurement accuracy as individuals need to be
uniquely identified throughout the measurement.?? Typically contact interactions are
measured through self-reported surveys and networks measured using sensors.?*242526:27
Previous work has constructed contact matrices between subpopulations stratified by age
and other demographics.?®*?° Full contact networks have been measured in large scale
field studies in schools,***' dormitories,*? hospitals,*® and conferences as well as being
approximated from the use of location-based services.*
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Yet, demographics represent only one set of individual characteristics that likely play a
role in modulating differential epidemic spread. An individual’s work -- their occupation --
encapsulates many determinants of their epidemic risk. Commuting patterns, the extent of
contact with others at their work, and the ease with which non-pharmaceutical
interventions such as wearing of personal protective equipment and remote working can
be adopted are all occupation-specific factors that shape both individual risk and the
propensity for individuals in any given occupation to shape epidemic spread on human
networks more generally.

While studies have measured contact networks in workplaces,* to date we are not aware
of any in-depth study on contact networks stratified by occupation, and as such the true
structure of such a network is unknown.

In this work, we examine the role of occupation in an epidemic spread in an urban
environment. We also evaluate the efficacy of occupation-based disease control
measures within a simulation of epidemic dynamics using the
Susceptible-Exposed-Infected-Recovered (SEIR) framework. More specifically, we
investigate the effects of several network-based interventions and compare them to the
outcomes produced by more coarse heuristics. A focus on occupational interventions,
coupled with detailed data on the distribution of the workforce across occupations, wage
and workplace proximity allows us to simulate the economic impact of particular
containment strategies alongside each intervention’s epidemiological impact.

Our methods enable us to approximate the degree of physical contact between
individuals within and across occupations without explicit contact matrices (such matrices
to our knowledge do not exist across the full empirical network due to the cost and
methodological complexity of measuring such contacts). Our approach is general and
applicable to any infectious disease, however, we parameterise our simulations with
estimations of the epidemiological characteristics of COVID-19 for illustrative purposes.

Our work complements a rapidly growing body of work analysing the effects of social
distancing and furloughing policies on human mobility and behaviour in the COVID-19
epidemic®’:38:394041:4243.44 \vith several focusing on the economic aspects in particular.*>°

Using these methods, we make three marked contributions to the science of epidemic
control. First, we contribute a technique for constructing occupation-based epidemic
simulations using publicly available data. Second, we compare several occupation-based
containment policies based on their epidemiological and economic costs. Third, having
identified contact degree as an effective heuristic for containment, we extend to
investigate the fundamental limits of the controllability of epidemics in networks.
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Data & Methods

We present a general method for simulating occupation-based epidemic control policy
interventions. However, we consider data from New York City as a paradigmatic
example.*” We make use of the Occupational Information Network (O*NET) which is a
public repository of occupational data in the US and statistical economic information

collected by the Bureau of Labour Statistics (BLS).

O*NET: occupations and work characteristics

We make use of the O*NET data on “work characteristics” to derive a composite measure
of proximity from five distinct work characteristics that are likely to be correlated with the
degree of in-person contact a worker is required to have. We inspect the occupations that
are assigned high and low degree to manually validate this method (see Sl). The
projection on the first principal component (PC) is listed below for the top/bottom five jobs.

Oral and Maxilofacial Surgeons I
Prosthodontists I
Opthamologists I

Emergency Medical Technicians IS

Dentists NG

I Cutting Machine Setters
I \Welding Machine Setters
I Dredge Operators
I Dy eing Machine Operators
N Trimmers

—50 0 50 100
PC 1

Figure 1: The five occupations with largest and smallest projection onto the first
principal component of proximity measures. The PCA operates on five independent
measures of proximity required by each job taken from the O*NET database:
Exposed to disease or infections, Performing for or working directly with the
public, Communicating with persons outside of the organisation, Deal with external
customers, Physical proximity. The first Principal Component can explain 53% of
the total variance. See Sl for more details.
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Contact data: proportions of home/work/transit

In agreement with previous empirical studies of contact networks,* we define three
categories of contacts among the adult working population: home, work and transport.
The mean total contact degree has been found to be 75 in a recent study of proximity via
Bluetooth® in New York City. Fixing the mean home degree at two based on the mean
household size,*® and considering an equal work and transportation mean degree, we set
the ratio of the mean contact degree to be 2:36-5:36-5 for home:work:transport,
respectively (see Sl). We fit the empirical data found in* to derive a log-normal
distribution for each category rescaling the mean to fit the above ratios. For each worker
node, we sample each of the three distributions to determine total degree. The number of
work contacts for each worker depends on her occupation, while the number of home and
transportation links are independent of occupation. Consider a worker in a high proximity
occupation such as a Retail Salesperson, links are assigned as follows:

1. The proximity score of the occupation is taken as the projection of the job on the
first principal component derived from the PCA of the proximity variables. For the
case of a retail Salesperson this is 0-55 in the range [0-1]

2. This specific PCA value is mapped to a log-normal distribution (mean of 36-5) of
work degree by mapping the percentiles of the distributions yielding a work degree
of 49.

3. Atransport degree is assigned to each worker node individually by independently
sampling a log-normal distribution with a mean of 36-5.

4. A home degree is assigned to the worker by independently sampling a log-normal
distribution with a mean of 2, yielding a value of 2.

Links from each category are functionally equivalent in terms of disease transmission in
our simulations. However each layer is independent, and different policy interventions
retain or remove links from each layer as described later.

Work from Home data

Some workers can work from home without disruption to productivity and thus may be
effectively removed from the occupational contact network without loss of economic
contribution. We consider a binary index for O*NET jobs derived by Dingel and Neiman."

Essentialness data

Since one motivation for NPI selectively furloughs workers according to perceptions of the
essentialness of their contributions, we assign a measure of ‘essentialness’ using the data
of del Rio-Chanona et al (2020).4>*°
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Wages data

Another NPI we consider here to balance between the loss of economic productivity and
the epidemic expansion is the furlough of workers prioritising those on a low income. We
use wage data by occupation for New York, based on the Occupational Employment
Statistics survey by US Bureau Labor Statistics.®' For most of the occupations, the
dataset includes the average annual wages while for hourly-paid occupations like actors
the dataset includes the mean hourly wages. For both cases, we estimated the average
daily wage per occupation.

Construction of contact network

We use a degree preserving configuration model to construct the contact network as
follows.

1. We define N=200,000 representative workers each with a specified O*NET
occupation as nodes in our contact network. The proportion of workers in each
occupation matches workforce data for New York City. The total number of
workers is the minimum number that allows for at least one worker of each
occupation.

