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ABSTRACT

Cryo-Electron Tomography (cryo-ET) is a new 3D imaging technique with unprecedented potential
for resolving submicron structural detail. Existing volume visualization methods, however, cannot
cope with its very low signal-to-noise ratio. In order to design more powerful transfer functions, we
propose to leverage soft segmentation as an explicit component of visualization for noisy volumes. Our
technical realization is based on semi-supervised learning where we combine the advantages of two
segmentation algorithms. A first weak segmentation algorithm provides good results for propagating
sparse user provided labels to other voxels in the same volume. This weak segmentation algorithm is
used to generate dense pseudo labels. A second powerful deep-learning based segmentation algorithm
can learn from these pseudo labels to generalize the segmentation to other unseen volumes, a task
that the weak segmentation algorithm fails at completely. The proposed volume visualization uses the
deep-learning based segmentation as a component for segmentation-aware transfer function design.
Appropriate ramp parameters can be suggested automatically through histogram analysis. Finally,
our visualization uses gradient-free ambient occlusion shading to further suppress visual presence
of noise, and to give structural detail desired prominence. The cryo-ET data studied throughout our
technical experiments is based on the highest-quality tilted series of intact SARS-CoV-2 virions. Our
technique shows the high impact in target sciences for visual data analysis of very noisy volumes that
cannot be visualized with existing techniques.

Keywords Scalar Field Data; Algorithms; Visual Representation Design; Life Sciences, Health, Medicine, Biology,
Bioinformatics, Genomics; Large-Scale Data Techniques; Machine Learning Techniques; Volume Rendering; Computer
Graphics Techniques

1 Introduction

Since 2014, the revolution in resolution [1] made cryogenic electron microscopy (cryo-EM) the main technique for
high-resolution macromolecule structure determination. Its extension - cryo-Electron Tomography (cryo-ET) enables
the use of cryo-EM for the 3D reconstruction of specimens. As it became widely accessible, the amount of acquired data
has far superseded the existing data analysis pipelines’ capacities. While acquisitions are still mostly done manually by
microbiology experts, with the rapid increase in acquired data, new analysis tools must be developed.

One crucial analysis step is determining what specimen is represented in the acquired data and how to proceed with
its processing. This is typically done using 3D data visualization methodologies. However, the imaging artifacts can
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Figure 1: From left to right: slice of the original data, direct volume rendering of the original data; foreground-
background segmentation; color-coded four-class segmented data (background, spikes, membrane, lumen).

make this quite challenging, and this can be seen as analogous to discovering fossils in an excavation site. Due to the
fossilization, the specimens have almost the same composition as the surrounding environment, and they are difficult to
distinguish. The interesting details in the cryo-ET data are similarly buried in the surrounding noise. As the noise is a
direct result of the acquisition process, where one has to be careful to evenly spread the energized particles, such that
they cause as little damage to the specimen as possible, cryo-ET data always suffers from a low signal-to-noise ratio
(SNR).

To excavate the specimens from the surrounding noise, experts typically annotate the data manually and use those
annotations for further steps in their research (e.g., subtomogram averaging [2] for determining the detailed structure
composition or visualization). As this process can only be undertaken by domain experts, data processing has become a
bottleneck, and researchers are looking into modern automatic segmentation methods based on deep learning (DL).
DL-based semantic segmentation approaches have shown great potential in a wide area of scientific disciplines, such as
medicine [3] or biology [4]. However, when applying standard discrete DL-based semantic segmentation to cryo-ET
data, the obtained crisp segmentation masks do not accurately reflect the uncertainty stemming from the imaging
modality. Rather than having each pixel classified into a distinct—but possibly wrong—class, the low resolution and
SNR require a higher degree of flexibility for exploring the data by the domain experts. Thus, similarly as when
exploring medical volume data, it would be desirable to explore the data by means of a transfer function (TF)—a
proceeding forbidden by the low SNR of cryo-ET.

Our technical contribution is centered around the key observation that a visual mapping using a transfer function
specification essentially performs two tasks: 1) TF performs a soft segmentation of objects and simultaneously 2) TF
assigns optical properties. While solving both tasks at the same time is non-trivial even for easy noise-free modalities
like medical CT data, by decomposing the role of visual mapping into two separate tasks, a solution can be found that
allows a high degree of automation even for the most difficult and noise-polluted modalities such as cryo-ET.

We translate the task of soft segmentation during the visual mapping stage into the domain of probabilistic segmentation,
which results in desired soft membership assignment. To achieve this, for the first time, we adopt the concept of
semi-supervised learning within the volume visualization pipeline. This methodology provides high-quality, soft
segmentation even from sparse user input. With just a few supervising sparse strokes, we employ a weaker segmentation
algorithm to generate dense labels, also called pseudo labels. We provide these pseudo labels to a stronger deep-learning
classifier that is robust but a lot more data-hungry as it requires dense labels for training. Once trained, it provides a
high-quality probabilistic (soft) segmentation for unseen datasets fully automatically.

The soft segmentation task is coupled with an optical properties assignment, which is much easier to automate when
tackled separately. These two steps form together a visual mapping assignment, which results, together with advanced
volume illumination models, in the excellent visual quality of rendered images. Finally, the 3D visualization can be
fine-tuned by the user in case the automated methods did not find exactly the best visual parameters. Along this line, we
make the following contributions:
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• We propose to alleviate the user from the transfer-function design task by decomposing the visual mapping
task into soft segmentation and optical properties assignment.

• For the soft segmentation we propose to use the concept of semi-supervised learning based on sparse user
input to employ a weak classifier to obtain pseudo labels that serve as input for a strong classifier to obtaining
final labels.

• For the transparency assignment we propose to combine the details of the raw data with the softness of the
segmentation and estimate the opacity transfer function value with an iterative thresholding algorithm.

• We demonstrate and evaluate the concept on challenging cryo-ET data and gather expert feedback to understand
the potential of the novel volume visualization pipeline.

