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Abstract

We derive an analytic expression describing how health costs and death
counts of the Covid-19 pandemic change over time as vaccination pro-
ceeds. Meanwhile, the disease may continue to spread exponentially unless
checked by Non Pharmacological Interventions (NPI). The key factors are
that the mortality risk from a Covid-19 infection increases exponentially
with age and that the sizes of age cohorts decrease linearly at the top of
the population pyramid. Taking these factors into account, we derive an
expression for a critical threshold, which determines the minimal speed a
vaccination campaign needs to have in order to be able to keep fatalities
from rising. Younger countries with fast vaccination campaigns find it
substantially easier to reach this threshold than countries with aged pop-
ulation and slower vaccination. We find that for EU countries it will take
some time to reach this threshold, given that the new, now dominant,
mutations, have a significantly higher infection rate. The urgency of ac-
celerating vaccination is increased by early evidence that the new strains
also have a higher mortality risk [1]. We also find that protecting the over
60 years old, which constitute one quarter of the EU population, would
reduce the loss of live by 95 percent.

1 Introduction

After a first and second wave, Europe faces in the spring of 2021 a rapidly
spreading third Covid-19 outbreak. There is an ongoing race between mass
scale vaccination campaigns and the disease, which continues to evolve and to
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spread [2]. The emergence of a new and more infectious strand [3] means that
strict containment measures need to be put in place to prevent exponential
growth of cases, hospitalizations and fatalities. At the same time, vaccines have
become available, with vaccination campaigns protecting a growing proportion
of the population, slowing and eventually also stopping the spread of the SARS-
CoV-2 virus [4]. The ultimate aim is ‘herd’ or population immunity, when a high
enough percentage of the population has developed immunity through infection
or vaccination.

However, vaccination takes time, mostly due to the limited availability of
the vaccine, in part also due to bottlenecks in distribution and implementation.
In this respect we point out that the production of SARS-CoV-2 vaccines is
observed to increase approximately linearly with time and that this observation
is in line with the prediction that firms processing batch orders minimize their
adjustment costs when ramping-up production linearly [5].

For policy makers, a core question is whether it may be possible to lift NPIs
at least partially already comparatively early in the vaccination campaign. To
this respect we concentrate here not on the number of infections, but on the
medical costs, which we take to be proportional to the number of lives at risk.
The number of fatalities and hospitalizations for Covid-19 tend to be highly
correlated. Moreover, the number of Covid-19 related fatalities constitute a key
determinant for the imposition of lock-downs and other NPIs which come with
severe economic and social cost in terms of lost output and employment.

The central issue for policy makers today, especially in Europe, is at what
point the vaccination campaign has acquired sufficient speed to overcome the
increase in infections, which occur in many countries despite partial lock-downs.

To determine this, three factors need to be taken into account:

• The age-dependency of the case fatality rate, which has been established
to increases approximately exponentially with age [6].

• The population structure for the elderly, which is to first order linear
at the top, which means that the size of age cohorts increases gradually
top-down from the maximum age (about 100 years).

• The functional dependency of daily vaccinations rates, which are observed
to increase in most countries approximately linearly over time. Modulo
organizational problems and reserves for the second jab, vaccination rates
are determined in the end by the availability of vaccines.

These three building blocks, which constitute the foundations of our analysis,
are laid out separately below.

2 Modeling framework

2.1 Age-dependency of the mortality risk

It has been widely documented that the risk to die from a Covid-19 infection
raises strongly with age. A meta-study suggests an exponential relationship [6],
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Figure 1: Age distribution of selected EU countries. Fractional age co-
horts for Germany (DE), Ireland (IE), Italy (IT) and EU27 (EU). Also shown is
a linear interpolation for the EU data (black line), for ages 60 and above. Data
from [7].

which can be parameterized as

IFR ≈ 0.01e−7.529+0.121∗a ∼ ea/a0 a0 = 8.26 (1)

where a ∈ [0, 100] is the age cohort. The infection fatality rate IFR ∈ [0, 1] is
very high for a = 100, namely IFR(100) = 0.93.