2. Each worker is assigned a contact degree for home, work and transport. The work
contact degree is determined by the proximity score for the worker occupation,
home and transport contact degrees are drawn from fixed distributions
independent of occupation (see Sl).

3. The nodes are connected to form the contact network using the configuration
model*? (see Figure 2).
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Figure 2: Assignment of work contact links to nodes representing workers and
construction of contact network using configuration model procedure. Clockwise
from top left (a) worker nodes are created according to the empirical distribution in
the workforce (b) work contacts are assigned according to the occupation wise
proximity index (c) half-links are attached to nodes according to work contact
degree (d) pairs of half-links are joined at random to form a full network.

Each node has as many half links as the number of home, work and transportation
contacts of the worker represented by the node. Pairs of half links for each category of
contacts are then connected randomly until all half-links are paired up generating the final
contact network.

Epidemic simulation

Our simulation of worker based epidemic spread and containment proceeds as follows.

1. We construct an SEIR model®® in which each worker may be in one of the four
epidemic compartments. At the initial time step all nodes are considered as
susceptible. An infection is seeded with one randomly chosen infected node.

2. Once the epidemic has reached 200 nodes (i.e. 0-1% of the synthetic population),
we implement one of the intervention strategies described below.

3. For each epidemic simulation, we calculate the severity of the epidemic and the
economic cost of furloughing workers and workers who are unproductive due to
illness.
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Epidemic parameters

We emphasise that our methodology is designed for infectious disease epidemics in
general. In this case we parameterise our SEIR simulations using the epidemic
parameters within the reported ranges for the COVID-19 virus.

We make use of a standard SEIR model in which each worker is assigned to an epidemic
state. Specifically, during the epidemic process, each node is in one of four states:
susceptible (S), exposed (E), infected (1), and recovered (R). A susceptible node will
become exposed for a certain period after being infected, and will transit into the infected
state with a certain probability. At each time step, an infected node can recover with a
fixed recovery rate. Both exposed and infected nodes can transmit the disease to a
susceptible neighbor in the network with the same infection rate.

With a fixed R o e derive an estimated transmission rate per contact

R 1
1 _ (1 _ ( 0 )((14+5A1) ))

<d>

with the mean-field approximation assuming that each node has the same connectedness
equal to the mean degree and recovers in <t_recovery> + <t_incubation> days if it is
infected.

<R > 2.55455,56
0

<t_recovery> 14 days®

<t_incubation> 5-1 days?85960

Each epidemic simulation is seeded with one randomly infected node. Once the epidemic
grows to more than 200 infected nodes, we implement a policy intervention into the
network. If the epidemic dies out before reaching 200 nodes then the simulation is
discarded, as we are here interested in modelling only those critical scenarios where
human or policy interventions may be important factors in affecting epidemic outcomes.

Intervention Strategies

We seek to find the dually optimal strategy -- both in infection control and economic terms
-- that a policy maker might use to contain the epidemic. This requires leveraging
occupation-specific information to selectively remove worker nodes from the contact
network, i.e. furloughing workers. This must be done in such a way that both the severity
of the epidemic, as measured by the peak of the number of infected workers, and the
economic cost of furloughing workers is jointly minimised.
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Strategy Number

Name

Description

Note

-1

Baseline

No workers are furloughed.
Epidemic proceeds uninhibited.

0 Work From Home All workers who can work from 40% of workers
home have work and transport are able to WFH
links cut.

1 Random In addition to those who can work
from home (strategy 0), send
home n% of remaining workers
at random.

2 Most connected Additionally to #0, send home n%
of remaining workers ordered by
contact degree.

3 Least Essential Additionally to #0, send home n%
of remaining workers ordered by
‘essentialness’.

4 Cheapest Additionally to #0, send home n%
of remaining workers ordered by
increasing wage.

5 Centrality Additionally to #0, send home n% | We consider
of remaining workers ordered by | various centrality
network centrality. metrics (see Sl)

and report the
best performing
HDA

6 Control Additionally to #0, send home n% | We consider the

of nodes ordered by degree,
prioritising control nodes.

Switchboard
model .®"%2 We
find 47-9% of
nodes are
identified as
control nodes

Economic productivity

Approximation of the economic impact of a worker unable to work either due to infection
or furlough is a challenging measurement task.®® We investigated two metrics: (i) the
average wage of the furloughed/infected worker and (ii) the contribution to
macro-economic productivity derived from the occupational share of the larger
industry-level productivity. Due to the coarseness of the best available data (and the
subsequent risk of substantial measurement error) for (ii) (see Sl) we proceed with
measure (i).

The total cost of lost productivity of infected workers is calculated as the sum of the daily
wages over the period that each worker is infected (the daily wage of each worker is
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based on his/her occupation). The total cost of workers who are furloughed is calculated
as the sum of their daily wages over the furloughed period (the furloughed period is the
difference between the length of the epidemic period and the length of the intervention
period).

In the former case (wage-based calculation), the wage of a worker is considered
proportional to her economic contribution and her loss of income as a loss in disposable
income that can be spent to stimulate supply. We acknowledge that wage is an imperfect
measure of the economic contribution of a job. However we conclude from the best
quality data on industry level economic contributions that estimation is not possible (see
Sl). Results in the main paper correspond to (i).

Results

Figure 3 presents a comparison between the ‘no intervention’ and ‘furloughing 10%
based on degree’ strategies, respectively. Under an uninhibited outbreak (strategy -1) the
peak of infected nodes occurs at a mean of 129 days and with a mean 19% of nodes
infected which provides reasonable correspondence to observed outbreak dynamics. This
changes to a mean of 164 days and 6% infected respectively under the strategy in which
workers in occupations that can work from home have transport and work ties cut.

10
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Figure 3: Epidemic dynamics under the ‘no intervention’ strategy, left) and the
‘removing workers based on degree with n% = 10%’ strategy, right). Top row (a)
shows individual workers over the initial 70 time-steps of the simulations coloured
by susceptible (purple) or recovered (green). Infected nodes are reduced by 19% in
the second strategy. Middle row (b) shows workers aggregated into occupations
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with the size proportional to the number of workers and coloured by proportion of
susceptible and recovered. Edge between two nodes indicates contacts between
workers from the two occupations weighted by the number of such contacts (for
visualisation purposes we only display the top three by weight edges for each
node). Bottom row (c) shows the mean of 1000 epidemic curves and 95%
confidence intervals.

