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Abstract

The exponential spread of COVID-19 in over 215 countries has led WHO
to recommend face masks and gloves for a safe return to school or work. We
used artificial intelligence and deep learning algorithms for automatic face
masks and gloves detection in public areas. We investigated and assessed
the efficacy of two popular deep learning algorithms of YOLO (You Only
Look Once) and SSD MobileNet for the detection and proper wearing of face
masks and gloves trained over a data set of 8250 images imported from the
internet. YOLOv3 is implemented using the DarkNet framework, and the
SSD MobileNet algorithm is applied for the development of accurate object
detection. The proposed models have been developed to provide accurate
multi-class detection (Mask vs. No-Mask vs. Gloves vs. No-Gloves vs.
Improper). When people wear their masks improperly, the method detects
them as an improper class. The introduced models provide accuracies of
(90.6% for YOLO and 85.5% for SSD) for multi-class detection. The systems’
results indicate the efficiency and validity of detecting people who do not wear
masks and gloves in public.
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1. Introduction

Today, Al has a crucial role in every aspect of the COVID-19 crisis re-
sponse. Al is composed of different techniques that are used as non-clinical
approaches to mitigate the huge burden of health care systems. Omne of
its roles is to prepare an assisting tool to prevent the spread of the virus
through automatic tracing and surveillance of people who do not wear masks
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and gloves in the public area. When the virus was at its early stages, re-
searchers quickly provided the necessary information and data for academic
purposes. Among them were Al researchers, making their efforts to develop
smart applications to overcome the limitations that humans pose against
COVID-19 [1]. A notable example is a deep learning system that uses the
DarkNet model classifier. It can classify COVID-19 cases from raw chest
X-ray images with an accuracy of 98.08 [2]. Since prevention is better than
treatment, the COVID-19 mask and gloves detection system is a useful and
feasible solution to mitigate this virus’s spread. Almost the majority of coun-
tries in the world are going through a pandemic. At the time of writing this
paper, more than 23 million COVID-19 cases have been confirmed in more
than 215 countries, and the virus has caused more than 800 thousand deaths
(https://www.worldometers.info/coronavirus), the virus’s growth rate
is exponential in more populated countries which is discussed by regression
coefficient of the log growth time-series data (i.e., number of new people
infected per day) [3]. It is mainly transmitted through human-to-human in-
teraction [4]. It can spread through large droplets existing in the air when
someone who carries the virus coughs, sneezes, or touches the face with a
hand exposed by the virus. The respiratory tract is the gateway for the virus
to enter the human body [5],[6]. In addition to patients with visible symp-
toms, there are numerous asymptomatic carrier cases with normal chest CT
images and no self-reported fever, but they turned out to be carriers of the
virus [7]. Unfortunately, due to the imbalance between supply and demand,
some authorities attempt to lessen the importance of using masks [8]. While
there are no randomized controlled trials (RCT) for using masks as source
control for SARS-CoV-2, numerous studies indicate that using personal pro-
tective equipment (PPE), along with social distancing and personal hygiene,
are necessary to prevent the virus from entering the body through infectious
respiratory droplets and help flatten-the-curve. Furthermore, fitting gloves
can prevent microorganisms obtained on the hands during daily tasks and
when known and unknown contaminated equipment or surfaces come into
contact. As a result, the transmission rate of the virus is less significant, and
the case-fatality rates (CFR) decreases [9],[10],[11]. One of the main reasons
that morbidity and mortality are higher in men than women is women tend
to use facial protection more than men [12]. Since the virus remains silent in
the body, and the symptoms can go unnoticed for weeks, wearing protection
is crucial to stop ”Silent Spreaders,” transmitting the virus [13]. In a study
undertaken in Hong Kong, findings from the Bonferroni-Dunn test with an
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adjusted level of significance indicate that older participants used a face mask
less often than young people when they had respiratory symptoms. Also, the
intention of citizens in wearing a mask was more about protecting others
than themselves [14]. Even if there are carriers of the virus in public areas,
the virus’s transmission rate becomes very low if they wear a face mask. To
further emphasize the importance of wearing facial protections and providing
a barrier between the face and the virus, the commitment of citizens to wear-
ing masks in public places contributed a great role in decreasing the spread
of the contagious virus in Vietnam, in contrast to Brazil, were lacking suffi-
cient protection amongst travelers in the airports, and not paying adequate
attention to the WHO guidelines, were the main reasons the virus entered
and spread throughout the whole country [15]. All these statistics indicate
that a positive outcome could be achieved when a high percentage of society
collaborates and follows the safety guidelines [16].