In the following section, we place our approach into the context of the related work. We next give an overview of the
proposed method and show how its individual components work together to yield a complete system and contribute to
the final visualization. Sections 4 and 5 present the novel components of our approach in detail at the reproducible
level and are followed by the demonstration of our results and their evaluation. Results are discussed with two domain
experts. In the final section, we conclude the paper and present possible future directions.

2 Related work

Cryoelectron tomography has evolved dramatically over the course of the past few years [5] and has become a go-to
method for most high-resolution in situ structural biology challenges [6]. Extended with the subtomogram averaging [7]
for obtaining even more detail for the desired structure, this is a perfect method for examining and analyzing the
molecular architecture of new viruses such as the SARS CoV-2 [8].

Due to the nature of the acquisition process, the signal-to-noise ratio (SNR) is meager. Some of the reasons are:
inability to create the perfect vacuum inside the acquisition tube—resulting in floating dust particles, imperfection
of the acquisition sensors which do not always produce a perfect image, the inconsistencies in the preparation of the
specimens, and the limitation of the energy used during the acquisition process. These and other reasons produce the
noise which obscures the specimen and lowers the SNR. Huang et al. address this problem with the optimization of
wavelet-based filters [9]. Shigematsu and Sigworth address this issue by analyzing different noise models [10]. They all
conclude that a Gaussian noise model—with preparation pipeline-dependent parameters—describes the noise in the
data best.

It also proved that many existing denoising approaches based on deep learning are unsuited for cryo-ET data, as they
require clean targets without noise for training, which is currently impossible to acquire in this domain. For this reason,
most existing denoising approaches are based on the Noise2Noise approach [11], which avoids this requirement by
training on pairs of registered noisy data. While Noise2Noise did not consider cryo-EM data, such pairs of registered
noisy cryo-EM images can be acquired using dose-fractioning, which splits the acquired electron dose in half, resulting
in two independent images. Buchholz et al. use this approach to acquire such data and propose Cryo-Care [12], which
builds on top of Noise2Noise and provides denoising of both cryo-EM images, as well as tomograms. The later
proposed Noise2Void [13] also reports promising results for cryo-EM images. Su et al. [14] present a generative
adversarial network (GAN) trained using synthetic data as clean examples and synthetically degraded images as input
to the denoiser, resulting in a model that can cope with different varieties of learned noise.

Deep learning approaches have also shown very promising results in segmentation tasks for both images [15–18] and
volumetric data [19, 20]. Most segmentation models are fully-convolutional neural networks consisting of an encoder
and decoder part with skip connections between the encoder and the decoder. This encoder-decoder architecture is
the basis for most segmentation networks, including the popular U-Net [21]. The U-Net in particular is basis to many
segmentation architectures that followed. While most of the architectural innovation was pioneered in 2D [15], many of
the successful approaches can be extended to 3D. Following this recipe, the 3D U-Net [19] was created by extending its
2D counterpart [21]. Lee et al. [22] propose to use residual blocks in U-Nets, in addition to anisotropic convolution
kernels to account for worse reconstruction quality in the z-axis. Furthermore, Etman et al. [23] propose invertible
U-Nets. By making the layers invertible, they can save lots of memory during backpropagation, which can be allocated
to increase the network capacity, and thus performance. Siddique et al. [24] provide an overview of different U-Net
variants applied to different problems in the medical domain. Another relevant line of work is that of Bui et al. [25–27],
who propose different versions of a skip-connected 3D DenseNet for segmenting magnetic resonance images. Lastly,
Gros et al. [28] propose SoftSeg. This approach is orthogonal to the above works and investigates techniques to deal
with non-binary segmentation labels. Authors propose different activation functions for the output layer and adapted
loss functions in order to deal with the soft labels. Using soft labels can be beneficial because they can elegantly
incorporate uncertainty and inter-expert variability from the labeling process. In this work, we also make use of soft
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labels. Having the uncertainty in our trained network’s predictions enables us to visualize the data with its uncertainty
accordingly.

After discussing denoising and segmentation approaches, we also highlight some related works that use deep learning
approaches to replace parts of the visualization pipeline itself. Cheng et al. [29] propose to use a learned feature space
for transfer function design instead of using raw intensity or first and/or second-order derivatives. Users can design
transfer functions within a widget by choosing features relevant to them from an ordered feature list extracted by the
neural network. DNN-VolVis [30] goes a step further and uses a neural network for the shading. Specifically, they
render an unshaded image from the desired viewpoint and use an image-to-image translation network to apply shading
in the style of an additionally supplied style image. Taking it a step further, Berger et al. [31] propose a GAN that
fully synthesizes the desired renderings based on only a viewpoint and a transfer function, leaving the whole rendering
process to the neural network.

The clarity of DVR is only possible with a good definition of how the volume data translates into renderable optical
properties, as defined by a transfer function (TF). The process of TF design was extensively researched in the past.
The first rule-based approach to TF definition was proposed by Bergman et al. [32] and was used for coloring the
meteorological and flow simulation volumetric data. Kindlman and Durkin [33] presented a semi-automatic approach for
TF generation for visualizing material boundaries, taking into account intensities and their first and second derivatives.
Correa and Ma [34] have later introduced a semi-automated method for generating TFs by progressively exploring
TF space for maximizing visibility of important structures. Cai et al. [35] introduce automatic TF generation using
visibility distributions and projective color mapping, which matches the distribution of visible values in the current view
with target one for equal pronouncement of all the features. Ljung et al. [36] present a thorough overview on transfer
functions for direct volume rendering and present the still opened challenges. Luo and Dingliana [37] present a TF
optimization based on visibility and saliency. A recent study [38] suggests the use of cell-based isosurface similarity,
feature-based classification, and visibility analysis for a semi-automatic TF design.