Figure 4 compares each strategy as a function of the stringency of the strategy
(percentage of workers furloughed). In particular, the economic cost of furloughing
workers calculated from wage (left) the economic cost of infected workers (middle) and
the size of the peak of infected workers (right). We consider these distinct measures of
epidemic severity as independent measures that policy makers would like to jointly
minimise. The strategies are ordered in terms of total cost of furloughing across the range
of stringency; most to least expensive, top to bottom. Generally, the measured economic
loss due to infection is an order of magnitude less than the loss due to furloughing, since
the infection period is ~14 days while the furlough period is the duration of the entire
epidemic process (from the day that the intervention is triggered until there are no infected
or exposed individuals); it is cheaper to allow a worker to be infected than to pay her
wages for the duration of the epidemic.

We acknowledge that epidemic control is a careful balance of economic and human
losses that is determined by some unknown and subjective multiplier of the pure cost of
wages of infected workers due to secondary effects of infection e.g. lasting after effects of
the disease, deaths caused by the disease, loss of quality years of life, psychological
effects and so on. Likewise, furlough has negative secondary effects on individual
workers.®*% For this reason we do not attempt to directly compare losses on these three
distinct dimensions or to prescribe the extent to which workers should be furloughed.
Instead we seek to compare the general behaviour of various interventions in terms of the
complex dynamics of the contact network, labour market and epidemic dynamics. We
consider the performance of each strategy across the entire range of severity of the
strategy implementation i.e. the percentage of workers who are furloughed.

The loss due to furloughing shows a peak, at around 50% of removed nodes, for the
worst performing strategies (left column rows a-c). This is related to the duration of the
epidemic process (the size of the plot markers) as workers are furloughed until the
epidemic process terminates. When an intermediate number of workers are removed, the
epidemic is still able to spread but takes longer to fully terminate. Note that this is not
attributable to herd immunity as the proportion of recovered nodes remains well below the
70-85% range. The better performing strategies (rows d-f) remove nodes more effectively,
causing the epidemic to terminate sooner. In contrast to the other strategies, removing
more than ~30% of nodes based on controllability, centrality and degree strategies (d-f)
does not cause the epidemic period to increase significantly. This leads to a roughly linear
increase in furlough costs as more workers are furloughed for the comparable duration.

In contrast, the loss due to infected workers (middle column) decreases monotonically;
the total number of infected workers decreases as network edges are cut. Likewise the

12
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size of the peak of the infection (right column), representing the strain on health facilities,
decreases monotonically as the ‘curve is flattened’.

It should be noted that the varying behaviour of the strategies is generally not trivially
attributable to the breaking apart of the underlying worker network, particularly as
furloughing cuts only work and transport links preserving home contacts analogously to a
home quarantine (see Sl). For each strategy, the size of the Largest Connected
Component decreases at roughly the same rate and contains no less than 80% of nodes
across all strategies and the range of severity. Our results are broadly unchanged when
home links are also severed i.e. a centralised quarantine (see Sl).

We find that removing workers according to essentialness underperforms even random
node removal. This is consistent with only a moderate correlation (rho = 0-19, see Sl)
between our proximity score and essentialness score; non-essential workers do not
necessarily have a high contact degree and so their removal still allows efficient epidemic
spread. Likewise removing based on wage alone performs poorly, consistent with a weak
correlation between wage and proximity (rho = 0-05, see Sl). For example, construction or
mechanical occupations have low proximity to others. As a result, the epidemic can
spread quite effectively until a large proportion of workers are furloughed (n% ~ 100%).

Removing workers based on contact degree shows a drastic increase in performance
(38-6% of economic cost of the worst performing strategy; removing nodes according to
essentialness) when considering the cost of infected workers. Notably, the best
performing centrality metric is almost indistinguishable from node degree (38:6% vs
38:6%). Despite centrality metrics incorporating full knowledge of the network structure,
they were unable to halt the spread of the epidemic markedly more effectively than simple
knowledge of a workers local environment. Likewise for the controllability based strategy
(38-6% vs 38-0%). Figure 5 evaluates the overall performance of each strategy across
the range of stringency (n%). We repeat our analysis using an alternate random network
instantiation created using the same methodology as described above. We find our
results are robust to these alternative specifications (see Sl).

Control nodes of a network are defined as the nodes which, if their state can be
manipulated, allows for the state of the entire network to be driven to a desired
configuration. Under the model of switchboard controllability (considered the most
appropriate model for epidemics), we find that 47-9% of nodes in our model are identified
as control nodes. Such a large proportion implies that the contact degree has a low
capacity to drive controllability, which is consistent with previous studies of social
networks® in comparison to more explicitly hierarchical networks such as those belonging
to organisations or neuronal structures. Consequently, we find that a controllability based
strategy offers no significant improvements in performance over a degree based strategy.
This is despite incorporating full knowledge of the network structure.

These empirical results illustrate the difficulty of fully controlling an epidemic ex-ante,

even with the advantage of full information of the contact network and justify the use of
manual*”**% and digital contact tracing®”°® for containment as a local and dynamic
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strategy (as opposed to static and global one). Correspondingly, we find that removing
control nodes preferentially is not a strategy that performs well, which suggests that the
dynamics of epidemics might not amenable to network controllability.®®

Given that our contact network is not empirical, it is possible that our results arise as an
artifact of how the network was constructed from occupational characteristics. We
emphasise that to our knowledge there does not exist a publicly available contact network

larger than ~10° nodes, and none of any size that considers occupational subpopulations,
that could be employed directly or bootstrapped against. Nevertheless we compare our
generated network to a number of smaller empirical networks from different contexts
including workplaces, schools and conferences (see Sl). We find congruence between
most metrics excluding those that were not explicitly coded in our configuration model
such as transitivity and assortativity. This includes the high density of control nodes, in the
range 40-50%.