The constant a0 denotes the half live age difference in terms of mortality.
To be more precise, for an age difference of 8.26 years the risk increases by a
factor of 2.78 (= ln(1)). The risk doubles for an age difference of 5.7 years.1

2.2 Age pyramid

The age pyramid for a range of selected countries is presented in Fig. 1, where
the age cohorts are given in percentage, viz relative to the entire population.
One notices that the age pyramid closes quadratically at the top. The relevant
range for the quadratic dependency is however somewhat restricted, applying
only for ages about 85 and above.

Most Covid-19 vaccination campaigns currently in place follow, to a varying
extend, top-down strategies [9]. In order to quantify the impact on expected
fatality counts we use a simple linear approximation for age pyramids, as in-
cluded in Fig. 1. This approximation is intended as an overall fit to ages 60 and
above.

In the following we set the maximum age to zero, counting down from 100.
The actual age is then 100 − x. The age density, denoted by ρ(x), varies by

1Statistics from the CDC of the US show that the over 85 years old have a Covid mortality
rate 7900 times higher than that of the 5-17 years old. This translates also into a doubling
age difference of about 8 years (= (85-11)/ln(7900) [8].
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cohorts. Countries with population pyramids closing linearly at the top are
described by

ρ(x) = px,

∫ δA

0

ρ(x) dx = v, v =
p(δA)2

2
, (2)

where v is the number of people (relative to the total population) vaccinated
top-down to an age difference δA.

Fitting to aggregate European demographic data yields p ≈ 0.00033, as
shown in Fig. 1, with little difference across the major EU member countries.
This value for p refers to the case that ρ(x) is measured relative to the total
population, in terms of percentiles of cohorts by year. The linear approximation
holds down well to 60 years. Below this age the size of the cohort no longer
increases (and even falls in some countries, like Italy). Here we concentrate on
the age cohorts from 60 years up, which are the ones subject to the highest
mortality risk, constituting the largest proportion of the overall loss of life. The
case of Germany illustrates this proposition. Taking into account the combined
effect of (1) and the age distribution, as presented in Fig. 1, one finds that
about 1.5 million above an age of sixty die in the hypothetical scenario that the
entire population would be eventually infected with the SARS-CoV-2 virus. In
contrast, the fatality count would include only 75 thousand below sixty, a factor
twenty less. We thus feel justified concentrating our analysis on the age cohorts
above 60, for which the population pyramid is approximately linear.

The ‘over 60’ account for about 26 percent of the total population of the
EU, with their shares ranging from 20 percent in the case of Ireland and 29
percent in the case of Italy. This implies that vaccinating about one fourth of
the population will avoid 95 percent of the fatalities (19/20). This calculation
based solely on age represents of course an approximation.

Due to vaccine hesitancy the uptake among the elderly could be less than
100 percent. But these factors are also present among all age groups, reducing
thus the overall benefit from a vaccination campaign, but not necessarily the
advantage of age-sensitive vaccination. Vaccine hesitancy is in particular likely
to be lower among the elderly, implying that the share of the benefits from
offering vaccination to the elderly first might be even higher than the 95%
suggested on demographic considerations alone. A factor suggesting otherwise
may however be ‘long Covid’ [10].

There is also evidence that immunity wanes more quickly at higher ages [11],
implying that the re-infection risk is higher for the elderly. This effect plays out
however on a time scale beyond that of most vaccination campaigns.