Another very related line of work is uncertainty visualization. When visualizing predicted or approximative data, it is
desirable that the user is informed about the confidence of those predictions. Prassni et al. [39] visualize unconfident
segmentations using sets of isolines, which naturally coincide in more certain regions, where a clear line is between
foreground and background. For uncertain regions, these lines spread out, though, as the transition between foreground
and background is more gradual. In the 3D visualization, they displayed uncertainty through a set of semi-transparent iso-
surfaces. Lundstrom et al. [40] propose an uncertainty-aware transfer function design. Their approach allows defining
two separate 1D TFs, one for a fully certain prediction and another for a fully uncertain prediction. Depending on the
actual degree of certainty of a sample classification, the two transfer functions are interpolated. Diepenbrock et al. [41]
directly lower the saturation and value of standardized (HSV) color maps used to encode directions in fiber visualization
to convey uncertainty.

3 Technical overview

Our proposed approach enables semi-supervised direct volume rendering. We showcase that even 3D visualization of
cryo-ET data becomes possible with this new approach, which is typically not achievable with current volume rendering
systems, due to the low SNR (see Figure 9). To achieve the desired high-quality visualization, we decompose the visual
mapping stage into two sub-problems. One is automatic opacity mapping using the iterative thresholding algorithm
and a mixture of soft segmentation signal with crisp raw-data signal. The second one is soft segmentation through a
probabilistic approach using the semi-supervised learning methodology. Our probabilistic segmentation is composed of
a deep-learning inference that performs the automatic labeling across unseen datasets at runtime. This stage works
well even on very challenging modalities, however, it is very training-data hungry. The probabilistic segmentation is
therefore trained in the pre-training stage, from dense labels.

We denote these input labels as pseudo labels following the semi-supervised learning literature. While these labels
characterize a particular volume well, the method that generates them within the volume, performs badly in generalizing
across volumes that contain similar structures. The advantage of the pseudo-labeling method that we employ is that it
produces good results for assigning soft labels within a volume, based on only sparse user input. So one technique
performs good segmentation across volumes but requires dense input, and another method does good soft segmentation
from sparse input within a volume but does not generalize across volumes. Integrating these two approaches, the
sparse-input guided segmentation with training a deep learning classifier, we obtain a semi-supervised soft segmentation
concept that proves beneficial in the context of visual mapping within the volume visualization pipeline. We present our
pipeline for visual mapping of two classes, i.e., foreground and background, or four classes where distinct structures of
the showcased viral specimen are discriminated through distinct colors. Finally, the volume visualization incorporates
integrative illumination models that further amplify the visual presence of signal over noise.
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Figure 2: System overview: first sparse user-provided labels are propagated to obtain dense pseudo labels. A deep-
learning based 3D segmentation model is trained on the pseudo labeled data; the resulting soft segmentation is next
used in the transfer function parameter estimation step where ramping parameters are estimated; the transfer function
can be further adjusted by the user before used together with the raw data and soft segmentation in the rendering stage
to produce the final visualization output.

As illustrated in Figure 2, the overall method consists of two parts: (1) Model generation, which takes as an input
sparse expert user-annotated labels and first produces dense pseudo labels. These pseudo labels are then used by a
deep-learning based segmentation algorithm for training a final 3D segmentation model. (2) Visualization pipeline,
which takes new data, probabilistically segments it into four classes, estimates the transfer function parameters and
renders the data.

4 Model Generation

The final result of the model generation step is a trained deep neural network for (probabilistic) semantic segmentation
that can then be used in our proposed visualization pipeline. In order to achieve this goal, we draw from concepts in
semi-supervised learning [42, 43]. The semi-supervised learning setting applies to a situation where a smaller set of
labeled data is available together with a (typically) larger set of unlabeled data. In our context, we have volumetric
data. We are given a smaller set of manually labeled voxels x1, x2, . . . , xl with labels y1, y2, . . . , yl and a larger set
of unlabeled voxels xl+1, xl+2, . . . , xl+u, where l is the number of labeled and u is the number of unlabeled voxels.
Specifically, in our setting the labeled voxels are sparsely distributed within a given set of volumes. Since each volume
is very large, it would be too time consuming to even label a single volume completely. Our proposed solution is to use
two different segmentation algorithms, leveraging the advantages from each of them. First, we use a weak segmentation
algorithm provided by a state-of-the-art semi-automatic segmentation framework. The advantage of this algorithm is
that it is very good in propagating segmentation information within a volume. However, it fails almost completely
when propagating segmentation information across volumes. We use this segmentation algorithm to create dense
pseudo labels for the remaining unlabeled voxels xl+1, xl+2, . . . , xl+u. Even though this first segmentation algorithm
is quite simple, the segmentation quality within a volume is quite reasonable. Second, we can use a more powerful
deep-learning based segmentation algorithm to learn from the pseudo labels of the weak segmentation algorithm. The
advantage of this algorithm is that it can learn how to generalize across different volumes. However, it is significantly
more data-hungry than the weak segmentation algorithm and it is too difficult to only train it on the sparse user provided
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labels. The challenge in our context was to adapt existing deep learning architectures to our data and tasks. After
training, the segmentation network can predict class probabilities for each of the trained classes, summing up to 1.0,
for each voxel. Using such semi-supervised two-stage labeling approach, where manual labels are first propagated to
subsets of the data—which is next used for training of a more general segmentation problem—also reflects ideas of
other machine learning concepts, such as self-training [44] and distillation [45]. In the following subsections, we will
first discuss the data to showcase the difficulty of cryo-ET data. Then we provide more details for each of the two
segmentation algorithms. Finally, we also discuss data management strategies, to avoid memory issues during training
and the training protocol.

4.1 Data

Due to the acquisition process of the cryo-ET data, where great care needs to be put into careful spreading of the
electrons throughout the whole tilt series in order to avoid damaging the specimen, the acquired data is very noisy with
very low signal-to-noise ratio. This is conveyed in a single slice of the volume, where individual structures can be
recognized, but the objects of interest are mostly masked by the noise. An example of one slice of such data is shown
in Figure 3, where three SARS-CoV-2 virions are present. While the one in the bottom middle is just perceivable to
the naked eye, the other two easily blend with the surrounding noise. Not only does this fact make images hard to

Figure 3: Single cryo-ET tomogram slice example with three virions.

segment for the untrained eye, it also makes it hard to segment. Note that directly rendering such data with common
DVR techniques / transfer functions is meaningless without prior segmentation (see Figure 9).

