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Robust Stochastic Stability in Dynamic and Reactive Enviroments

Brandon C. Collins, Lisa Hines, Gia Barboza, and Philip N. Brown

Abstract— The theory of learning in games has extensively
studied situations where agents respond dynamically to each
other by optimizing a fixed utility function. However, in many
settings of interest, agent utility functions themselves vary
as a result of past agent choices. The ongoing COVID-19
pandemic provides an example: a highly prevalent virus may
incentivize individuals to wear masks, but extensive adoption of
mask-wearing reduces virus prevalence which in turn reduces
individual incentives for mask-wearing. This paper develops a
general framework using probabilistic coupling methods that
can be used to derive the stochastically stable states of log-linear
learning in certain games which feature such game-environment
feedback. As a case study, we apply this framework to a
simple dynamic game-theoretic model of social precautions
in an epidemic and give conditions under which maximally-
cautious social behavior in this model is stochastically stable.

I. INTRODUCTION

In social systems and distributed engineered systems,

collective behavior is the result of many individuals making

intertwined self-interested choices. In many cases, the value

of a particular choice depends not only on the current choices

being made by others, but also on the history of past choices.

In principle, these socio-environmental feedback loops

can be analyzed using techniques from game theory, which

has a long history of analyzing the society-scale effects of

self-interested behavior. For instance, game theory has long

been used to study the spread of social conventions [1]

using models such as the graphical coordination game [2]

with the stochastic learning algorithm log-linear learning [3].

However, traditional analysis techniques almost uniformly

assume that the game’s utility functions are fixed for all time,

so that the agents’ choices over time can be described by a

stationary Markov process. However, such analysis fails or

becomes unwieldy when utility functions themselves depend

on the history of play.

Analysis techniques for history-dependent games have

broad potential applications. For example, in a global pan-

demic, the individual choice to adopt protective measures

(e.g., wearing masks) may be made in response to the

behavior of others and the prevalence of the disease. In turn,

the prevalence of the disease is a function of the history of

individual choices to adopt protective measures. As another

example, game theoretic methods are frequently proposed in

the area of distributed control of multiagent systems [4]–

[7]. However, in a distributed control application, agents’

actions may directly modify the strategic environment; for
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instance if a search-and-rescue UAV identifies a disaster

victim, that victim may be removed from the list of other

UAVs’ objectives. Other applications that can be modeled

by history-dependent games are in machine learning [8]–[10]

and biology [11], [12].

Owing in part to the challenges of modeling the complex

game-environment feedback inherent to history-dependent

games, general results on these games are elusive. Recent

work has focused on specific learning algorithms and strate-

gic environments, such as zero-sum games under replicator

dynamics [13]. In [14] the authors characterize an oscillating

tragedy of the commons effect under certain environmental

feedback scenarios.

In this paper, we develop a general framework for analyz-

ing the long-run behavior of binary-action history-dependent

games. In particular, we study the stochastically stable states

of the popular log-linear learning algorithm in such settings.

We show that if the utility functions of the history-dependent

game can be appropriately referenced to the utility functions

of a corresponding exact potential game, then the history-

dependent game of interest inherits the stochastically stable

states of the reference potential game. To accomplish this we

apply techniques from the theory of probabilistic couplings,

and derive a monotone coupling that relates play in the

history-dependent game with that in the reference potential

game. To showcase an application of the framework, we

present an epidemic model that intertwines the compart-

mental SIS disease model with a graphical coordination

game. Using our analysis framework we provide conditions

under which the stochastically stable states may be fully

characterized, despite their history-dependence.

II. MODEL

A. Game Formulation

In this work we consider binary action games. Let N =
{1, 2, 3, . . . , |N |} denote the player set; player i ∈ N has ac-

tion set Ai = {0, 1}. The joint action space is then given by

A = {0, 1}|N |. We denote an action profile as a ∈ A and use

ai to denote player i’s action. The actions of all other players

is then given by a−i = (a1, a2, . . . , ai−1, ai+1, . . . , a|N |).

We refer to the all 1 action profile as ~1 = (1)
|N |
i=1 and

similarly for the all zero profile, ~0. Further, let ∆(A) denote

the standard probability simplex over A.

Let Ui : A → R be player i’s utility function. We denote

U = {U}i∈N as the collection of all players’ utility function.

A game g = (N,A,U) is an exact potential game if there

exists a potential function φ such that

Ui(a
′
i, a−1)− Ui(ai, a−i) = φ(a′i, a−1)− φ(ai, a−i) (1)
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for any a ∈ A, and ai, a
′
i ∈ Ai.