2.3 Vaccination campaigns

It is not possible to vaccinate the entire population instantly, because vaccines
have to be first mass-produced and then distributed. This is illustrated in Fig. 2,
where the daily vaccination rates are shown for a range of selected countries.
Daily rates may vary, in particular for smaller countries, when larger batches
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Figure 2: Growth of daily vaccination rates. Per million daily vaccinations
in Italy, France, Germany, the United Kingdom (UK) and the United States
(USA). The growth is roughly linear, modulo in part substantial fluctuations.
Data smoothed over seven days, from [12].

are delivered from abroad. The availability of imports explains also the faster
vaccination campaign of the UK. But for larger units, like the EU or the US, the
trend is linear. Overall, vaccination rates can be expected to track deliveries,
with eventual organizational problems leading only to temporary delays. EU
member countries agreed to place joint Advance Purchase Agreements with the
deliveries distributed on a per capita basis [5]. As a consequence, the vaccination
curves for EU member countries all follow the same trend.

Over the course of several months, the daily vaccination rates shown in Fig. 2
raise roughly linearly, in line with production capacities. This linear ramp-up
has been predicted [5]. The reason is that Covid-19 vaccine were ordered ahead
of their approval in large batches. But ramping up production capacities implies
large adjustment costs. Minimizing these adjustment costs, subject to fulfill
the order within a certain time period leads then to a linear ramping-up of
production capacities [5].

Given these considerations, and the data presented in Fig. 2, we assume
that the number of daily jabs, viz the vaccination rate, increases linearly. The
fraction of the population v vaccinated top down increases then with the square
of time t,

v = v(t) =
1

2

(
t

t0

)2

=
p

2
(δA)2, δA =

t

t0
√
p
≡ a0gvt . (3)

The parameter t0 denotes the time needed to vaccinate one half of the pop-
ulation. Given the increase of cohort sizes with age, one finds that the age
of the youngest cohort that can be fully vaccinated, denoted δA, falls linearly
over time, see (2). The factor a0 in the last definition is the characteristic age
determining the exponential functionality of the IFR, as defined by (1).

An order of magnitude estimate for the length of vaccination campaigns,
t0, can be evaluated from available data. For example, in Israel it took about
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10 weeks (from the beginning of January to mid-March) to fully vaccinate one
half of the population, resulting in an estimate of t0 = 10 (weeks). In the EU,
only about 5 percent of the population has been fully vaccinated over the same
period corresponding to an estimate of t0 = 10

√
10 ≈ 32 (weeks).

In our framework ‘vaccinated’ implies full immunity, which is attained for
most Covid-19 vaccines only after the second jab. For simplicity we abstained
here to model reduced levels of immunity, like 95%, which would lead only to
higher order corrections. Note that only a certain fraction of all jabs, typically
of the order of 50%, are administered following a strict age criterion.

The time needed to vaccinate the entire population, i.e. to the point v = 1,
is equal

√
2t0. The parameter t0 thus does not denote the full length of the

vaccination campaign, but the time needed to vaccinate 50% of the population.
At that point more than 99% of the fatalities can be avoided and NPIs can be
lifted. t0 provides thus a good parametrization of the effective length of the
vaccination campaign.

3 Flattening the health cost curve

Putting the three basic elements – the exponential age-dependency of the case
fatality rate, the linear functionality of population pyramid, and the linear in in-
crease of daily vaccinations rates – together, we proceed to calculate the impact
of a vaccination campaign on mortality rates.

We concentrate on the growth of health costs (here proxied by fatalities)
because the key concern for policy makers remains to ’flatten the curve’, i.e. to
prevent an explosive increase in hospitalizations which could overwhelm health
systems.

3.1 Putting the building blocks together

We assume that full vaccination provides a high level of protection against severe
illness and death, as confirmed not only by trial data [13], but also by real world
application [14] [15]. For our model we assume furthermore that vaccination is
allocated strictly by age, starting with the oldest. In practice the situation is
more complicated. Firstly, because a substantial fraction of the available vaccine
is reserved in most countries for potential spreaders [9], independent of their age.
Secondly, one needs to distinguish between people having received one or two
shots. Both effects could be incorporated into the framework developed here. In
order to clarify the mechanisms at work, we study in the following the idealized
situation that ‘vaccinated’ implies full protection.