The data used in this research consist of 60 cryo-ET volumes with a resolution of 1024× 1440× [227− 500] voxels.
The raw data is stored with 32-bit precision resulting in 122 GB for all volumes. The pseudo label data can be stored
with 16-bit precision resulting in 61.3 GB per class. Following common best practices in deep learning, we split our 60
volumes into three sets: 50 volumes for training, 5 volumes for validation, and 5 volumes for an independent test set.

For this data, we use four classes corresponding to the spikes, membrane, lumen parts, and background of the SARS-
CoV-2 virus cryo-ET data. We also conducted experiments with two classes, background and foreground.

4.2 Pseudo Label Generation

The input to the pseudo labeling stage is the raw cryo-ET volume. The outputs are either soft or hard segmentation
pseudo labels. The pseudo labeling of the data was done using the Ilastik software [46]. We used a provided pixel
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classification pipeline with all 37 available 3D image features covering intensity, edge and texture properties for
propagating the manual annotations throughout the volume. For each input volume we defined four classes: (1)
Background, (2) Membrane, (3) Spikes, and (4) Lumen. In our foreground-background segmentation we only use the
Background class and combine the other three classes into a Foreground class. On average, an experienced image
segmentation user spends around 30 minutes for labeling a single volume. After the manual labeling an additional
1.5-4 hours of computation time is needed to propagate the labeled features to the whole volume and produce the soft
segmentation which are also validated by the annotators. Ilastik works well for single-volume segmentation propagating
sparse user annotations to the whole volume. However, it does not work well for propagating labeled features from one
volume to other volumes, see Figure 4. The segmentation algorithm cannot separate structure from noise. By contrast,
our proposed combination of two learning algorithms drawing from semi-supervised learning produces far better results
as demonstrated in the results section of this paper. The pseudo label generation stage can optionally provide soft or
hard labels as output.

Figure 4: Comparison of a segmentation slice of the same volume using labeling parameters trained on manual
annotations of the volume (a) with the use of labeling parameters estimated on another volume on this one (b) in Ilastik.

4.3 Network Architecture

To make well-informed design choices, we conducted preliminary experiments by comparing three different network
architectures for foreground-background segmentation. Based on the experimental results, we selected the best-
performing model.

The first architecture is the original 3D U-Net [19], a generalization of the 2D U-Net [21] to three dimensions. It
contains an encoder (contracting path) and a decoder (expanding path) part. The encoder part extracts the features from
the volume, and each of its layers contains two 3× 3× 3 convolutions each followed by a rectified linear unit (ReLU).
The decoder up-samples the compressed volume back to its original resolution. Additionally, there are skip connections
between the corresponding encoder and decoder layers where the resolution matches. This provides the high-resolution
low-level features to the decoder.

The second architecture is the 3D Residual Symmetric U-Net [22] (3D U-Net+ResNet). It also contains the U-Net’s
three main components (encoder, decoder, and same-scale skip connections). To enhance the propagation of volumetric
context information, each layer is set up as a residual sub-network instead of using standard convolution layers. In
addition the authors propose to take the worse reconstruction quality along the z-axis into account, by omitting down-
sampling along z, as well as by using anisotropic convolution kernels (7× 7× 5) to match the anisotropic nature of
reconstructed volume data.

The last architecture is the Skip-connected 3D DenseNet [27] (3D DenseNet). This network also includes a contracting
and expanding path. To increase the receptive field of feature maps, the contracting path contains four dense blocks.
Each dense block contains four layers consisting of 3× 3× 3 convolution, batch normalization and ReLU activation
with growth rate k = 16. There are direct connections from every layer to all subsequent layers. These connections help
strengthen feature propagation. To utilize the multiple scale features in the intermediate dense blocks, the expanding
path contains four 3D-upsampling operators to directly up-sample the low resolution features to the output resolution.
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Experimentally, we determined that two class segmentation works better with soft pseudo labels and four class
segmentation works better with hard pseudo labels. To cope with soft labels in the foreground-background segmentation,
we considered this segmentation as a regression task. Predictions represent the probability of a voxel belonging to
a specific class. We experimented with different activation functions for the output layer of the network. We tested
sigmoid, softmax, normalized ReLU [28] and without activation, and paired them with appropriate loss functions, such
as binary cross-entropy (BCE), mean squared error (MSE) and adaptive wing loss (AWL) [47]. AWL was initially
proposed for heatmap regression, where regions with high intensity are usually more relevant to predict accurately,
while low intensity background can be very blurry. In practice this loss tends towards using a mean squared error on the
background predictions, while approaching a mean absolute error on foreground predictions. We included this loss in
our experiments, because the described loss behavior is desirable in our soft segmentations as well.

4.4 Data Management

Due to the high resolution of our volume data, it is currently infeasible to train deep models on whole volumes directly,
as we run into memory limitations. To alleviate this issue, we train our models only on tiles of size 128× 128× 128
voxels. As we want to train on tiles in random order to prevent catastrophic forgetting, we need to load tiles from
multiple volumes at once, introducing a storage bottleneck. To deal with this bottleneck, we divide each of our volumes
into 9 partially-overlapping chunks of size 512× 512× [227− 500] prior to tiling to reduce their storage footprint, see
Figure 5. Note that those chunks are significantly overlapping to avoid artifacts at the chunk borders. We also applied
min-max normalization for the whole volume before splitting it into chunks. We iterate over all the chunks in each
epoch during the training and randomly crop the 128× 128× 128 input tile from each chunk. During the inference, we
tile the full volume into the 1283-tiles with an overlap of 32× 32× 32 voxels. To get the prediction of a whole volume
from overlapping tiles, we performed alpha-blended stitching in the overlapping regions.

512
512

227-500

1 2 3

654

8 97 Overlapping region

14
40

1024

128

12
8

128

Tile

Chunk

Figure 5: Scheme of dividing the individual cryo-ET volume into 9 partially-overlapping chunks.