In addition to masks, in research that compared surface stability of SARS-
CoV-2 with SARS-CoV-1, the virus potential to exist on surfaces up to days
depending on the surface material has been indicated [17]. The human hands
come in contact with these unclean surfaces every day. When the individual
does not wear a glove, hands can be contaminated by the virus and results
in infection upon touching the facial organs. In this regard, Wearing masks
and gloves are essential for the safety of healthcare workers (HCW) and other
staff that are at high risk of getting infected and spreading the virus [18],[19].

To conclude, numerous studies suggest practical solutions to help reduce
the spread of the virus, such as alerting the public and urging them to use
personal protective equipment, which results in spread prevention, as well as
a decrease in public anxiety [20][21]. Thus, people who are willing to visit
public places during this severe pandemic should follow the safety guidelines
if the communities aim to be victorious in the battle against COVID-19.

In this research, a method to track and supervise the proper enforcement
of health recommendations for preventing the COVID-19 pandemic based on
deep learning is proposed. Deep learning is one of the branches of Al that
works like the human brain with many neurons. The word deep derives from
the expansion of the network size, which is proportionate to the number
of layers [22] [23]. Convolutional neural networks (CNN) produce a state
of the art results on image and video data. CNN consists of a series of
convolutional layers. In convolutional layers, multiple kernels convolve with
input to produce a feature map; this layer function can be expressed using
(1). K, denotes the convolutional kernel, Liyput and Loutput represent the
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number of input and output features, respectively.

L; . . .
1) feature-map; = Zj;nlp ¢ ij * input; + bias; 1 <@ < Loutput

Then, this feature map passes through the activation function to intro-
duce non-linearity into the output. ¥ could be any nonlinear function like

tanh, relu, etc. in formula (2).

2) output; = V(feature-map;)

Finally, an m x m filter with a stride n is applied to the input vector
and outputs maximum or minimum or average values of each subarea called
pooling. It decreases the input’s spatial size to reduce the number of param-
eters and computation in the network. The functionality of pooling layer is
shown in figure 1.

Pool with 2x2 filters and stride 2

Figure 1: Pooling function

The differences between CNNs come from the number of convolutional
layers, pooling function, and other internal parameters to accomplish a spe-
cific task like object detection or classification. In this regard, FRCNN [24],
Mask-RCNN [25],YOLO [26],SSD [27] are the most well-known detection al-
gorithms in the object detection area. Since real-time detection is crucial
in this work, YOLOv3 and SSD MobileNet are selected. After training the
custom dataset on these two deep learning models, their effectiveness has
been compared. These models have a similar end-to-end architecture, com-
puting a feature map with running a convolutional network on input image
only once, which results in detecting objects in real-time with good accuracy.
The YOLOv3 applies a new network, Darknet-53, whereas our SSD uses the
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MobileNet network [28]. In societies where there is not an abundant supply
of GPU power, SSD is recommended.

The experiments’ results indicate the effectiveness and validity of the
mentioned methods in supervising people to observe the regulation of using
protectives in public areas.

2. YOLO: You only look once

YOLO is one of the best object detection models which detect objects in
real-time and provides a good trade-off between speed and accuracy. YOLO
can retrieve contextual information about the classes as it observes the entire
image during training and test. In contrast, the R-CNN models need a
separate stage to fetch the target region [29]. Finally, it is generalizable since
it can detect one object in various poses. There are three official versions of
YOLO, where we have employed the latest version in the paper.