People belonging to the elderly group, as specified above, have the risk Rv ∈
[0, Rmax] to die from a Covid-19 infection, with Rv being determined by

Rv
Rmax

=
p

v

∫ δA

0

x e−x/a0dx =
pa20
v

[
1−

(
1 +

δA

a0

)
e−δA/a0

]
, (4)
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where the exponential exp(−x/a0) describes the age dependency of the IFR. For
(4) we used a20d[(x/a0 + 1) exp(−x/a0)]/dx = −x exp(−x/a0). As a function of
the population density parameter p we then have

Rv(p)

Rmax
=
pa20
v

[
1−

(
1 +

δA

a0

)
e−δA/a0

]
, δA =

√
2v/p , (5)

where v is fixed when comparing two countries with different p. Note that Rv(p)
is in general a non-linear function of p, with the dominant term being however
a linear contribution.

3.2 Small vaccination limit

For the limit δA→ 0 one finds

(1 + Ã) e−Ã ≈ (1 + Ã)

(
1− Ã+

1

2
(Ã)2 − 1

6
(Ã)3

)
= 1− 1

2
(Ã)2 +

1

3
(Ã)3 , (6)

where we introduced the abbreviation Ã = δA/a0. Together with the prefactor
(5), we then have

Rv
Rmax

→ pa20
v

(
1

2

(
δA

a0

)2

− 1

3

(
δA

a0

)3
)

= 1− 2

3

(
δA

a0

)
, (7)

when making use of δA =
√

2v/p. The oldest have in our framework the risk
Rmax to die when infected, which is consistent with the infection fatality rate
being Rmax exp(−x/a0).

3.3 Balancing condition

Health costs are determined by the per-person risk to die from an infection,
times the probability to catch the virus. We multiply (5) with the fraction of
vaccinated, v, in order to obtain an expression for total, and not for relative
numbers. The medical costs Cmed per time unit can then be written as

Cmed = cM0

(
1 +

δA

a0

)
e−δA/a0 I(t) , (8)

where the number of infected, I(t) ∈ [0, 1], is defined relative to the total popu-
lation. The expected costs of intensive care is cM0 for the case that nobody has
yet been vaccinated. With δA =

√
2v/p the representation

Cmed = cM0

(
1 +

√
v

v0

)
e−
√
v/v0 I(t), v0 =

a20p

2
(9)
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is obtained. The reference vaccination fraction v0, as defined above, can be
estimated to be 8.262 · 0.00033/2 ≈ 0.011 for a typical EU country, viz roughly
one percent.

As argued above, a key concern for policy makers remains ‘to flatten the
curve’. This means that the key aspect is evolution of medical costs over time,
as expressed by the time dependence δC = (dCmed/dt)/cM0 . We have

δC =

(
1 +

√
v

v0

)
e−
√
v/v0 İ(t)

−
(

1 +

√
v

v0

)
e−
√
v/v0 I(t)

v̇

2
√
vv0

+ e−
√
v/v0 I(t)

v̇

2
√
vv0

. (10)

The turning point, δC = 0, is given by

v̇

v0
= 2

(
1 +

√
v

v0

)
İ

I
, (11)

where İ/I is the (relative) increase of the incidence. Given that v0 is about one
percent, one arrives hence to the following rule of thumb:

“For every proportional increase İ/I of the incidence, one needs to
vaccinate an additional percentage of at least twice that amount in
order to outrun the virus.”

This lower bound holds for v → 0, becoming larger when vaccination progresses.
Vaccinating faster reduces daily Covid-19 fatalities, which increase when vac-
cination speeds falls below the above threshold. We have so far concentrated
exclusively on the fact that vaccines are highly effective against severe cases and
death, not only in clinical trials, but also in reality, up to 99% among the over
60 [14].