14


https://paperpile.com/c/3eMcQT/mZJ7

Proportion Removed

(a) Remove n% Ordered by
Essentialness (1.000)

Proportion Removed

i ® 200 =001 ® 200 = ® 200
© .
= @ No Intervention No Intervention
S 6000 ® 400 $o4007 @ ® 00 T 201 o @® 400
o No Intervention e o X
= 800 @ 800 = 800
S 7 4000 Furlough WFH . £ — 300+ . L N 15 .
L o =g
°od * 9 5004 <% 10
bl L ¥ Furlough WFH o Furlough WFH
522000 °2 100 e ¥ s
k=] 0 1 )
@ ] a
£ ole i *%%0ege... o %000@e s
0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00
(b) Remove n% Ordered
by Wage
(low to high) (0.832) 25
k<] 5004
@ )
5\.. 6000 E _ 400 N.o Intervention = 20 N.o Intervention
3Z 8= 23
2% No Intervention L=grd O3 15
5 4000 Furlough Wi = ~ 3001 u“:_" @
o T 2% =Y 10
Sy [ 200+ Furlough WFH IR~ Furlough WFH
2§ 2000 23S .00l @ R
k=] %) i 0]
wn u [
8 ol ® S o ‘.....Q—Q—Q—Q 0 ......O—O—H
000 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00
(c) Remove n% Nodes
at Random
(0.713) 25
9 500
@ )
§‘,., 6000 E _ 400 N;’ Intarvantion 3 20 N: Intervention
2 E No Intervention ug % E 9\: 15
2 E 4000 Furlough WFH E E 3001 =
8 =g
88 g £ 2009 Fyriough weH 5 10 Furlough WFH
g é 2000 3 ;o 100 [ ] x § .
o ") ] 0]
w wn [
2 ol ® S o .‘..Qo—o—o—o—a 0 ......0-0—0—0—0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00
(d) Remove n% Ordered
by Degree
(0.386)
25
o 5004
g -8 No Intervention No Intervention
S__ 6000 & _ 00l S - 201 o
3= 2= B
To_ i No Intervention = o 15
> ‘E 40004 Furlough WrH = E 300 -}‘:_’ "
o® < g ‘ =% 10
‘;" < g < 200 R‘\ough WFH [s} %‘ Furlough WFH
S 2000 S x ®
b W 1 = 1001 5=
S 0 9]
v u [
8 0o ® S o .!0—0—0—0—0—0—0—0 0 ..-.—Q—H—O—H—.
0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00
(e) Remove n% Ordered
by Degree Control
Nodes First (0.386) 25
2 5004
I} )
g’\ 6000 E _ | NoIntervention e 20 N: Intervention
B S 4001 e @~
2% No Intervention ug by J;u) & 15
2 'é’ 4000 Furlough WFH = E’ 300+ S w
a =g %< 10
2 = w ¥ 200 Fyrlough WFH o Furlough WFH
582000 W S8 100] ¢ I
k=] [0 1 o)
") 0 [
3 0] @ S 0+ ...—Q—Q—H—O—O—Q 0 ..-.-Q—H—O—Q—H
0.00 0.25 050 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00
(f) Remove n% Ordered
by
HDA Centrality (0.380) 25
° 500
g 8 No Intervention No Intervention
S _. 6000 £ _a00l s T 20{ o
° E No Intervention g 3 s} E\i
5~ 4000 Furlough WrH £~ 300 o7 15
o i
2% 000 EF- 2007 ralougn e E;g Fiough WeH
. W = 1001 $ >
kel [ )
@ ] o
0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 0.75 1.00

Proportion Removed

Figure 4: Comparison of occupation furloughing strategies ordered by economic
cost of furloughing (the cost is indicated in brackets next to the strategy
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description relative to the worst performing strategy). The total wage loss due to
furloughing (left column), wage lost due to infection (middle column) and
proportion of workers infected at peak of epidemic curve (right column) as a
function of the proportion of workers removed. The fixed points for null strategies
of no intervention (red point) and furloughing only workers who can work from
home (grey point) are marked for comparison. Markers are sized by the duration of
the epidemic period in days, defined as the time for the number of infected and
exposed workers to drop to zero. Each point is an average over 1000 epidemic
simulations.

Least Essential Cheapest Cheapest
Cheapest Least Essential Least Essential
Random Random Random

Most Connected Control Control
Control Most Connected Most Connected

Central Central Central

0 5 10 15 20 25 0.0 01 02 03 0

2 4 6 8 10
AUC Loss Due to Furlough ($B) AUC Loss Due to Infection ($B) AUC Peak Infection (%)

Figure 5: The aggregated performance of each strategy across the full range of
severity of implementation for each measure; cost of furloughing workers (left),
cost of infected workers (middle) and peak of infection (right). Error bars
representing 95% confidence intervals are no greater than 0-7% of the mean value
and so are omitted here for clarity.

Discussion

In this paper we have described a method to construct epidemic contact matrices
between detailed occupational sub-populations using publicly available data. We use
these contact matrices as input to SEIR simulations in an urban environment and
compare various epidemic containment strategies in terms of their economic and human
cost. We emphasise that our goal is not to predict the spread of COVID-19, but rather to
compare various occupation based containment strategies more generally using the
COVID-19 epidemic as a motivation. We find that the heuristic of worker node removal
according to network degree (the number of physical contacts that a worker has) performs
approximately the same as more complex metrics based on complete network structure
or other occupational characteristics. More broadly we note that epidemic contact
networks exhibit low levels of controllability.

Our findings demonstrate that the structure of the contact network heavily influences
disease dynamics in non-trivial ways. For example, furloughing a small proportion of
workers can lead to pruning of the network in such a way that the epidemic persists for a
long time, albeit at low levels, leading to a long and costly furlough. Intuitive strategies
such as furloughing workers based on the essentialness of their job, by wage or at
random all perform poorly on this basis. In contrast, network-based metrics such as
degree and centrality are able to reduce the peak of the infection (flattening the curve)
and also reduce the epidemic period.
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Our methods exist in a relative paucity of sufficiently rich data to simulate real-world
dynamics with high fidelity. Empirical contact networks, whether self-reported or passively
sensed, are only freely available on a small scale. Networks with any demographic
information are rarer still, while contact networks with occupational information are not to
our knowledge available at all. In a workplace the correspondence between physical
contact and social ties is likely to be weaker as some jobs, particularly service jobs,
require a great deal of face to face contact. Consequently social ties are likely not to be a
trivial proxy for physical contact ties, as observed previously.* Thus social networks are
not a viable proxy for worker contact networks.

While we have successfully attributed much of our results to node degree, we expect that
our results would differ if our method were repeated in a real contact network reflecting
transitivity and hierarchical organisational structure. While the role of empirical structure in
network spreading is non-trivial, it is likely that the global spread would be slower® than
observed in our degree preserving configuration model.

A more precise critique is that our configuration model connects edge stubs between
nodes at random, once a degree has been assigned based on occupation. It might be
expected that the edge structure in an empirical contact network due to organisational
structure or other heterogeneities might lead to very different behaviour than those we
have observed. Shuffling the edges of our contact networks i.e. an Erdos-Renyi network
with equivalent average edge density, we confirm that considerable structure present in
our degree preserving configuration model is destroyed. This can be seen by comparing
the distribution of various centrality measures (see Sl). Likewise our benchmark empirical
contact networks exhibit comparable behaviour. The finding that the function of a network
is to large extent determined by the node degree sequence, and less by the precise
connections is consistent with findings on the controllability of a large corpus of networks.