A high-level diagram of an object detector is shown in figure 2. The
whole system is composed of two major components: Feature Extractor and
Detector. When an image comes in, it passes through the feature extractor
first, and feature embedding is obtained at different scales. Then, these
features are feed into branches of the detector to get bounding boxes and
class information.

J'.\ Multi-Scale Features .
__, |Feature Extractor Or Backbone Detector > B°u+ngllng Boxes
7 asses

Figure 2: A high-level representation of the object detection methods
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YOLOWV3 [30] uses a new network Darknet-53 as a feature extractor which
is shown in figure 3, Darknet-53 has 53 convolutional layers. It is much deeper
than the old version, which has only 19 convolutional layers [31], performing
detections at three different scales, improving the accuracy of almost 9.8% in
608 x 608 image size. However, YOLOv2 performs at a better speed due to
a lighter architecture. Moreover, it has residuals or shortcut connections to
allow the gradients to flow through the network without passing through the
activation functions. By adding Feature Pyramids in YOLOv3, the models’
accuracy has improved in detecting small objects.
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Figure 3: Darkneth3 feature extractor architecture

The stages of the YOLO detection model are shown in figure 4. In the
first step, the model divides the image into an S x S grid. Then, the grid
containing the center of the ground truth bounding box of an object is ac-
tivated for detecting the object. Each grid is responsible for predicting B
bounding boxes, their confidence scores, and C conditional probabilities for
classes [30].
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Figure 4: YOLO object detection process

Same as all other detectors, the performance of YOLOv3 decreases as
the IOU threshold increases. The Mean average precision on more than 50%
of Intersection over Union is a judgment metric used to check an object de-
tector’s accuracy on a particular dataset. The ground-truth bounding boxes
(hand-labeled bounding boxes) and the predicted bounding boxes from the
detector model are the two main factors used to find an object detector’s
accuracy. The IOU metric is computed by the ratio between the overlapped
areas and the areas of Union. Refer to figure 5, the thin rectangles are
the ground truth boxes, and the thick boxes are the objects detected by
YOLOv3. As observed, an appropriate result is provided. Consequently,
there is no doubt that YOLOV3 is one of the best state-of-the-art object de-
tectors available, having an acceptable trade-off between accuracy and speed.
In this paper YOLOv3 has been used to solve the five-class detection prob-
lem, the detection kernels shape is (1 x 1 x 30) where 30 comes from 30 =
((k1+k2+k3) X 3)
ki =5 The number of classes (Mask,Improper,No-mask,Glove,No-glove)
ko =4 The bounding boxes attribute(x-center,y-center,width,height)
ks =1 The presence of object
Finally, 3 is the default value for the number of bounding boxes a cell on the
feature map can predict.

Final Detections
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Figure 5: YOLOvV3 aligns very good with the target object. Thick bounding boxes belong
to YOLOv3 and the thin boxes with small name sizes are the ground truth bounding
boxes.

3. SSD: Single Shot MultiBox Detector

Similar to YOLO, SSD detects objects in a single deep learning network.
After producing prediction rates to determine the likelihood of an object’s
existence in a bounding box, SSD makes the necessary adjustments to better
shape the targeted object in the bounding box. Since SSD uses the pre-
dictions from various activation maps, it handles images with various sizes
properly. Both YOLO and SSD use a final non-maximum-suppression step
in the final detection stage. One of the main characteristics of SSD is its
capability in detecting larger objects. Furthermore, the performance of SSD
is less sensitive to the quality of the feature extractor than Faster R-CNN
and R-FCN. However, it does not perform very well on small objects [32].