The evidence regarding the impact of vaccines on the spread of infections
is less clear [16]. However, any impact of vaccination on infectiousness would
not change the balancing condition (11), which applies in general. However,
with vaccination reducing infectiousness, the growth of the disease slows down
(to a lower value for İ/I), making it easier to reach the point where the curve
‘flattens’.

3.4 Time evolution

The balancing condition (10) can be used to analyze a range in different sit-
uations. Of interest is to combine (10) with the observed linear increase in
vaccination rates, using v = (t/t0)2/2. One obtains

t

t0
=

(
2v0 +

t

t0

√
2v0

)
t0
İ

I
. (12)
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An important result is that the duration t0 of the vaccination campaign mat-
ters in absolute numbers, given that t0 rescales İ/I on the right-hand side of
(12). Slow campaigns are substantially less effective in controlling third-wave
outbreaks, as measured by the relative increase İ/I in infected.

The threshold relation (12), which determines whether medical costs are
kept from rising, can be rewritten in terms of the two structural parameters p
and a0,

t

t0
=

(
a20p+

t

t0
a0
√
p

)
t0
İ

I
, v0 =

a20p

2
, (13)

see (9).2

The parameter a0 represents a fixed characteristics of the disease. How-
ever, the slope p of the population pyramid differs in part substantially across
countries, with younger countries having a smaller slope parameter (in absolute
terms). Among EU member states, the differences in the slope of the pyramid
at old age is minor, as shown in Fig. 1. However some developing countries
(e.g. Nigeria) have a much younger population, with pyramid slope parameters
about one half of that of Italy. This implies that younger countries can contain
health costs even with substantially slower vaccination campaigns. 3

4 Containment scenarios

For two scenarios, namely for comparatively slow/fast vaccination campaigns,
we examine to which extend progress in vaccinating the population can offset
the growth of the pathogen.

2We concentrate on the general analytical solution in order to avoid having to make too
many specific assumptions about the way the pandemic spreads. For a more detailed, struc-
tural approach see [17].

3However, countries with a younger population, like Nigeria, are often also much poorer
and might face logistical difficulties distributing vaccines which have to be kept constantly at
very low temperatures.

Table 1: Containment thresholds. For two different vaccination campaign
lengths t0 (in weeks), the maximal weekly increases in infected, ∆I = [İ/I]week

that can be contained when vaccinating top-down a progressively larger fraction
v = (t/t0)2/2 of the population. Given are the thresholds for ∆I at distinct
stages of the campaign, viz for t/t0 = 1/10, 1/4, 1/2, 1. Note that the absolute
value of t0 matters, as expressed by (12).

t/t0 1 0.5 0.25 0.1

v in percent 50 12.5 3.2 0.5

EU t0 =32 0.19 0.16 0.13 0.09

ISR t0 =10 0.59 0.52 0.42 0.27

9



4.1 Aggressive new mutations can be controlled by fast
vaccination campaigns

We denote vaccination campaigns to be fast when it takes about 10 weeks, as
for Israel, to fully vaccinate one half of the population. In units of weeks, the
balancing condition (12) takes then the form

t

t0
=

(
0.22 + 1.48

t

t0

)[
İ

I

]
week

, (14)

when using v0 ≈ 0.011. An increase in the number of infected, by a weekly rate
of ∆I = [İ/I]week, will not lead to an increase of the weekly death count if the
balancing condition (14) is satisfied. At t = t0, when half of the population has
been vaccinated, this can be achieved for ∆I = 1/(0.22 + 1.48) = 0.59, earlier
on for respectively smaller ∆I. Fast vaccination campaigns are hence able to
control even rapidly expanding new mutations. For a refinement of the above
estimates one could use the v0 appropriate for the country in question, here
Israel, which would be slightly smaller. In Table 1 the containment efficiency is
listed for selected values of t/t0.