4.5 Training

We use PyTorch [48] to implement the network architectures. For two class segmentation we experimented with both
soft and hard labels as targets. For hard labels we train each network with binary cross-entropy loss. The performance
of the three network architectures is reported in Table 1 and discussed in subsection 6.1. We selected the two best
performing networks—3D U-Net and 3D Residual Symmetric U-Net–for the evaluation with soft labels and evaluate
them using mean squared error and adaptive wing loss. The evaluation shows that the 3D Residual Symmetric U-Net
with mean squared error loss performs best for such task.
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Optionally, we experimented with pre-training the four class segmentation network with weights from the two class
segmentation network. In this case we can take the learned weights from the best performing two class model, omit the
last layer, and transfer them to a new model used for four classes. The last layer of the new model is adapted to output
four probabilities and is then fine-tuned for the four-class segmentation. This is done by changing the number of output
channels of the last layer from one to four, initializing this layer using random weights, and retraining the model. We
use cross-entropy loss in this step. Note that our network still outputs soft labels (continuously-valued probabilities)
that we use to visualize the segmentation certainty to the user, regardless of it being trained with hard or soft labels. The
weights of the network are optimized using the Adam optimizer (β1 = 0.9, β2 = 0.999) with a batch size of 4. We use
a learning rate of 0.001 and weight decay of 0.0001 for regularization, and mixed-precision training [49] to alleviate
memory limitations.

5 Visualization Pipeline

The visualization pipeline leverages the neural network trained in the model generation stage for obtaining probabilistic
segmentations of new volumes needed in transfer function estimation and rendering stages described below.

5.1 Opacity Transfer Function Estimation

In our visualization we are combining the soft segmentation and raw input data. While we could try to extract some
local geometric features from the raw data, we cannot do the same for the segmentation. The segmentation is obtained
with deep neural networks from pseudo labels and we cannot rely that the local geometric features predicted by such
model reflect the corresponding geometric features in the original raw data. That is why we do not want to rely on any
complex transfer function design process which takes into account such features and/or maybe gradient information. We
follow the simple ramping approach which proves to produce good results while not relying on the complex properties.
In addition to that, the simplicity of the ramp transfer functions allows simple modification and fine-tuning by the
domain experts after an initial transfer function configuration is estimated automatically. After manual experimentation
we realize that the right limit of the ramp function should be at the end of the fuzzy value interval of [0.0, 1.0], at 1.0 to
obtain the best visual results, leaving only the left limit of the ramp as an unknown parameter that we will estimate. To
find this ramp parameter we use a simple iterative image thresholding technique [50] outlined in Algorithm 1. The

Algorithm 1: Automatic Thresholding
AutomaticThresholding (image)

Input :Image - image
Output :Threshold - threshold

T = [], i = 0;
imHist = histogram(image);
meanInt =Mean(imHist);
T [i] = Round(meanInt);
do

meanIntBelowT = imHist < T [i];
bgIntegrator =Mean(meanIntBelowT );
meanIntAboveT = imHist ≥ T [i];
fgIntegrator =Mean(meanIntAboveT );
i = i+ 1;
T [i] = Round((bgIntegrator + fgIntegrator)/2);

while (Abs(T [i]− T [i− 1]) ≥ 1);
threshold = Normalize(T [i]);

thresholding algorithm is applied to all slices of a segmented volume individually and the mean of the threshold values
is taken as the left limit (a) of the ramp function ri (see Figure 6) for i-th class:

ri(s) = min

(
max

(
pi(s)− a
1.0− a

, 0.0

)
, 1.0

)
, (1)

where s is sample along the ray, pi(s) is the class probability for the i-th class at the sample location s in the
corresponding volume, a is the left limit of the ramping function.
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It shows that slice-based automatic thresholding does not return an equal value for all the slices of the volume. We
found that the thresholds decrease for slices towards the top and bottom of the volume. We have investigated the option
of addressing this phenomena in our transfer function—as the threshold changes can be nicely approximated with a
simple quadratic function—but there is no significant improvement in the final visualization, making the use of a more
complex transfer function less prominent.

5.2 Rendering

Our goal is to achieve real-time speeds for the whole volume rendering, which limits the selection of the volumetric
rendering technique. As an input we take raw cryo-ET volume Vraw, three soft segmentation volumes Vi, user-defined
segmentation class colors ci, and estimated OTF parameters presented above defined with corresponding function ri.
The raw volume Vi is inverted and low-pass filtered to pronounce the structures in the preprocessing step, since the
structures in the original data are represented with lower values.

In order to produce meaningful and clear visualizations of the fuzzy data, we avoid using normals for illumination.
As normals would have to be estimated by calculating gradients, not only we would amplify the noise by using
the normals, we would also increase the amount of texture fetches that would have to be performed per sample.
Instead, we approximate light scattering effects by sampling areas surrounding the illuminated voxels. We use a single
spherical-light for illuminating the scene, for local shadow estimation. The rendering consists of 4 stages:

1. Material color: A unique user-defined base color is used for each segmentation mask, significantly different
from other classes to distinguish each class in visualization—see Figure 7 (a).

2. Local ambient occlusion: Local ambient occlusion is calculated in object space by sampling a sphere around
each voxel and calculating the sum of the sampled voxel values form all the masks [51]. It adds local shadows
that enhance the depth perception during interaction. The sampling sphere is offset upwards to simulate
illumination from above—see Figure 7 (b).

3. Soft shadows: Soft shadows are using Monte Carlo integration of directional in-scattering calculated in object
space by sampling a cone starting at the given voxel, oriented towards a spherical light source [52]. The
contributions of the voxels are modulated by their distance to the original voxel. The soft shadows help
distinguishing individual objects from each other and further enhance the depth perception—see Figure 7 (c).

4. Postprocessing: In the postprocessing step, we add bloom by separating the brightest parts of the image by a
tone-mapping curve, blurring them with a Gaussian kernel, and adding the result to the original visualization.
The bloom highlights the brightest parts of the image, increasing the overall contrast. The post-processing is
executed in screen space.—see Figure 7 (c).