Comparing SSD and YOLOv3 performance, with a fixed size of the ob-
jects, YOLOv3 outperformed SSD in both accuracy and speed [33]. In this
study, the dataset comprised of all kinds of object size. Thus, the detector
should identify small, large, near, and far objects in the image. The Mo-
bileNet architecture’s objective, which is shown in figure 6, is to make neural
networks lighter and portable for mobile and embedded applications, which
is maintained primarily by depth-wise separable convolutions [28].
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Figure 6: Our SSD feature extractor (MobileNet architecture)

Like other object detectors, SSD has two major parts: backbone and
head. The backbone part is a pre-trained image classification network for
feature extraction. Here, we have used MobileNet architecture as a feature
extractor because of its speed and proper accuracy, which is the result of
using a combination of normal convolution and depthwise convolution. DW
convolution is performed independently for each of the input channels. It
significantly reduces the computational cost by omitting convolution in the



channel domain. The SSD consists of one or more convolutional layers added
to the MobileNet. The outputs are translated as the bounding boxes and
classes of objects within the spatial area of the final layers activation.

The main difference between YOLO and SSD is that SSD uses multi-scale
convolutional feature maps at the top of the network, but YOLO uses fully
connected layers.

Some extra augmentation e.g., a technique that can be used for the artifi-
cial change of the size and other characteristics of a training image, and other
techniques such as: converting RGB to gray, vertical flip, 90-degree rotation,
and adding Gaussian noise, have been applied to get closer to YOLO results.

4. Experiments

In this section, to evaluate our proposed methods’ robustness, our test
datasets have been used to compare SSD and YOLOv3 results.

4.1. Ezxperiment Setup

The dataset has been split randomly into a train, validation, and test set
with 4250, 2000, and 2000 images individually in the experiments. The other
learning parameters for both methods are listed in table 1.

training parameter YOLOv3 SSD

optimizer Stochastic gradient descent Stochastic gradient descent
learning-rate 0.001 0.0002

momentum 0.9 0.9

epoch 76 155

training-set 4250 4250

validation-set 2000 2000

test-set 2000 2000

batch-size 64 16

image-size 416x416 300300

Table 1: learning parameters

4.2. COVID-19 protective Dataset

A set of human images, with and without protective equipment, as ex-
plained in the following. A total number of 8250 image data was carefully
selected and collected for our purpose. Google Images were the source for
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gathering the required data. Masks with various forms, colors, and styles
exist in the dataset. Due to the increased popularity of face shields, pictures
with people wearing face shields with the intent to be detected as masks were
also included. The diverse dataset comprises of images consisting of only a
few numbers of people and images from crowded places, each with different
backgrounds. As a result, objects with different sizes and qualities have been
labeled in the annotation process. After the hand labeling process was com-
plete, the number of image classes are brought in table 2, which are 34942
objects in total. Due to the reason that the number of gloves and no-gloves
were incommensurate, up-sampling was done by repetition to balance out the
dataset. For the test phase, after training the data and producing the nec-
essary weights, 2000 images were randomly selected from the dataset to test
the methods’ accuracy. The dataset could be divided into four main groups:
Ideal, masks but no gloves, improper mask-wearing, and poor hygiene. The
ideal group is the people wearing both masks and gloves and, as a result,
having perfect hygiene. The second group is protecting their facial organs by
wearing masks; however, they do not wear gloves. The third group is those
wearing the masks improperly, and finally, the last group is the people not
wearing any protection. .

Class Number | Class Type | Number of Objects
1 Mask 11455
2 Improper 385
3 No-mask 8450
4 Glove 3175
5 No-glove 11477

Table 2: Our dataset

Figure 7 shows those who wear protective equipment completely.
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Figure 7: The ideal group: wearing both masks and gloves.

Figure 8 shows those only wearing masks.

Figure 8: Although wearing face masks, this group do not wear gloves.

Finally, figures 9 and 10 indicate people who do not obey the public rules
and those who wear the protections improperly. It is also worth mentioning
that some selected images include different classes in the collected dataset.

Figure 9: These images were ideal for making the system more robust so it can detect
people that are not serious about the pandemic with high accuracy.
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Figure 10: Not wearing the mask properly.

4.3. Evaluation measures

mAP is a metric used for evaluating object detectors. It is the average
of the AP, first precision and recall are defined for a single data for better
understanding.