In this work we generalize the above by allowing each

history of play to have a unique utility function. We write AT

to denote the set of joint action histories of length T ∈ N,

and denote the set of all histories as A = ∪T∈NAT . We

write α ∈ AT to refer to a history of action profiles (or

path) and use superscripts to denote time indices so that

α = (α1, . . . , αT ). We abuse notation and write αT to denote

the last action profile in any path α. We also define A,AT

as partially ordered sets by first defining partial order ≥A,

where a′ ≥A a whenever a, a′ ∈ A and a′i ≥ ai for all

i ∈ N , recalling that a′i, ai ∈ {0, 1}. Using this we define

partial order ≥AT
as ᾱ ≥AT

α whenever α, ᾱ ∈ AT and

ᾱt ≥A αt for all t ∈ {1, 2, ..., T }.

To model history-dependent utility functions, let Uα
i :

A → R, where this utility function is not only spe-

cific to player i but also to the history α. Let Uα =
(Uα

1 , U
α
2 , ..., U

α
|N |) denote each player’s utility function given

history α and let UA = {Uα | α ∈ A} be the set of utility

functions across all paths. We denote a history-dependent

game as tuple (N,A,UA) and let GA be the set of all

such tuples. We now present a class of games that combines

potential games and history dependence.

Definition 1: We call a tuple g = (N,A,UA) ∈ GA

an aligned history-dependent game if there exists an exact

potential game ĝ = (N,A, Û) with potential function φ̂ such

that:

1) {~1} = argmaxz∈A φ̂(z)
2) Uα

i (1, α
T
−i) ≥ Ûi(1, a−i)

3) Ûi(0, a−i) ≥ Uα
i (0, α

T
−i)

for any α ∈ A, a, a′ ∈ A, T ∈ N such that αT
−i ≥A−i

a−i

and a, a′ vary by only a unilateral deviation. For convenience,

we denote ordering ≥A−i
over A−i = {0, 1}|N |−1 equiva-

lently to ≥A.

B. Learning in Games

In this work we focus on the learning algorithm log-linear

learning, which is a discrete time asynchronous learning

algorithm [3], [15]. That is, for game g ∈ GA at each time

step log-linear learning selects a single agent uniformly at

random to update their action.

Pα
i (ai) =

exp( 1
τ
Uα
i (ai, α

T
−i))

∑

a′
i
∈Ai

exp( 1
τ
Uα
i (ai, α

T
−i))

, (2)

where exp(x) := ex, and τ is the temperature, a parameter

which governs the rationality of agents. As τ → 0 agents

best respond with high probability, and as τ → ∞ agents

choose actions uniformly at random. Note that we take the

last action profile in the history αT as the behavior of the

other agents. The probability that α ∈ AT transitions to

a′ ∈ A under log-linear learning in a single transition is

Pα(a′) =











1
|N |

∑

j∈N Pα
j (a

′
j) αT = a′

1
|N |P

α
i (a

′
i) αT

i 6= a′i, α
T
−i = a′−i

0 else.

(3)

This can be interpreted as the probability that given history

α the next action profile αT+1 = a′.

We say a ∈ A is strictly stochastically stable if the

following definition holds, due to [16]. For any ǫ > 0 there

exists T > 0, T < ∞ such that

Pr(s(t; τ, π, g) = ~1) > 1− ǫ whenever t > T, τ < T (4)

where s(·) is a random variable representing the action

profile at time t under log-linear learning, given temperature

τ , initial distribution π ∈ ∆(A) and game g.

Exact potential games under log-linear learning may be

analyzed using a theory of resistance trees [1], [3], [15],

[17] to relate potential function maximizers to stochastic

stability. However, this analysis depends on the fact that log-

linear learning induces an ergodic Markov process on the

action profiles of any exact potential game, and it is unclear

how to apply resistance tree techniques generally on history-

dependent games to show stochastic stability.

III. MAIN CONTRIBUTION

We now present our main result, giving that ~1 is stochas-

tically stable in aligned history-dependent games

Theorem 1: If g ∈ GA is an aligned history-dependent

game then ~1 is strictly stochastically stable in g under log-

linear learning.

The proof of Theorem 1 proceeds using Lemma 1, which

we present here and prove in Section V. The interpretation

of this lemma is that for an aligned history dependent game

g, the probability at any time step that g is in the ~1 action

profile is lower bounded by the probability its associated

exact potential game ĝ is in the ~1 profile.