4.2 Control deteriorates for slow vaccination campaigns

As a second example we consider a comparatively slow vaccination campaign,
as for the EU, with t0 being about 32 weeks. The balancing condition is then

t

t0
=

(
0.7 + 4.7

t

t0

)[
İ

I

]
week

. (15)

After four months, half way through the campaign, when t/t0 = 1/2, weekly
∆I = 0.5/(0.7 + 4.7 ∗ 0.5) = 0.16 can be controlled.

In reality vaccination campaigns do not strictly follow age, prioritizing also
additional groups in occupations requiring close physical contact, like teachers
and medical personal. However, it seems that the priority given to these other
groups does not have a major impact on the distribution of vaccines. In Israel,
one of the few countries with data on vaccination by age, in early January 2021,
over 75 percent of the over 60 years old had received at least one dose, but only
15 percent of those between 15 and 59 [18].

4.3 Taking into account the impact of infections on trans-
mission rates

We have so far concentrated on the relationship between the observed value of
the increases in cases, ∆I, and the speed of the vaccination campaign needed
to prevent an increase in the medical costs. However, one could also consider
that progressing vaccination reduces the pool of susceptibles. To illustrate the
potential impact of this effect we assume that vaccination fully protects also

10



against transmission. This might not correspond fully to reality but it has the
advantage of providing an upper bound for the benefits from vaccination. The
resulting new thresholds are as shown in Table 2.

Public discussion usually concentrates on the need to keep the reproduction
number, R, below one, which is equivalent to keeping the growth rate, g, below
zero. This goal is easier to achieve when a certain proportion of the population
is fully vaccinated and hence immune. The first row in Table 2 indicates that
for the EU the vaccination campaign would on its own be sufficient to offset
the natural growth in cases with reproduction number, R, up to 1.37 only when
50% of the population has been vaccinated.

The reproduction number of the new variant B.1.1.7 has been estimated to
be 0.6 points higher than the original SARS Coronavirus 2 [3]. This implies
that without NPIs the growth rate of the new strain is likely to be higher than
the threshold that can be reached with the slow EU vaccination campaigns. By
contrast, the high speed campaign of Israel could deal with an R value per week
of 1.59 already mid-way in the (shorter) vaccination campaign.

More in general, a comparison of Tables (1) and (2) shows that the impact of
vaccination on the balancing condition becomes significant only after the second
half of the vaccination campaign (i.e. for t/t0 ∈ [0.5, 1]).

5 Inter-temporal considerations

We have so far concentrated on the evolution of fatalities as a function of the
speed of the vaccination campaign and on the combination of the age specific
infection fatality rates with the slope of the age pyramid. In principle, policy
makers should look at the sum of all future health costs. We provide an ana-
lytical solution for this sum below. However, policy making seems to be guided
de facto mainly by short-term considerations [19], namely, whether the pressure
on the health system and the number of fatalities can be contained in the short
run [20].

Table 2: Containment thresholds with vaccination reducing transmis-
sion. As for Table 1, the maximal weekly reproduction number ∆I that can
be contained, adjusted for the reduction in infections due to vaccination. Given
are the thresholds in terms for ∆I/(1− v) at distinct stages of the campaign,
viz for t/t0 = 1/10, 1/4, 1/2, 1. Compare (12).

t/t0 1 0.5 0.25 0.1

v in percent 50 12.5 3.2 0.005

EU t0 =32 0.37 0.19 0.14 0.09

ISR t0 =10 1.16 0.59 0.43 0.27

11



5.1 Health costs saved

The reduction in the risk to die once infected, as given by (4), can be calcu-
lated from the product of the percentage vaccinated, v, the age specific case
fatality rate and the infection rate. The overall reduction in health costs is then
proportional to Rvv,

Cmedical
saved =

∫ Tv

0

vRv
(
I0egt

)
dt (16)