An additional caveat relates to the inherent difficulty of assessing the full economic effect
of workers being unable to work. While such epidemic containment policies are generally
considered on the basis of cities or states, industries are dynamically linked through
national economies and global supply chains. The full economic and social cost of
epidemics and associated non-pharmaceutical interventions is so complex to model as to
be out of scope of this single paper.

Subject to the limitations noted above, our findings may have important implications for
the practical implementation of epidemic control. Public health services have a limited
number of tools available for epidemic containment, primarily furloughing of workers,
contact tracing of identified infected individuals and pre-emptive surveillance of citizens.
The precise implementations of these strategies require careful trade-offs between
economic, social and privacy costs.

Our findings make the case for better data on contact patterns broken down by
occupation. However we demonstrate that a policy of furloughing workers based on total
number of contacts is far more effective at minimising epidemic spread and the cost of
furloughing workers as compared to other heuristics such as furloughing based upon
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essentialness or furloughing a proportion of the workforce at random. However we find
that there are diminishing returns to increased knowledge of the contact network beyond
degree. Heuristics such as centrality or control nodes are not able to significantly
outperform a simple count of contact degree. This is despite a huge increase in both the
amount of invasive personal data required to reconstruct a full contact network and the
complexity of its collection. Practically speaking, worker degree could be straightforwardly
estimated using Bluetooth proximity to other phones, or GPS co-location. Each contact
need not be identified beyond a unique untraceable ID to uniquely identify repeated
contacts and no further information need be shared between individual devices or with a
centralised authority.

The COVID-19 epidemic has caused many profound societal changes that are unlikely to
be reversed even once the disease abates due to mass vaccination. This includes
scrutinisation of the nature of work in light of vast changes in demand across sectors,
variable infection across occupations, the large scale adoption of remote working and
challenging deeply ingrained understandings of workplaces.

The ability to successfully automate the skills of workers, often known as skills based
technological change, depends not only on overcoming the underlying physical or
engineering challenges. Moreover the automating technology must be economical and
must be socially and politically acceptable in order to successfully replace human labour.
The changes put in motion by the COVID-19 pandemic are likely to drastically alter these
considerations, in some cases leading to ‘automation forcing’."

Presently ‘goods producing’ jobs that can be performed in isolation e.g. construction
workers or truck drivers are considered to be at high risk of automation. In contrast
‘service producing’ jobs with a high degree of personal contact e.g. fitness instructors or
nannies, are at relatively lower risk. Consequently an increase in employment share has
been observed in the latter category.”

We have demonstrated that the nature and number of connections between workers; the
structure of the contact network, has vastly more potential to effectively stop epidemic
spread than a single attribute of each occupation such as wage or essentialness. Looking
to the future, we might reasonably expect that research and development of automation
technologies will refocus to target the skills present in occupations with a high degree of
contact with others. This could in turn lead to a change in these prevailing dynamics
within low wage jobs.
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Supplementary Information

Occupational Proximity

We consider five relevant dimensions of proximity to others and infection risk, by
occupation taken from the O*NET database.

Exposed to disease or infections’’

Performing for or working directly with the public’
Communicating with persons outside of the organisation™
Deal with external customers’

Physical proximity”

Al A

Several of these dimensions include both a ‘level’ and ‘importance’. Since these are in
general almost collinear, we just consider only the level measure. The value of the level
measures ranges from 0 to 100. Less than 2% of values were missing and were imputed
with the mean value.

Given that O*NET does not provide an explicit measure of physical contacts, we strive to
proxy the degree of contact with others from the measures listed above. It is expected
that the metrics above are neither perfectly orthogonal nor able to completely determine
the desired measure of physical contact, for example communication with persons outside
of the organisation could be conducted via phone and not only in person. We therefore
construct a composite measure of proximity from these five dimensions using a PCA. This
is able to explain 53% of the variance.

In order to validate this approach, we compare the occupations that are assigned a high
score via our method to those which have been reported to have high rates of infection.”
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Figure S1: The COVID-19 death rate in top ten jobs as reported in”’ (left) and the
composite proximity score for the closest matching occupations in the O*NET data.

Generally, comparing both barplots we find that similar occupations with high proximity
correlates to high death rates of related jobs during the COVID-19 epidemic, although the
complexity of factors that determine real death rates is way beyond physical contacts.
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Figure S2: Projection of selected jobs on the first and second principal
components (PC).

Contact Degree

We derive contact degree distributions as follows. We fit log-normal distributions to
several contact degree distributions from the literature.***"8®" For each, we calculate the
mean and the variance and derive from these the Coefficient of Variation (CV) given as
below for a log normal distribution X:

E(X) = exp(p + 02/2), var(X) = (exp(@cz) — 1) * exp(2p + 029), CV(X) =+var(X)/E(X) =\ (exp(t
where p and o~ is the mean and variance of the normal distribution Y = log(X).

The parameters of each fit are listed in Table S1. We wish to recover the mean number of

contacts of 75 as observed in® and to split these total contacts into work, home and

transport (more accurately representing all other urban interactions: transport but also
shops, cinemas, restaurants etc) while imposing a skew that is consistent with the
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Coefficient of Variation observed empirically. We choose a CV value of 0-7 representative
of the mean and the middle of this range of CV values.

Table S1: Parameters of lognormal distribution fitted to the degree distribution of
six empirical networks.

u=EY) |o=+var(Y) EX) \var(X) CV(X)

Workplace 3-55 0-61 42-05 28-50 0-68
Conference 3:62 0-77 50-37 45-39 0-90
Art exhibition 2-36 0-78 14-34 13-13 0-92
Hospital 3-27 0-57 30-91 19-20 0-62
Primary
school 4-15 0-43 69-21 30-82 0-45
High school 3-07 0-58 25-51 15-98 0-63

Home: the mean home degree is derived from census information*® which gives a mean
of 2. The SD is derived from the CV=0-7. We sample from this distribution independently
of occupation for each worker.

Work: the work degree is derived by matching the percentiles of (i) the PCA score
described above and (ii) a log normal distribution with mean 36-5.22 The SD is derived
from the CV=0-7. The work degree is fixed between workers with the same occupation.

Transport: the mean transport degree of 36-5, is given by the remaining contact degree

after accounting for home and work. Once again the SD is derived from the CV. Transport
degree is sampled from this distribution for each work independent of occupation.