Lemma 1: If g ∈ GA is an aligned history-dependent

game with associated exact potential game ĝ then

Pr(s(T ; τ, π, g) = ~1) ≥ Pr(s(T ; τ, π, ĝ) = ~1) for any

temperature τ > 0, π ∈ ∆(A), T ∈ N.

The proof of Lemma 1 is technically involved and de-

pends on our novel monotone coupling framework which

we present in Section V. Using this result we now present a

straightforward proof of Theorem 1.

Proof of Theorem 1: Let g ∈ GA be an aligned history-

dependent game and ĝ be its associated exact potential game.

It is well-known [15] that in an exact potential game a ∈ A
is a stochastically stable state under log-linear learning if

a ∈ argmax
a′∈A

φ(a′). (5)

Therefore, because ~1 is the lone maximizer of φ̂, it is strictly

stochastically stable. We apply Lemma 1 directly to the

definition of strict stochastic stability in (4). For any ǫ > 0
there exists T > 0, T < ∞ such that

Pr(s(t; τ, π, g) = ~1) ≥ Pr(s(t; τ, π, ĝ) = ~1) > 1− ǫ (6)

for all t > T, τ < T , yielding stochastic stability of ~1 in

game g. �

IV. A SOCIAL DISTANCING EXAMPLE

To highlight Theorem 1’s ability to analyze stochastic

stability of history-dependent games, we exhibit a case study

on a simple model of epidemics. One challenge of epidemic

modeling is to account for the interplay between epidemic

severity and the voluntary adoption of preventative social

conventions. For example, in the absence of a epidemic



people prefer not to wear masks; however, in a widespread

epidemic people may prefer to take preventative measures.

To model this phenomenon we intertwine the SIS compart-

mental epidemic model and the graphical coordination game

(GCG) which models the spread and adoption of the relevant

preventative social conventions; we term this model SIS-

GCG. The fraction of individuals in the society susceptible to

infection is described by the nonlinear differential equation

ṡ = (1− s)(γ − β(t)s), (7)

where γ > 0 is the curing rate and β(t) > 0 is a rate

of infection which depends on agent actions. The action 1
represents a “safe convention” action in which a player is

acting to reduce contagion; the action 0 represents conven-

tions ignoring the pandemic. These actions are associated

with infection coefficients 0 < β1 < β0, respectively.

Accordingly, β(t) is simply the average infection rate of all

individuals, given their choices:

β(t) =
1

|N |

∑

i∈N

atiβ1 + (1− ati)β0, (8)

where ati is the action selected by player i at time t ∈ N. Ac-

tions are selected by agents in N dynamically on undirected

graph G = (N,E) according to log-linear learning (2). The

utility of agent i at time t is given by

Ūα
i (a

t
i, a

t
−i) = ai|Ni(1)|(q + I(t)) + (1− ai)|Ni(0)|, (9)

where Ni(x) = {j ∈ N | (i, j) ∈ E, aj = x} is the set

of i’s neighbors who play x ∈ {0, 1} = Ai, the fraction

of infected individuals is given by I(t) := 1 − s(t), and

q ∈ (0, 1] represents the agent’s willingness to practice safe

conventions in the absence of an epidemic.

Proposition 1: If s(0) ∈ [0, 1), then if s(t) is a solution

of (7) with β(t) given by (8), there exists a t̄ such that s(t) ≤
γ/β1 for all t ≥ t̄ almost surely.

Proof: We write s∗1 := γ/β1. Note that if s(t) ≥ s∗1,

then because β(t) ≥ β1, we have that ṡ ≤ 0 by (7), and

that this inequality is strict whenever s(t) > s∗1. Thus, the

set [0, s∗1] is positively invariant for the hybrid nonlinear

dynamics given in (7).

To see that s(t) eventually enters [0, s∗1] almost surely,

consider the event that s(t) > s∗1 for all t. Since s∗1 is

asymptotically stable when β(t) ≡ β1 and for any action

profile a 6= ~1 that its associated β(t) > β1, it follows that

the event that β(t) ≡ β1 for all t is the same event as

s(0) > s∗1 and s(t) > s∗1 for all t. However, it can be seen

that the log-linear learning (3) action update probabilities

define a stochastic process which visits every action profile

in A infinitely often. That is, the probability that β(t) ≡ β1

is 0, and thus there must exist a t̄ such that s(t) ≤ s∗1 for all

t ≥ t̄ almost surely.

It can be seen from (9) that SISGCG can be represented by

a history-dependent game, as the utility function depends on

the history of play, so our Theorem 1 allows us to reference

SISGCG to a related exact potential game and deduce

conditions guaranteeing that ~1 is strictly stochastically stable.