The first three steps of the rendering can be described by the following equations:

co =

smax∑
s=s0

imax∑
i=i0

ri(Vi,s) · rraw(Vraw,s) · ci · sscs · laos · as,i

as,i =

s∏
k=s0

i−1∏
j=i0

(1− rj(Vj,k) · rraw(Vraw,k))

0 a
0

1

1

Figure 6: Transfer function ramp function. Value (a) is estimated for each class separately.
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Figure 7: The figure shows how the foreground-background data (top row) and four-class segmented data (bottom row)
is rendered in different stages of the pipeline: (a) material color only, (b) added local ambient occlusion, and (c) added
soft shadows and bloom. In all visualization the respective masks are multiplied by the low-pass filtered original data.

where co is output color, s0, . . . , smax is the ordered set of samples along the ray, i0, . . . , imax are the segmentation
classes, ri(x) is the ramping function for the i-th class, Vi,s is s-th sample along the ray inside the i-th class volume,
ci is user-defined material color for i-th class, sscs is soft shadow contribution at sample s, and laos is local ambient
occlusion contribution at s-th sample. The second equation as,i is the accumulated alpha on the ray up to sample s for
class i.

The starting values of all the left ramp limits (for all volumes) are estimated with the approach presented in the previous
section, but are still user-adjustable.

Compositing of the contributions along rays cast through every pixel of the rendering canvas produces the real-time
visualization demonstrated in the following section.

6 Results

We have tested our technique on a challenging, but high-quality imaging dataset depicting the SARS-CoV-2 virions. In
total we were provided 300 cryo-ET volumes of approximately 0.5 TB in size. Due to limitations of how many volumes
can be used for training and the availability of training segmentations, we have limited our experimental data set to
60 volumes. We have performed a series of experiments on how to visualize the noisy cryo-ET data and on how to
obtain fuzzy interpretations that are needed for the purpose of visual mapping. We briefly summarize the outcome
of these experiments below. For the segmentation results we begin by introducing the evaluation metrics used in our
experiments, before outlining our architecture selection and lastly presenting the results of our best models for both
soft foreground-background segmentation and segmentation into spikes, membranes, lumen and background. For the
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evaluation of our visualization, we compare our technique with standard visualization techniques conveying the current
technological offer and the substantial improvement in visual quality.

6.1 Segmentation Results

For evaluation, we use the F1 score or Dice similarity coefficient—a common evaluation metric for image segmentation—
suitable for datasets that contain imbalanced class distribution. We define TP as the number of true-positive predictions,
FP as the number of false-positive predictions, FN as the number of false-negative predictions, and TN as the number
of true-negative predictions. The F1 score measures the similarity between labels and predictions and is defined as:

F1 =
2TP

2TP + FP + FN
(2)

A higher F1 score indicates a better result. Note that the F1 score requires the use of discrete labels. To calculate an F1
score for our continuous values in the soft segmentation, we use a threshold of 0.5. This threshold is applied for both
the label and prediction. In the 4-class case we use argmax to discretize the predictions.

We first evaluate different network architectures using binary labels, as detailed in subsection 4.5. We compare the
standard 3D U-Net [19] with the Residual Symmetric U-Net [22] (3D U-Net+ResNet) and the 3D DenseNet [27] on
predicting standard binary foreground - background labels on our data. Table 1 shows the results of this experiment. We
show that both the standard 3D U-Net and the 3D U-Net+ResNet achieve similar performance, clearly outperforming
the 3D DenseNet both in terms of F1 score and training time. Based on these results we decided to further investigate
the two U-Net based models.

METHOD BCE LOSS F1 SCORE TRAIN TIME

3D U-Net 0.4280 0.6896 9h 10m
3D U-Net+ResNet 0.4360 0.6776 11h 58m
3D DenseNet 0.4701 0.6254 21h 21m

Table 1: Performance on the validation set of three network architectures for binary segmentation

In the next experiment, we trained the two U-Net based models for soft segmentation. In contrast to the binary label
experiment, we now face a regression problem and have therefore investigated several activation functions for the output
layer, and several loss functions. The results from this experiment can be seen in Table 2. The comparison shows that
3D U-Net+ResNet with MSE loss works best. The reason for this is the decoder of this network, which outperforms
the regular U-Net. Also note that the F1 score is comparatively low in this experiment. This is due to the fact that we
need to binarize both the soft labels and predictions in order to compute the F1 score, which may punish numerically
accurate predictions that are closely around the binarization threshold.

MODEL U-Net U-Net+ResNet
LOSS+ACT LOSS F1 SCORE LOSS F1 SCORE

MSE+NONE 0.01798 0.5918 0.01678 0.6064
AWL+NRELU 0.03246 0.4058 0.03663 0.4874

Table 2: Soft segmentation results comparing different activations (ACT) and loss functions.

Lastly we fine-tuned our best models from the previous experiment for use with all four classes. As our four-class
labels are rather decisive we fine-tune the model using discrete labels instead of soft labels. We aimed to train a general
foreground-background segmentation model for soft labels that can be used for other datasets in the same domain. In
the case of SARS-CoV-2, there are 4 classes, so we fine-tuned the model for four-class labels. Another reason is that
training directly on 4 classes would require too much time and resources. For foreground-background segmentation,
we needed 512 GB of RAM, and with 4 GPUs it took approximately 2 hours and 15 minutes per training epoch. In
the case of four-class segmentation, it would take more than 9 hours per epoch, and the batch size would have to
be decreased drastically, further prolonging the training. The F1 score of this fine-tuned model on the validation set
is 0.9618 and the cross entropy loss is 0.1158. One of the reasons why the F1 score in this case is higher than in
foreground-background case because of the nature of F1 score. The F1 score is a good measure for incorrectly classified
cases. In the foreground-background segmentation, there are two classes, so the F1 score penalizes a wrong prediction
to a higher degree compared to the four-class segmentation.
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Figure 8: Figure shows one slice comparison of single virion segmented with foreground-background approach (a) and
with four-class approach (b)—spikes in blue, membrane in green and lumen parts in red color. The 3D visualization of
these segmentations with our rendering pipeline are shown in (c) and (d) respectively—spikes in pink, membrane in
gray and lumen parts in blue color.