= pI0Rmax

∫ Tv

0

[
1− (1 + gvt)e

−gvt
]
egtdt ,

where Tv is the vaccination period considered. The growth rate g of infections,
which is taken here to be given, is related by g = (R− 1)/τ to the reproduction
number R, where τ is the characteristic transmission or ’generation’ time. It
determines the percentage increase of the İ/I, or I = I0 exp(gt), where I0 is
the incidence at the start of the vaccination campaign. The integral on the
right-hand side of (16) is4

egTv − 1

g
− e(g−gv)Tv − 1

g − gv
− gv

∫ Tv

0

te(g−gv)tdt , (17)

with ∫ Tv

0

te(g−gv)tdt =
1

(g − gv)2
[
((g − gv)t− 1)e(g−gv)t

]t=Tv

t=0
. (18)

Considering (17) and (18) together one finds that the solution contains two
parts, one of which depends only on g and the other one depends only on g−gv.
A new strand of the virus with a higher infectiousness (i.e. a higher g) would
thus require a faster vaccination campaign as already found above.

5.2 Short- and long-term health costs savings

The small-t expansion of (16) is

Cmedical
saved ≈ pI0Rmax

∫ Tv

0

[ (gvt)
2

2

]
egtdt ≈ pI0g

2
vRmax

6
T 3
v . (19)

Initially, when vaccination rates increase linearly with time, the reduction in
health costs achieved by immunizing a growing fraction v of elderly scales only
with the third power of the vaccination period Tv. This holds even when the
pathogen continues to spread exponentially, which enter only in higher orders.

In the opposite limit, when Tv is large, there is only a finite number of lives
to be saved. This is due to the exponential decay of IFR, with decreasing age
cohorts. We therefore find

Cmedical
saved ≈ pkI0Rmax

g
egTv (20)

4We neglect discounting given that the period considered is in weeks. Conventional social
discount rates would be essentially be zero of this unit [19].
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for large vaccination periods Tv. This relation is however only valid as long as
the incidence rate I = I0 exp(gt) remains below unity.

Discussion

A key aim for policy makers grappling with a potential third wave of the Covid-
19 pandemic in early 2021 is to ‘flatten the curve’, i.e. to keep hospitalizations
and fatalities from rising exponentially [21].

We have concentrated on three key factors shaping the problem. First, the
mortality risk from a Covid-19 infection increases exponentially with age. Sec-
ond, the sizes of age cohorts decrease at the top of the population pyramid.
Third, vaccination proceeds at an increasing speed. Taking these factors into
account, we derived an expression for a critical threshold, finding that vaccina-
tion campaigns above/below this threshold are able/unable to maintain current
fatality levels when the daily case numbers continue to raise at a given rate.
Countries with a comparatively young/old population have it easier/harder to
reach this threshold, which is otherwise directly controlled by the speed of the
vaccination program.

Vaccine hesitancy and other factors, such as waning immunity with age, can
reduce the overall effect of vaccination campaigns. Moreover, there are other,
less age specific cost of the disease, like ‘long Covid’ [22]. Incorporating these
factors would refine the model, making it at the same time necessary to estimate
larger numbers of parameters.

A central insight of our study is that it hurts twice when vaccination is slow.
On top of the slow increase in the number of the protected, there is a second
effect in addition to the direct time delay. Consider two vaccination campaigns,
one taking twice the time then the other, 2t0 instead of t0, to vaccinate 50% of
the population. The control capabilities halfway through the campaign, respec-
tively at t = t0 and at t = t0/2, are not identical. We find that the capability
of slow vaccination programs to control aggressive new Covid-19 strains are not
just delayed, but strongly reduced.

Vaccination reduce also the spread of the virus. This provides an additional
element which increases the importance of vaccination speed. However, this
element becomes significant only in the second half of a vaccination campaign.
Here again the length of the vaccination campaign matters as this phase of
reduced transmission is reached twice as fast. To vaccinate fast is substantially
more important than generally acknowledged.
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