Proposition 2: Let gS be an instance of SISGCG. If

β1/γ > 1, q+γ/β1 > 1 and I(0) > 0 then ~1 is stochastically

stable in g.

Proof: Let the SISGCG model be denoted by gS ,

which played on graph G = (N,E) with q + γ/β1 > 1
and I(0) > 0, and we consider gS as played after time t̄
as given by Proposition 1. Game gS is a history-dependent

game since (9) depends on I(t), which is itself a function of

the history α. Thus we have gS = (N,A, Ū) ∈ GA where

we let Ū = {Ūα | α ∈ A}.

Now we let ĝS = (N,A, ÛS) be a graphical coordination

game played on graph G, where the utility function ÛS is

given by (9) with I(t) = γ/β1. Standard results give that

ĝS is an exact potential game and that ~1 is its lone potential

function maximizer [1].

We now use ĝS to show gS is an aligned history-dependent

game. Now we verify Uα
i (1, α

T
−i) ≥ ÛS

i (1, a−1) anytime

αT
−i ≥A−i

a−i, t > t̄. This can be rewritten for t > t̄ as
∑

j∈Ni(1;αT
−i

)

q + I(t) ≥
∑

j∈Ni(1;a−i)

q + γ/β1 (10)

where Ni(1; a−i) denotes the neighbors of i who are playing

1 given profile a. This expression holds because αT
−i ≥A−i

a−i ⇒ |Ni(1;α
T
−i)| ≥ |Ni(1; a−i)| and by Proposition 1. An

argument with the same structure holds for Ūα
i (0, α

T
−i) ≤

ÛS
i (0, a−1). Thus gS is an aligned history-dependent game,

and Theorem 1 gives ~1 is strictly stochastically stable.

V. PROOF OF LEMMA 1

A. A Primer on Monotone Couplings

We begin with the definition of a monotone coupling, the

core analytical device for our paper.

Definition 2: Let X be a countable set with partial or-

dering ≤X and p1, p2 be probability measures on measure

space (X,F). Then a monotone coupling of p1, p2 is a

probability measure p on (X2,F2) satisfying the following

for all x, y ∈ X
∑

x≤Xy′

p(x, y′) = p2(y
′) and

∑

y≥Xx′

p(x′, y) = p1(x
′).

(11)

A monotone coupling is a useful tool for analyzing the

component probability measures p1 and p2. In particular the

following property holds in general for monotone couplings.

Proposition 3 (Paarporn et al., [18]): Let p1, p2 be prob-

ability measures on (X,F). If p is a monotone coupling of

p1, p2 then for any increasing random variable Z : X → Z+

we have

Ep1
(Z)− Ep2

(Z) =

∞
∑

η=0

p(Zc
η, Zη) (12)

where Zη = {a | Z(a) > η}.

Here we denote Zc := X \ Z to be the complement set of

Z ⊆ X . The proof is given in [18, Proposition 1].

B. Notation Required for Proofs

Taking ĝ = (N,A,U), we give equations analogous to

(2), (3) that give the transition probabilities for ĝ under log-

linear learning. In particular, if agent i is selected to update

her action then she will do so with probabilities given by

P̂a
i (ai) =

exp( 1
τ
Ui(ai, a−i))

∑

a′
i
∈Ai

exp( 1
τ
Ui(a′i, a−i))

(13)



Building on (13), we define the probability that action profile

a transitions to a′ under log-linear learning in a single

transition as

P̂ a(a′) =











1
|N |

∑

j∈N P̂a
j (aj) a = a′

1
|N | P̂

a
i (a

′
i) ai 6= a′i, a−i = a′−i

0 else

(14)

for some i ∈ N and a, a′ ∈ A. Additionally, we define the

probability that path α ∈ AT occurs with initial distribution

π ∈ ∆(A) as

P̂π(α) = π(α1)
T−1
∏

t=1

P̂αt

(αt+1) (15)

noting that π(α1) denotes the probability of α1 in initial

distribution π.

Correspondingly, the probability that path α ∈ AT occurs

with initial distribution π ∈ ∆(A) on g ∈ GA is

Pπ(α) = π(α1)

T−1
∏

t=1

Pα≤t

(αt+1) (16)

where we use α≤t ∈ At to mean history α until time t ∈
{1, 2, 3, . . . , T }.

We now present a result connecting the utility conditions

of aligned history-varying potential games to (13) and (2).