The training of the final foreground-background model took 5 days and 16 hours to converge. The fine-tuning of the
selected transfer-learned model took additional 2 days and 15 hours. The model inference takes 20-25 seconds per
volume on a single Nvidia V100 GPU computing node or 10-15 minutes per volume on a workstation with single
Nvidia Quadro RTX 8000 GPU.

The generation of pseudo labels using Ilastik was done on a workstation computer with 2×Intel Xeon Gold 6230R @
2.1 GHz, 256 GB of RAM, and Nvidia Quadro RTX 8000 48 GB GPU running Microsoft Windows 10. The deep-
learning experiments were performed on diverse hardware: the model selection experiments were mostly performed on
IBEX—heterogeneous group of computing nodes—at KAUST, the final model optimization was performed on a single
computing node with 2×Intel Xeon Gold 6242 @ 2.8 GHz, 512 GB RAM, 4×Nvidia Quadro RTX 8000 48 GB GPUs
running Ubuntu Linux. The neural net’s inference time was measured on both, machine used for labeling, as well as on
the computing cluster.

6.2 Visualization Results

The final visualizations of the proposed approach are displayed in various figures. The teaser image Figure 1 shows
how we get from the solid cryo-ET volume, over the foreground-background, to the four-class segmented visualization.
We show segmentations and final renderings of a single virion segmented with foreground-background, as well as
four-class segmentation, in Figure 8. The dimension of this single virion sub-volume is 246× 264× 340 voxels.

For visualization purposes the input data was down-sampled to 8-bit precision. In the case of foreground-background
segmentation visualization, two volumes are loaded to the GPU, consuming 0.69 - 1.37 GB of GPU memory. In the case
of four class segmentation visualization, four volumes were loaded to the GPU resulting in 1.37 - 2.75 GB of memory
use. We also tested our system on the full 16-bit precision—resulting in 2.75 - 5.49 GB of memory consumption. Apart
from the loading times there were no other differences in the performance, i.e. the frames-per-second (FPS) count is the
same. In Table 3 one can see how the FPS changes with different segmentations at different resolutions.

13



A PREPRINT - APRIL 6, 2021

RESOLUTION FOREGROUND-BACKGROUND FOUR-CLASS

Full-HD 26.24 21.50
4K 10.89 9.20

VRAM COST 1.37 - 2.75 GB 2.75 - 5.49 GB
Table 3: Rendering performance evaluation for both segmentations on two resolutions, given in frames per second.
Additionally we report the range of GPU memory usage from the smallest to largest volumes.

We ran an automated visualization task of 360° tilt rotation of all five test volumes for foreground-background
segmentation (2 volumes), and for four-class segmentation (4-volumes). Each experiment was run for five times on
Full-HD (1080p) and 4k (2160p) resolution, respectively, then the measurements were averaged. The visualization
evaluation was done on a workstation computer with 2×Intel Xeon Gold 6230R @ 2.1 GHz, 256 GB of RAM, and
Nvidia Quadro RTX 8000 48 GB GPU running Microsoft Windows 10.

To show how hard it is to render the cryo-ET data directly we have used regular volume rendering approaches: ISO
surface rendering, direct volume rendering (DVR), maximum intensity projection (MIP), and volumetric path tracing
(VPT). All these methods were used for rendering on a 2k canvas and run in real-time, except the VPT, where one needs
to wait for the convergence. Since the results on the original data were unusable, we show the renderings performed
on the low-pass filtered data that we also use in our approach to suppress high-frequency noise and pronounce the
specimen structures. The visual comparison with other DVR techniques is displayed in Figure 9. While one can see
basic shape outlines—even with this with low-pass filtered data—the details are unrecognizable. There is also no easy
way to configure the 2D transfer function to distinguish between the four classes we segment for in our approach. In
Figure 10 we show the impact of the inclusion of the original data in the visualization. Specifically, we multiply the
original data with the segmentation volumes to reveal the fine details and structures of the original data.

7 Discussion

We have discussed the results of our work with two domain experts. One domain expert is the co-author of this paper,
and the other one is an independent domain expert.

The first expert is a physicist specialized in biophysics. He has 12 years of experience in the field and 8 years in cryo-ET.
He is head of the cryo-ET laboratory at his University and works with cryo-ET data almost every day. He works with
biological specimens only and in this paper he is among the co-authors.

He is in charge of data acquisition used in this study. He confirms that the semi-automatic segmentation (SAS)—our
pseudo labels— is good but could be improved, especially for the lumen structure annotations, where specialized
domain knowledge would be beneficial. Moreover, he suggested that semi-automatic segmentation might be easier
on preprocessed data, which should be investigated in the future. He confirms that the results are satisfactory for the
amount of time spent on the segmentation task and that full manual annotation would take up to several days per volume.
He suggests considering omitting the top-most and bottom-most parts of the volumes where there are artifacts due to an
air-water boundary.

He also confirms that the automatic foreground-background segmentation (AS), i.e. our neural net’s predictions, is
good. Moreover, he confirms that in some cases, it is even better than the SAS, exposing several structures that were
previously not identified. Such structures are presented in Figure 11. He suggests that some dust removal approach
could further improve the segmentation by removing particles smaller than the given diameter.

After reviewing the four-class semi-automatic segmentations he concluded, that segmentation was performed well but
could be further improved. This is true for the lumen structures and the portions of the membrane and spike annotations
(see Figure 12 (a), (c), and (e)). It was apparent that there were still some outlines from spikes in some parts of the
membrane and vice versa. He suggests addressing this in the future by trying to impose some local limitations to the
semi-automatic annotation process. After seeing the automatic segmentation results, he was positively surprised at
how well the membrane and spikes segmentation performs (see Figure 12 (d) and (f)). He was delighted that spikes
were also present in the missing wedge parts, where he did not expect such good results (see right-most virions in
Figure 1 and Figure 8 (d)). He confirms that lumen parts segmentation could be further improved, possibly with better
semi-automatic segmentations.