Occupational Proximity to Contact Degree

As described in the main text, we have a multidimensional score of proximity in the range
[0-100] for each occupation. We seek to translate that score into a work contact.

These distributions are fitted to data found in.® The values are then rescaled to make a
mean total of 75, matching empirical data.®

The work degree of the node depends solely on her occupation, which is proportional to

the rescaled value of its projection on the first PC of the job proximity data with the mean
work degree equal to 36-5.
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Figure S3: Essential score from Rio-Channon et al vs first Principal Component of
proximity data. Pearson correlation is 0-375.

Workforce Data

To generate the occupational contact network through the configuration model, we use
data from the NY Workforce dataset for 2019% and the data for the number of contacts
per occupation that we derive through the principal component analysis. The NY
workforce dataset includes information about the 750 distinct occupations that exist in the
NY, such as the number of employees per occupation (out of a total labour size of around
9-5M workers), their percentage in the NY workforce, and the hourly and annual average
wages per worker per occupation. Each occupation in the dataset is represented by a
six-digit code based on the 2010 Standard Occupational Classification System.® The first
two digits represent the major group, the third digit represent the minor group, the fourth
and fifth digits represent the broad occupation and the sixth digit represent the broader
occupation. The top three occupations by number of employees in the NY workforce, are
the Retail Salespersons (SOC:41-2031), the Home Health Aides (SOC:31-1011) and the
Cashiers (SOC:41-2011) with 302430, 202660 and 198980 employees respectively (that
is around 3-2%, 2:1% and 2-1% of the NY workforce). The bottom three occupations in
the dataset are the Fallers (SOC:45-4021), Radio Operators (SOC:27-4013) and Hoist
and Winch Operators (SOC:53-7041) with just 30, 40 and 40 workers respectively.
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Merging O*NET and Workforce Data

The data for the number of contacts per occupation derived by the Principal Component
Analysis include information for 967 occupations. The occupations in this dataset are
represented by an O*NET-SOC eight-digit code. The first six digits match the SOC coding
scheme while the additional two digits indicate whether the O*NET-SOC occupation is a
one-to-one match or is a detailed O*NET breakout of the SOC occupation.® To merge the
two datasets by occupation code, we first group the occupations included in the PCA
outcomes by their six first SOC digits. In that case, the number of contacts per six-digit
SOC occupation is the mean of the number of contacts between the eight-digit SOC
occupations that share the first six digits. After grouping the occupations (i.e. transition
from the eight-digit coding system to the six-digit classification), we end up with 773
distinct occupations. 680 out of 750 SOC codes from the NY workforce dataset were
matched one-to-one with SOC codes from the contacts per occupation data. We then
matched 18 more occupations presented in table S2 manually. We therefore created a

dataset of 678 distinct occupations having their number of employees in the NY
workforce, their average wages and the number of contacts per occupation.

Table S2: Matching unmatched SOC codes between O*NET and contacts per

occupation data.

Occ Code in NY
workforce data

Occ Title in NY
workforce data

Aggregated Occ
Code in contacts
data

Occ Title in
contacts data

Technologists and
Technicians

13-1020 Buyers and 13-1021 Buyers and

Purchasing Agents Purchasing Agents,
Farm Products

19-1099 Life Scientists, All 19-1011 Animal Scientists
Other

21-1018 Substance Abuse, 21-1011 Substance Abuse
Behavioral and Behavioral
Disorder, and Disorder
Mental Health Counselors
Counselors

21-1019 Counselors, All 21-1014 Mental Health
Other Counselors

29-2010 Clinical Laboratory | 29-2011 Medical and Clinical

Laboratory
Technologists;
Cytotechnologists;
Histotechnologists
and Histologic
Technicians;
Cytogenetic

23


https://paperpile.com/c/3eMcQT/0HT9

Technologists

35-2019 Cooks, All Other 35-2013 Cooks, Private
Household

39-1010 First-Line 11-9071 Gaming Managers
Supervisors of
Gaming Workers

39-7010 Tour and Travel 39-7011 Tour Guides and
Guides Escorts

47-3019 Helpers, 47-3016 Helpers--Roofers
Construction
Trades, All Other

49-9069 Precision 49-9045 Refractory
Instrument and Materials
Equipment Repairers, Except
Repairers, All Other Brickmasons

51-2028 Electrical, 51-2022 Electrical and
Electronic, and Electronic
Electromechanical Equipment
Assemblers, Except Assemblers
Coil Winders,
Tapers, and
Finishers

51-2098 Assemblers and 51-2093 Timing Device
Fabricators, All Assemblers and
Other, Including Adjusters
Team Assemblers

51-4199 Metal Workers and | 51-4192 Layout Workers,
Plastic Workers, All Metal and Plastic
Other

51-7099 Woodworkers, All 51-7031 Model Makers,
Other Wood

53-1048 First-Line 53-1031 First-Line
Supervisors of Supervisors of
Transportation and Transportation and
Material Moving Material-Moving
Workers, Except Machine and
Aircraft Cargo Vehicle Operators
Handling
Supervisors

53-6099 Transportation 53-4013 Rail Yard

Workers, All Other

Engineers, Dinkey
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Operators, and

Hostlers
29-1029 Dentists, All Other 29-1024 Prosthodontists
Specialists
41-9099 Sales and Related 41-9091 Door-To-Door Sales
Workers, All Other Workers, News and

Street Vendors, and
Related Workers

Degree Preserving Configuration Model

We generate our contact network between workers using a modified configuration model
as follows. We first represent the assigned numbers of home, work and transportation
contacts of each worker as half-links of the nodes in the network (see Figure 2 in the main
paper). We then randomly select a pair of half links for each category of contacts and
connect them. The random selection is achieved by sampling nodes without replacement,
in order to avoid duplications of contacts and self-loops. We repeat the process until all
half-links are paired up. This technique produces a network that is not fully random as
nodes are assigned a degree according to their occupation which is in turn taken from an
empirical distribution of workers over occupations.

Calculation of Transmission Rate from Reproductive Number

Let us consider how we can relate RO, the mean number of new infections per infection, to
Py and < d >; the probability of infection between two nodes in a single encounter and
the mean network degree. Since RO = 2-5 according to various studies, we would like to fix

Py appropriately in our simulations to be roughly consistent with this measured RO.