Lemma 2: Let g = (N,A,UA) ∈ GA, ĝ = (N,A, Û )
be an exact potential game and let i ∈ N, a ∈ A,α ∈ A
such that αT

−i ≥A−i
a−i. If Uα

i (1, α
T
−i) ≥ Ûi(1, a−i) and

Ûi(0, a−i) ≥ Uα
i (0, α

T
−i) then Pα

i (1) ≥ P̂a
i (1).

Proof: Let g = (N,A,UA) ∈ GA, ĝ = (N,A, Û) ∈
G and let i ∈ N, a ∈ A,α ∈ A be such that αT

−i ≥A−i

a−i. Further let Uα
i (1, α

T
−i) ≥ Ûi(1, a−i) and Ûi(0, a−i) ≥

Uα
i (0, α

T
−i). Recalling τ > 0, we begin by considering Pα

i

Pα
i (1) =

e
1

τ
Uα

i (1,αT
−i)

e
1

τ
Uα

i
(1,αT

−i
) + e

1

τ
Uα

i
(0,αT

−i
)

≥
e

1

τ
Ûi(1,a−i)

e
1

τ
Ûi(1,a−i) + e

1

τ
Ûi(0,a−i)

= P̂a
i (1).

(17)

To see the inequality, it suffices to apply the hypothesis to

the fact that ex and l(x) = ex

ex+c
are both increasing in x for

c > 0. Thus Pα
i (1) ≥ P̂a

i (1) holds as desired.

Our framework requires a careful partitioning of the ac-

tion space corresponding to different types of agent action

deviations. Let f : A → 2A be defined as f(a) = {a′ ∈ A |
ai 6= a′i, a−i = a′−i for i ∈ N} be the set of action profiles

reachable from a via exactly one unilateral deviation. For

a, a′ ∈ A let

g(a, a′) =

{

i ai 6= a′i
0 a = a′

(18)

indicate which agent unilaterally deviated their action be-

tween action profiles a, a′.
Now, let a, a′ ∈ A where a′ ≥A a. We denote several

disjoint subsets of f(a):

1) r(a) = {z ∈ f(a) | ag(a,z) = 1},

2) q(a, a′) = {z ∈ f(a) | z ≤A a′} \ r(a), and

3) s(a, a′) = f(a) \ (q(a, a′) ∪ r(a)).

These sets can be interpreted in the following way. The set

r(a) is the set of action profiles which decreased with respect

to ≥A and q(·), s(·) both increased. Between q(·) and s(·),
q(·)’s action profiles remain less than a′ and s(·)’s profiles

are greater then or incomparable to a′. We now present three

more analogous sets that are disjoint subsets of f(a′):

1) R(a′) = {z ∈ f(a′) | a′
g(a′,z) = 0},

2) Q(a, a′) = {z ∈ f(a′) | z ≥A a} \R(a′), and

3) S(a, a′) = f(a′) \ (Q(a, a′) ∪R(a)).

The interpretation of these sets are reversed relative to r(·),
q(·) and s(·).

We now highlight some useful features of these sets. It is

evident that q(·), r(·), s(·) are a disjoint partition of f(a),
and that Q(·), R(·), S(·) are a disjoint partition of f(a′).
For any a, a′, a′ ≥A a we relate these sets by a function

ba,a
′

: f(a) → f(a′). To evaluate ba,a
′

(ā), identify the agent

who deviated their action between a, ā and then deviate that

agent’s action in a′. Formally, ba,a
′

(ā) = (¬a′
g(a,ā), a

′
−g(a,ā))

where we define ¬ai ∈ {0, 1} \ {ai} for ai ∈ Ai = {0, 1}.

In particular, this function relates the disjoint subsets of

f(a), f(a′) according to the following lemma.

Lemma 3: If a, a′ ∈ A and a ≤A a′, then the following

statements hold:

1) ba,a
′

: r(a) → S(a, a′) is a bijection,

2) ba,a
′

: s(a, a′) → R(a′) is a bijection, and

3) ba,a
′

: q(a, a′) → Q(a, a′) is a bijection.

Proof: Let a, a′ ∈ A such that a′ ≥A a. We proceed

by proving ba,a
′

: r(a) → S(a′) is a bijection; the other

bijection statements are proved similarly.

We begin by proving injectiveness, that is ba,a
′

(z) =
ba,a

′

(z′) =⇒ z = z′ for z, z′ ∈ r(a). Observe g(a, z) =
g(a′, ba,a

′

(z)) = g(a′, ba,a
′

(z′)) = g(a, z′) where the first

and third inequalities follow by definition of ba,a
′

and the

middle by hypothesis. Injectiveness follows from g(a, z) =
g(a, z′) meaning a, z and a, z′ differ by the same agent’s

unilateral deviation. In that context, the possible actions

agent g(a, z) is given by Ag(a,z) \ {ag(a,z)} which is a

singleton by the binary action property, leaving only one

possible state a could transition to in r(a) via a unilateral

deviation. Thus z = z′ as desired.