TP TP
PRECISION = ——— RECALL = ———
TP+ FP TP+ FN
e TP = A correct detection and IOU is greater than or equal to the

threshold.
e FP = A wrong detection or IOU is less than the threshold.

e F'N = no detection for ground truth.

Precision and recall are always between 0 and 1, where AP is defined as the
area under the precision-recall curve, which is a plot of precision as a function
of recall.

1
AP:/ precision(r)dr
0

We compute the AP for each class and average them at different IOU values.
However, mAp@(0.5), which is the average of AP over IOU=0.5, means that
50% or greater overlap of the detected box with its ground truth would be
considered true positive is the main metric for results. The results of object
detection using YOLO and SSD methods are depicted in table 3 and 4 where
Area determines the size of objects and mAp@[.5:.95] means the average mAp
over different IOU thresholds, from 0.5 to 0.95 by step of 0.05 (0.5, 0.55, 0.6,
0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95). AR is the maximum recall given a fixed
number of detections per image, which is determined by maxDets. Figure 11
shows the results on the data in the collected dataset. Furthermore, Figure
12 shows some misclassified results.
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4.4. Result tables

Mean Average Precision 10U Area maxDets
0.462 0.50:0.95 all 100
0.906 0.50 all 100
0.320 0.75 all 100
0.593 0.50:0.95 small 100
0.385 0.50:0.95 medium 100
0.479 0.50:0.95 large 100
Mean Average Recall 10U Area maxDets
0.397 0.50:0.95 all 1
0.485 0.50:0.95 all 10
0.493 0.50:0.95 all 100
0.610 0.50:0.95 small 100
0.427 0.50:0.95 medium 100
0.525 0.50:0.95 large 100
Table 3: YOLO result on our dataset
Mean Average Precision 10U Area maxDets
0.521 0.50:0.95 all 100
0.855 0.50 all 100
0.524 0.75 all 100
0.514 0.50:0.95 small 100
0.337 0.50:0.95 medium 100
0.545 0.50:0.95 large 100
Mean Average Recall 10U Area maxDets
0.429 0.50:0.95 all 1
0.573 0.50:0.95 all 10
0.586 0.50:0.95 all 100
0.553 0.50:0.95 small 100
0.446 0.50:0.95 medium 100
0.594 0.50:0.95 large 100

Table 4: SSD result on our dataset
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Figure 11: Image pairs are shown in which the left image is for YOLO, while the right
image is for SSD. As it can be seen SSD has some weakness in detecting small objects
(class: Glove) compared to YOLO.

Precision of YOLO and SSD is compared based on object size in table 5. As
it can be seen SSD performs better in detecting bigger objects.

method small medium large
YOLO v v
SSD v

Table 5: qualitative comparison based on object size
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(a) Correctly classified by YOLO (b) Misclassified by SSD

Figure 12: b is one of misclassified examples in our dataset which come from the
high similarity in No-mask and Improper classes.

5. Conclusion

In this study, two different DNN object detection algorithms have been
applied for proper masked face and glove detection. We have compared two
popular DDNs: SSD MobilNet and YOLOv3. Both of them were trained via
transfer learning. The number of training iteration is selected based on the
minimum loss. The result indicates that YOLO outperforms SSD MobileNet
in terms of mAp. However, when the average recall is considered, SSD shows
a better result. Also, as observed in tables 3 and 4, SSD obtained a bet-
ter result in IOU=0.75 compared to YOLO, demonstrating better alignment
with the target. Considering the situations in public places, better alignment
is not a crucial factor in this problem. Whereas, the ability of a method to
detect objects with acceptable accuracy is more critical even with less align-
ment. So, YOLOv3 may be a more useful detection method. However, SSD
might perform better in low computational power systems since of a lighter
architecture than YOLO. This work has the potential to operate at a large
scale, and we are confident that it can contribute to bringing a better life in
this pandemic.

6. Future work

For future work, COVID-19 social distancing with person detection and
tracking could be merged with this model to calculate the distance of people
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considering the factor whether personal protective equipment is used or not

[34].
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