Let us consider a ‘point infection’ in a single time-step (in our simulations this is a single
day) in which node i interacts with its four neighbours (see Figure S4). With probability
Py node j is infected by node i and transitions from susceptible to infected.
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Node j Node i

Node k

Figure S4: A schematic illustration of a contact infection transmission

In a single encounter the probability of j becoming infected is pj(S -1 = P Under n

encounters, the probability of j becoming infected in at least one of the n encounters is the
complement of the probability that j is not infected in any of the n encounters. The
probability of not becoming infected in a single encounter is (1 - pinf).

n,pinf _ _ _ n
p, (s~ 1) = - - p "

Probability that Node i Infects Node j

1.0
= 0.8
J pinf = 1.0
¥ 0.61 pinf = 0.8
Q.
<. — pinf = 0.6
0.4 — pinf=0.4
— pinf=0.2
0.2

12345678 910111213
n

Probability that Node i Infects Node |

Pinf
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Figure S5: The probability of a node to become infected based on the number of its
infected neighbours (left) and the probability of infection in a single encounter
(right).

This can be expanded to an arbitrary number of neighbours. Assuming that there are no
spillovers e.g. there is no possibility for i to infect k and then k to subsequently infect |
(with i and j connected), we can calculate the expected number of new infections as the
product of this probability of infection after n days and the mean degree. This is our
implied RO. This assumption of no second order effects is somewhat unrealistic and

becomes more unrealistic as the incubation period increases.

Roimp”ed = <d>x pj”'me(s =)

implied _ . n
R, = <d>x(1-@1-p,)")

Assuming that R0 is defined over the incubation period i.e. it is the mean number of new

infections caused by an infected person before they are symptomatic, then we set n = 14.
< d > is defined by our contact data and so Py is set by our empirical R,.

In fact we can calculate Doy directly, given our assumptions. Given our assumption of no
higher order effects (i infects k who infects j) we would actually need a smaller Py to

recover RO. So our estimated value of Py is an upper bound.

R
p =1 — /1 — —=~ 0-0024

inf <d>

Industry Based Worker Productivity

To examine the productivity of workers based upon the industry of their occupation, we
employ data from the Bureau of Economic Analysis on value added by industry in
producers' prices.?” These data are calculated at the detailed industry level and exist for
the years 2007 and 2012. We employ the most recent set of these data -- from 2012. We
note that while industry value added has surely changed since these data were compiled,
the detail industry values in BEA's estimates likely correlate decently well with actual
present day value added and provide to our knowledge the highest resolution estimate of
detailed industry value added in the U.S.

The BEA industry codes (NAICS) do not perfectly match the industry codes contained
within the O*NET data, and so we supplement the NAICS crosswalk provided by the U.S.
Census® with a procedure that sequentially matches industries to occupations based
upon increasing levels of industry aggregation. We first match industry value added data
on the full six digit NAICS codes of occupations, then match any remaining occupations
and industries at the five-digit level, and so on up to the two-digit NAICS code level.
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Approximately 27% of occupations have a full match, 0-3% have a five digit match, 15%
have a four digit match, 28% have a three digit match, and 29% have a two digit match.

Evaluation of Strategies

In order to evaluate and compare strategies, we consider (i) the economic loss due to
furloughing of workers (ii) the economic loss due to infected workers and (iii) the size of
the peak of the number of infected individuals (as a proxy for the degree of strain on
health services). We wish to evaluate each strategy independently from a specific choice
about the severity of the intervention i.e. the proportion of workers to furlough. We
therefore calculate the areas under the curves plotted in Figure 4 of the main text; higher
values are worse for all metrics. This is a simple sum given as below for strategy s for the
furlough loss and analogously for loss due to infection and epidemic peak.

S

AUC furlough = > furloughloss (n

)

percent

percent

Here, we present the interaction term between the cost due to furloughing and the cost of
infection that complements Figure 5 in the main paper.

Least Essential
Cheapest
Random

Control

Most Connected

Central

00 02 04 06 08 1.0
AUC Infection Furlough Interaction

Figure S6: The aggregated performance of each strategy presented as the
interaction term between the cost due to furloughing and the cost of infection that
complements Figure 5 in the main paper.
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Centrality and Shuffled Centrality

Assigning a score to each node in a network according to its centrality is a mature area of
study. We therefore compare various centrality measures, we conclude that High Degree
Adaptive is the best performing and it is this metric we present in the main paper.

Table S3: Area under curve (AUC) of cost due to furloughing and cost due to
infection under strategies based on different network centrality measures. Values
indicate mean (+SD) of the AUC where each point in the curve is the average of
1000 random epidemic simulations.

Centrality Metric AUC Econ Loss ($B) AUC Infected Loss ($B)
Betweenness 16-68 (+3-15) 0-255 (+0-006)
Closeness 11-18 (+2-34) 0-080 (+0-004)
Eigenvector 11-15 (£2-36) 0-079 (£0-004)
Page Rank 10-91 (£2-27) 0-077 (+0-004)
HDA 10-79 (1£2-24) 0-077 (+0-004)
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Figure S7: Distribution (kernel density) of centrality values for our contact network
constructed using the modified configuration model (top row) and under edge
shuffling (i.e. an Erdos Renyi network with equivalent size and edge density).

Decomposition of the network in subcomponents

Our initial network is composed of a single component with 200,003 nodes. When
removing the work and transportation links of nodes that can work from home the network
decomposes into 3,846 components where from those, one is the giant component with
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194,276 nodes and most of the other components are isolated nodes reflecting the
workers that can work from home and do not have any home links. Furloughing n% nodes
additional to those that can work from home, the network further decomposes in more
components and the size of the giant component reduces as shown in Figures S8 and S9
for the different furloughing strategies.
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Figure S8: Left: number of clusters in the contact network as we remove the work
and transportation links of a fraction of nodes from the network. Right: the fraction
of nodes in the giant component as we remove the work and transportation links of
a fraction of nodes from the network.

25000 -  1.00-
Betweenness S Betweenness
" Closeness g_ Closeness
- _ Eigenvector Eigenvector
qCJ 20000 —e— PageRank 8 0.95 —e— PageRank
[ —eo— HDA /7 — —o— HDA
g 5
15000 - =
g > 0.90 -
(&) i
u= ]
© 10000 - Q
3 2 0.85-
= "6 \;\\
= 5000 - hu \
ie) \
*g 0.80 -
0 (L
00 02 04 06 08 1.0 00 02 04 06 08 1.0

Fraction of removed nodes Fraction of removed nodes

Figure S9: Comparing various centrality measures as metrics for worker removal.
Left: number of clusters in the contact network as we remove the work and
transportation links of a fraction of nodes from the network. Right: the fraction of
nodes in the giant component as we remove the work and transportation links of a
fraction of nodes from the network.
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Proximity and Other Worker Measures
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Figure S10: Hexbin plots of proximity against essentialness score (left) and wage
(right) per occupation. Red line shows unweighted fit and black line shows fit
weighted by the number of workers in each occupation. The essentialness score
has Pearson correlation 0-29 and 0-19 when unweighted and weighted respectively,
while the wage has 0-24 and 0-05 respectively.