Next we show surjection, that is for any z′ ∈ S(a, a′) there

exists a z ∈ r(a) such that ba,a
′

(z) = z′, for a, a′ ∈ A and

a ≤A a′. By definition of S(a, a′), z′ � a′, but as z′ ∈ f(a′)
z′, a′ differ by only a single unilateral deviation by some

agent i. By partial ordering ≤A we may infer a′i = 1, z′i = 0
else z′ � a′ would be violated. Further, we may infer a = 1
as suppose a = 0, then z′ ∈ Q(a, a′), giving a contradiction

to the definition of z′. It is easy to see by definition of r(a)
that ai = 1 =⇒ z ∈ r(a) satisfying g(a, z) = g(a′, z′) as

zi 6= ai but z−i = a−i by z ∈ f(a). Note g(a, z) = g(a′, z′)
is always satisfied when ba,a

′

(z) = z′ by definition of the

function.

C. The One-Step Couplings

To prove Lemma 1 and obtain Theorem 1, we construct

a monotone coupling ν ĝπ between measures Pπ, P̂π. We first

construct a family of monotone couplings for each one-step

transition (Theorem 2), which we apply to show the coupling

over histories (Theorem 3).



Theorem 2: Let g ∈ GA denote an aligned history-

dependent game and ĝ be its associated exact potential game.

Then a monotone coupling exists between P̂ a and Pα for

any α ∈ A, a ∈ A whenever a ≤A αT . This monotone

coupling νa,α : A2 → [0, 1] is given in (26) in Figure 1.

Proof: Let a ∈ A,α ∈ A such that a ≤A αT and

let g ∈ GA be an aligned history-dependent game where ĝ
is its associated exact potential game. To verify νa,α is a

monotone coupling we must show the following conditions

from Definition 2 for any ā, ā′ ∈ A:

1) νa,α is a well-defined probability measure,

2)
∑

z′≥Aā

νa,α(ā, z′) = P̂ a(ā), and

3)
∑

z≤Aā′

νa,α(z, ā′) = Pα(ā′).

We begin by verifying Condition 2. We consider cases

ā /∈ (f(a) ∪ {a}), ā ∈ q, ā ∈ r, ā ∈ s and ā = a separately.

We use the notational convention that q, s,Q, S are assumed

to take arguments (a, αT ) and r, R take the argument a, αT

respectively. The first case represents any ā that cannot be

achieved in a single unilateral deviation from a. Trivially, this

gives that P̂ a(ā) = 0, and thus all pairs of ā, z′ must satisfy

νa,α(ā, z′) = 0. This holds as all parts of (26) require ā ∈
(f(a) ∪ {a}) except (26h), which has the desired property.

We now consider the second case that ā ∈ q. Note that

only (26d) satisfies this condition, so
∑

z′≥Aā′

νa,α(ā, z′) = νa,α(ā, αT )

= P̂a
g(a,ā)(āg(a,ā))/|N | = P̂ a(ā)

(19)

as desired.

Next we consider ā ∈ r which satisfies (26c), (26f)

uniquely since ba,α
T

is a bijection by Lemma 3. Thus
∑

z′≥Aā′

νa,α(ā, z′) =
1

|N |

(

P̂a
g(a,ā)(0)

− Pα
g(a,ā)(0) + Pα

g(αT ,ā′)(0)
)

=
1

|N |
P̂a
g(a,ā)(0) = P̂ a(ā)

(20)

where the second equality follows as g(a, ā) = g(αT , ā′) by

definition of ba,α
T

. The third equality follows as ā ∈ r =⇒
āg(a,ā) = 0.

Considering ā ∈ s, we find only (26e) applies, thus for
∑

z′≥Aā′

νa,α(ā, z′) =
1

|N |
P̂a
g(a,ā)(1) = P̂ a(ā) (21)

where ā ∈ s =⇒ āg(a,ā) = 1 or else ā would be in q.