We introduced him to three visualization approaches: DVR, MIP, and our approach. He confirmed that he is familiar
with the basic DVR visualization techniques and that in his work, he mostly uses the visualization pipeline integrated
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Figure 9: Comparison with regular DVR rendering techniques: (a) and (b) ISO surface rendering with 2 different ISO
values, (b) regular DVR, (c) VPT, (d) MIP, (e) color TF DVR, and (f) our approach.

into the Chimera [53]. He confirms that basic DVR methods are not suitable for the direct rendering of the data and
that our approach is excellent. He supports the claim that the details added from the original tomogram data add to the
surface structure’s comprehension. He points out that existing visualization packages have additional functionality,
which is very useful to the researchers—such as dust removal—but is orthogonal to the available visualization settings.
He supports that manual transfer function adjustment is beneficial for fine-tuning the output. Furthermore, he suggests
adding the options of changing the lighting conditions, which would help explore further details of the specimen.

The second expert is a cell biologist specialized in electron microscopy. He has more than 19 years of experience in
EM and 15 years with transmission EM. He is a team lead of the Electron microscopy laboratory at our University and
works with the EM/ET data on average 3 times a month. At first, his work only included biological specimens, but in
the last 12 years, he also worked with polymer membranes and catalytic nanoparticles. We have not collaborated with
this domain expert and we regard his feedback as fully independent.

His first impression of the data was that it is good data. It is well aligned, the missing wedge is apparent and supports the
good alignment, and fiducial markers were mostly removed. He also confirmed that the semi-automatic segmentation
(SAS) is good, especially for the time spent per volume. Good fully manual annotation could take up to several days
per individual volume. Due to the data’s resolution, the segmentation could be further improved by separately selecting
individual layers of the lipid bilayer membrane.
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Figure 10: Comparison of our method without multiplication of segmentation volumes with original data (a) and with
multiplication (b).

Figure 11: Comparison of original input data (a), automatically segmented data (b), and semi-automatically segmented
data (c). In orange boxes are parts of viruses that were not selected by the semi-automatic segmentation but were
selected with our approach. In the red boxes are the areas between membrane and spikes which are cleaner in the
automatic segmentation.

He also confirms that automatic foreground-background segmentation (AS) is good. To some extent, it gives even better
insight into structures than SAS. While the spikes are sharper in the SAS, they sometimes overlap and merge. On the
other hand, the space between spikes and membrane gets smudged often with SAS, while it is much cleaner with AS
(see red boxes in Figure 11). Visually, the AS is closer to the real-data due to less saturated areas. He also points out
that in many occurrences, the AS finds more structures than the SAS (see orange boxes in Figure 11, and the value
bleeding is more prominent in SAS than in AS, which shows cleaner structures.

We showed him three methods of 3D visualization of the data: DVR, MIP and our approach. He pointed out that he is
familiar with even more visualization techniques available in the EM-related software (IMOD [54], Amira Avizo1 and
Chimera [53]). He points out that common volume rendering techniques are not suitable for visualizing such data. He
mostly uses transparency-based methods that give better insight into the underlying data structure. Our visualization

1https://www.fei.com/software/avizo3d/%C2%A0
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Figure 12: Comparison between four-class segmentation of membranes (bottom) and spikes (middle) and lumen
(top) for semi-automatic segmentation (left) and automatic segmentation (right). It is clearly visible that automatic
segmentation produces clearer output.

approach is very appealing to him. It presents structures as solids, while still maintaining the surfaces’ textural details
revealing the specimen’s detailed structure.

Finally, he points out that automation in the segmentation and visualization of EM data is a crucial aspect for
accelerating the field’s development. Our work addresses this cryo-ET bottleneck and enables scientists from these
niches to drastically speed up their research. We present one quote from his statements during the interview: ”I doubt
that you are fully aware about how impactful your technology will be for our field, once it becomes available as a tool”.
It allows quick inspection of the acquired data, making it easier to prioritize which data should be further analyzed
sooner. On the other hand, vast datasets were acquired some time ago that were never selected for analysis. With the
use of the presented approach, one could revisit these datasets for possible interesting specimens.

The overall feedback from experts was very positive. They confirmed that meaningful and expressive visualization is
crucial for understanding the data. They gave us some pointers for possible future extensions of the presented work in
the segmentation and the visualization aspects. We agreed that having such a tool in their processing pipeline would
definitely speed-up and simplify their analysis process.
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8 Conclusion

With this work, we have shown how, with a correct approach and a good set of techniques, one can ”excavate” and
visualize the information present within very tough data with extremely low signal-to-noise ratio, such as cryo-ET. We
demonstrate how we can harness the power of deep neural networks to infuse the visualization pipeline with detailed
automatic segmentation, yielding high-quality visualization results, where state-of-the-art general volume rendering
approaches fail.

While there are limitations to using such a system for a specific pipeline by feeding it with specific segmentations in the
training step, it still promises to save days if not weeks of laborious manual segmentation work for obtaining great visual
results. By providing even more precise segmentation data—instead of fuzzy semi-automatic segmentations—to our
system, the final visualization will be even better. Embedding our system into the cryo-ET pipeline would give domain
scientists access to high-quality data visualization at almost no additional effort. The segmentations that domain experts
are preparing daily can be used as training input to our system. Moreover, using the data from different laboratories
working on similar problems can lead to the preparation of specialized visualization models for specific use-cases,
which could be shared back to the research community, benefiting everyone.

The presented system could be further extended to become an end-to-end deep learning system. Not only fuzzy
segmentation masks, but also other visualization parameters (e.g., TF parameters and rendering parameters) could be
trained for a specific domain. This would include a differentiable volumetric rendering system to allow such endeavor.

Our next step will be to integrate the volume visualization into the data preparation pipelines for the subtomogram
averaging process. The results of this signal-to-noise ratio amplification methodology can be fed back into our volume
visualization pipeline to further improve the detail an possibly fight the missing wedge artifact.
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