Comparison of Synthetic Contact Network with Empirical
Contact Networks

We address the concern that our results are an artefact of our contact network generation
model; the degree preserving configuration model. Therefore we consider several
empirical contact networks from various scenarios and compare the descriptive statistics
of each with our synthetic network (table S4). The “workplace” is the contact network
between 217 individuals measured in an office building in France in 2015. The
“conference” network represents the face-to-face interactions of 403 participants to the
2009 SFHH conference in Nice, France. The “art exhibition” is the network of contacts
collected during an art science exhibition at the Science Gallery in Dublin, Ireland in 2009.
The “hospital” is the contact network between patients, between health-care workers and
patients and among health-care workers during four days in a hospital ward in Lyon
France. The “primary school” network includes the face-to-face interactions between 242
students and teachers in a primary school, and the “high school” is the network of
contacts between students in a high school in Marseilles, France. The data for those
networks were active contacts as collected during 20-second intervals generating
dynamic (temporal) networks in the different locations. Here we consider their static
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counterparts by simplifying the networks with neglection of multiple edges or by using

cumulated contacts (e.g. within a day).

Table S4: Network characteristics for our occupational contact network and six
empirical contact networks.

Network Nodes Edges Density | Min | Max Average | Assorta| Transiti| Driver Driver
Degr | Degree | Degree | tivity vity nodes nodes
ee Switchb | liu

oard (density)
(density)

Synthetic 200003 | 7491270 0.0004 13 633 74.91 0.003 0.0005 | 95,857 7,430

NY (0.48) (0.037)

workforce

Workplace 217 4274 0.182 1 84 39.39 0.044 0.356 99 (0.46) | 17 (0.08)

Conference | 403 9564 0.118 1 169 47.46 -0.081 0.236 151 33 (0.08)

(0.37)

Art 410 2765 0.033 1 50 13.49 0.226 0.436 200 73 (0.18)

exhibition (0.49)

Hospital 75 1138 0.41 6 61 30.35 -0.18 0.587 30 (0.40) | 17 (0.23)

Primary 242 8317 0.285 20 134 68.74 0.118 0.48 120 8 (0.03)

school (0.50)

High school | 180 2220 0.138 2 56 24.67 0.046 0.434 81 (0.45) | 17 (0.09)

synthetic workplace o conference art exhibition hospital N primary school ° high school

g ‘A\ § /\ 3| s’/\ 3 [ g //\‘ é ,/ ™\ § //\_ﬂ\\

o f ° f \\ g | A ° ///\\ < \\\,,‘ gl | \\‘\ 8 [

£ A W N N N i W |

5 1 Y Wely 2 I sy

gl g g U y gl £ \ | gl / A\ | g

S 0 100 ~ 300 500 S 0 20_40 60 80 100 S 0 50 100 150 200 © 0 10 20 30 40 50 = 0 20 40 60 80 = 50 100 150 = [] 20 40 60

Degree Degree Degree Degree Degree Degree Degree
3. § © g 2 g J‘;‘\
g 40 60 80 100 120 § 20 30 _ 40 50 60 5 30 40 50 60 70 g0 5 10 15 20 25 §5 720 25 30 35 40 45 ‘83 50 60_70 80 90 g 10 15 20_25 30 35 40
Degree Degree Degree Degree Degree Degree Degree
g — 8 3 .

l : A ol ° - :

2l i\ g0 g ° E

Rl | TR ° ° S 3

A & \\ g M g g ] s

ST s| 3| N 3 3 B g

gl g/ gl | g _ gl g

S 0 100 ' 300 500 S-20 0 20 40 60 80 S 6 50 100 150 S S - 0 20 40 60 80 S S

High degree adaptive High degree adaptive High degree adaptive High degree adaptive
g g g g

0.000

0.000

0.000

0

0

20 40 60 80 120
High degree adaptive

0 40 60 80 1
High degree adaptive

00

20 40 60 80 100
High degree adaptive

10 20 30 40
High degree adaptive

0

040 60 B
High degree adaptive

50 100 150
High degree adaptive

7030 50 70
High degree adaptive

Figure S11: Comparison of distributions (kernel densities) of observed and shuffled
node degrees (first and second row respectively) and distributions of observed and
shuffled high degree adaptive centrality values (third and fourth rows respectively).
Left hand column is our occupational network, remaining columns are six empirical
contact networks.
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Simulations with random
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Figure S12: This figure is similar to Figure 4 in the main paper comparing the
different strategies across the full range of severities according to cost of furlough
(left), cost of infection (middle) and peak of infection (right). In this case the
network has 1% of links randomly rewired.

We randomly delete 1% of home, transportation and work edges respectively and then
rewire random nodes with the same proportion of links. We then repeat the simulations
with the furloughing strategies on that network, and compare the outcomes (Figure S12)
with the main findings shown in Figure 4 of the main paper. Each spreading scenario
shown in Figure S12, is evaluated over 1000 epidemic realisations.

Simulations with additional removal of home links of the
furloughed workers

We repeat the simulations with the different furloughing strategies and we add the
hypothesis of home quarantine, which means that for the furlough nodes we cut all of their
links (work, transportation and home).
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Figure S13: This figure is similar to Figure 4 in the main paper comparing the

different strategies across the full range of severities according to cost of furlough
(left), cost of infection (middle) and peak of infection (right). Here, for each strategy
we remove the home links of furloughing workers in addition to the removal of their

work and transportation links (i.e. a “home quarantine” scenario).
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Figure S14: Left: number of clusters in the contact network as we remove a
fraction of nodes from the network under the home quarantine scenarios. Right:
the fraction of nodes in the giant component as we remove a fraction of nodes
from the network under the home quarantine scenarios.

Comparison with Alternate Configuration Model Instantiation

In order to ensure that our results are not an artifact of our particular random configuration
of the network, we repeat our results using a different random seed.
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Figure S15: This figure is similar to Figure 4 in the main paper comparing the
different strategies across the full range of severities according to cost of furlough
(left), cost of infection (middle) and peak of infection (right). Here, we consider a
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different network configuration drawn from the same degree preserving
configuration model.
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