The final case for Condition 2 is ā = a. we find cases

(26a), (26b), and (26g) apply yielding:
∑

z′≥Aā′

νa,α(ā, z′) =
1

|N |

(

|N | −
∑

z∈q∪r

P̂a
g(a,z)(zg(a,z))

−
∑

z′∈R

P̂a
g(αT ,z′)(1)

)

=
1

|N |

∑

z∈f(a)

(

1− P̂a
g(a,z)(zg(a,z))

)

= P̂ a(ā)

(22)

where the first equality follows as sums over Q ∪ R are

equivalent to the sums over Q and R as Q,R are disjoint,

and that z′ ∈ R ⇔ z′
g(αT ,z′) = 1 by definition of R. The

second equality follows as the R sum is equivalent to one

over s by bijection ba,α
T

, and then we may combine it with

the sum over q ∪ r, to a sum over f(a) and |f(a)| = |N |.
We omit arguments for Condition 3 as they run parallel to

Condition 2.

To verify Condition 1, we consider each case of (26)

separately. Equations (26b), (26d), (26e), (26f), and (26h) are

trivial as these probabilities are well defined by definition.

Lemma 2 provides:

Pα
i (1) ≥ P̂a

i (1) ⇔ P̂a
i (0) ≥ Pα

i (0) (23)

where the right hand side follows from Pi(1, a
′, w) +

Pi(0, a
′, w) = 1 = Pi(1, a

′, w0) + Pi(0, a
′, w0). Equa-

tion (26a) follows directly from the hypothesis and (26c)

holds from the right side of the equivalence.

The lone remaining case is (26g), for which we define sets

Nq = {g(a, z) | z ∈ q}, NQ = {g(αT , z) | z ∈ Q} and so

on for r, s, R, S. We denote unions of these sets as Nqr :=
Nq∪Nr, NQR := NQ∪NR and so on for other combinations

of q, r, s and Q,R, S. Recalling q, r,Q,R are partitions over

states that a, αT may transition to, similarly, Nqr, NQR are

partitions of agents whose unilateral deviations result in such

transitions. This enables us to expand (26g):

νa,α(ā, ā′) =
1

|N |

(

∑

i∈Nqr∩NQR

(1− P̂a
i (¬ai)

− Pα
i (¬α

T
i ))

+
∑

i∈Nqr\NQR

(1 − P̂a
i (¬ai))

+
∑

i∈NQR\Nqr

(1 − Pα
i (¬α

T
i ))

)

.

(24)

This expansion takes advantage of |N | = |f(a)| which

allows |N | to enter the sums as 1. It now suffices to show

that the summand of each sum is a well defined probability,

of which the last two terms clearly are.

We begin by investigating i ∈ Nqr ∩NQR. In particular,

we have Nq = NQ, Ns = NR, Nr = NS due to ba,α
T

and

its bijectiveness due to Lemmas 3. By disjointness of q, r
we have Nqr = NQS which we apply to Nqr ∩ NQR =
NQS ∩NQR = NQ = Nq . Applying definitions of q,Q we

find i ∈ Nq =⇒ ¬ai = 1,¬αT
i = 0. Thus the summand of

the first sum for i ∈ Nq is given by

1− P̂a
i (1)− Pα

i (0) ≥ 1− Pα
i (1)− Pα

i (0) = 0 (25)

wherein the inequality is by (23), giving that the summands

in the first term of (24) are themselves well defined proba-

bilities. As all conditions have been met, νa,α is a monotone

coupling as desired.

D. A monotone coupling over histories

We now present coupling ν ĝπ which is constructed using

the one-step coupling. Using this coupling we then go on to

prove Lemma 1. We define indicator function 1 such that

1(P ) = 1 if P is a true logical proposition and 1(P ) = 0
else.
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

1

|N |

(

Pα
g(αT ,ā′)(1)− P̂a

g(a′,ā′)(1)
)

ā = a, ā′ ∈ R (26a)

1

|N |
Pα
g(αT ,ā′)(ā

′
g(αT ,ā′)) ā = a, ā′ ∈ Q (26b)

1

|N |

(

P̂a
g(a,ā)(0)− Pα

g(a,ā)(0)
)

ā ∈ r, ā′ = αT (26c)

1

|N |
P̂a
g(a,ā)(āg(a,ā)) ā ∈ q, αT = ā′ (26d)

1

|N |
P̂a
g(a,ā)(1) ā = ba,α

T

(ā′), ā′ ∈ R (26e)

1

|N |
Pα
g(αT ,ā′)(0) ā ∈ r, ā′ = ba,α

T

(ā) (26f)

1
|N |

(

|N | −
∑

z∈q∪r

P̂a
g(a,z)(zg(a,z))−

∑

z′∈Q∪R

Pα
g(αT ,z′)(z

′
g(αT ,z′))

)

a = ā, αT = ā′ (26g)

0 otherwise. (26h)

Fig. 1. The full specification of the one-step monotone coupling for Theorem 2. We adopt the notational convention that q, s,Q, S are assumed to take
arguments a, a′ and r,R take the argument a, a′ respectively.

Theorem 3: Let g ∈ GA be an aligned history-dependent

game and ĝ be its corresponding exact potential game. Then

ν ĝπ : A2
T → [0, 1] is a monotone coupling between P̂π, Pπ.

This coupling is given by

ν ĝπ(α, ᾱ) = π(α1)1(α1 = ᾱ1)

T−1
∏

t=1

να
t,ᾱ≤t

(αt+1, ᾱt+1)

(27)where α, ᾱ ∈ AT , π ∈ ∆(A).
Proof: Let α, ᾱ ∈ AT and let g ∈ GA, and let ĝ be the

corresponding exact potential game. We begin by showing

that if α �AT
ᾱ, then ν ĝπ(α, ᾱ) = 0. Immediately, we have

ν ĝπ(α, ᾱ) = 0 if α1 6= ᾱ1, so we need only consider cases

where α1 = ᾱ1. Inductively we find that if α �AT
ᾱ there

must exist some t ∈ {1, 2, 3, . . . , T − 1} such that αt ≤A ᾱt

but αt+1 �A ᾱt+1, and let t be the minimal such value. In

this case we have να
t,ᾱ≤t

(αt+1, ᾱt+1) = 0 because να
t,α̂≤t

is a well defined monotone coupling by Theorem 2, yielding

ν ĝπ(α, ᾱ) = 0 as desired. It also follows that ν ĝπ will always

yield a well defined probability as it is either 0 or a product

of well defined probabilities. Thus we only need to show

that the marginal probabilities are preserved given by (11).

We begin by showing the left equation of (11), that is:
∑

α≤AT
z

ν ĝπ(α, z) = P̂π(α) for each z ∈ AT (28)

and omit the proof for the right hand equation as it proceeds

identically. By inspecting (27), we only need to consider z
such that z1 = α1 and z features at most a single unilateral

deviation between any t, t+1. With these two conditions we

rewrite
∑

α≤AT
z

ν ĝπ(α, z) =
∑

α≤AT
z

π(α1)

T−1
∏

t=1

να
t,z≤t

(αt+1, zt+1)

= π(α1)
∑

α2≤Az2

να
1,z≤1

(α2, z2) . . .

∑

αT≤AzT

να
T−1,z≤T−1

(αT , zT ).

(29)

as the combinatorial form. Critically, this allows us to to ap-

ply the marginal sum properties of να
t,z≤t

from Theorem 2

for each t ∈ {1, 2, .., T }. First, considering the rightmost

sum in (29), it holds that
∑

αT≤AzT

να
T−1,z≤T−1

(αT , zT ) = P̂αT−1

(αT ).
(30)

Because this has no dependence on z we may factor out

P̂αT−1

(αT ) and repeat the process on the new rightmost

sum. After performing this process recursively on all sums,

we have
∑

α≤AT
z

ν ĝπ(α, z) = π(α1)

T−1
∏

t=1

P̂αt

(αt+1) = P̂π(α) (31)

as desired, noting we accounted for the indicator functions

in ν ĝπ. This concludes the proof of Theorem 3.

Now that the necessary results have been developed we

proceed with the proof of Lemma 1.

Proof of Lemma 1: Let g ∈ GA be an aligned history-

dependent game and I ⊂ AT be an upper set. Define

1I(α) := 1(α ∈ I) as an indicator function. Consider

probability measures Pπ, P̂π coupled by ν ĝπ in Theorem 3,

we have

Pπ(I)− P̂π(I) = EPπ
(1I)− E

P̂π
(1I)

= ν ĝπ(I
C , I) ≥ 0.

(32)

where the second equality follows by Proposition 3 as 1I is

increasing in AT . Note (32) runs parallel to the proof of [18,

Corollary 3]. That is, for any upper set I ⊂ AT we have

Pπ(I) ≥ P̂π(I). (33)

Let ((~0)T−1
t=1 ,~1) ∈ I. This induces I such that it includes

every path such that at time T the ~1 state is played. This

yields the following interpretation

Pπ(I) = Pr(s(T ; τ, π, g) = ~1) (34)

representing the probability that at time T game g is in

the ~1 action profile given initial distribution π ∈ ∆(A)
and learning temperature parameter τ . Noting a parallel



interpretation to (34) holds for P̂π, ĝ, we apply these to (33)

to obtain

Pr(s(T ; τ, π, g) = ~1) ≥ Pr(s(T ; τ, π, ĝ) = ~1) (35)

as desired. �
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