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ABSTRACT

The amount of data, manpower and capital required to understand, evaluate and
agree on a group of symptoms for the elementary prognosis of pandemic diseases
is enormous. In this paper, we present FedPandemic, a novel noise implemen-
tation algorithm integrated with cross-device Federated learning for Elementary
symptom prognosis during a pandemic, taking COVID-19 as a case study. Our re-
sults display consistency and enhance robustness in recovering the common symp-
toms displayed by the disease, paving a faster and cheaper path towards symptom
retrieval while also preserving the privacy of patients’ symptoms via Federated
learning.

1 INTRODUCTION

Symptom prognosis and analysis are important tools of pandemic management, as medical con-
ditions of the population could be gauged with these tools. However, appropriate symptoms and
their exact effects were reported after mass collection and analysis during COVID-19 (Ghosh et al.
(2020), Bennett & Carney| (2011)). This not only consumed time but also required an immense
amount of manual effort to anonymize the continuously-growing large corpus of client data. In this
paper, we propose FedPandemic, a novel approach towards the elementary prognosis of diseases
during a pandemic by cross-device Federated learning. We present a novel tool towards prominent
symptom detection while retaining client privacy during an outbreak. This encourages collaborative
efforts between the general public, smaller healthcare clinics/facilities, Non-Governmental Organi-
zations (NGOs), hospitals and large network medical institutions. Federated learning (McMahan
et al.| (2016), Bonawitz et al.| (2019)) enables one to send models to where the data resides, rather
than sending the data to the cloud thereby respecting the privacy of the users. Federated learning
empowers distributed learning by gaining generalized insights over the active client space on de-
centralized data over a large number of rounds. FedPandemic employs Word Embeddings as feature
extractors for a binary classification model, which is trained using the Federated Averaging (FedAvg)
Algorithm (McMahan et al.|(2016)). The classifier is aimed to contribute towards preliminary med-
ical examinations and prominent symptoms retrieval in the early stages of an outbreak. The model
is developed in a mutable fashion to allow implementations of Secure Aggregation (Bonawitz et al.
(2017)) or Differential Privacy (Wei et al.|(2020)) for additional privacy use-cases.

FedPandemic is trained based on the statistics of symptoms as reported by Statista’s collection of
COVID-19 symptoms in Kenya (Farial (2021))), Germany (Koptyug| (2021))), Italy (Stewart| (2020)),
United States (Elflein| (2020)) and China (Thomalal (2021))). The model employs and simulates
different target clients with variable data sizes for learning. The implementation requires low com-
putational prowess while still retaining high performance and client privacy making FedPandemic a
potentially strong tool towards future symptom detection during an outbreak.

We summarize five major problems presented in current symptom prognosis tools: (1) Time Con-
sumption in centralized aggregation by a single institution. (2) Data Security of clients participating
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in such statistics. (3) Manual and Logistic Costs for data anonymization of COVID-19 data to pro-
tect client privacy. (4) Logistic, Manual and Infrastructural costs for over heading such a project. (5)
Local Bias induced by smaller aggregators and analyzers.

Prominent symptom detection is an integral part of pandemic management and control. If these
symptoms are detected and retrieved at the earliest, the process of elementary prognosis will be fa-
cilitated faster. This may allow different governments to prevent the spread of such diseases. How-
ever, current technologies, require a large network of people maintaining and analyzing this data,
which is quite expensive. With FedPandemic, we hope to overcome this problem using Federated
learning to provide client privacy and low-cost maintenance based learning.

2  PROPOSED METHODOLOGY

We employ Federated learning in a Cross-Device system, as this enables general public to contribute
individually. The Federated Averaging algorithm (McMahan et al.| (2016)) is used for generalizing
the aggregated model. We utilize word embeddings for feature extraction on local devices which
allows us to use State-Of-The-Art and also computationally resourceful encoders such as GloVe
(Pennington et al.|(2014))) and Word2Vec embeddings. Word Embeddings produce a vector of fixed
length as extracted features. This output is then fed into a client model, which is trained for a number
of epochs E and then the weights of the updated model w* are returned to a centralised server. In
this paper, we run multiple simulations on different contributors using GloVe (refer Table [I).

A common word encoder is decided for implementation and a lightweight classifier is designed
keeping in mind the embedder selected. This allows us to develop a model, while at the same time
keeping computational costs low. The selected embedder (here, GloVe) and model architecture are
declared for training and aggregation. However, only training on client symptoms would make the
classifier biased. Hence, we randomly sample symptoms from a given medical corpus, which are
then learnt as negative samples by the models (refer Figure [I).

The proposed methodology allows us to keep a pseudo data balance, thereby making our models
robust to bias and underfitting. We believe that we propose the first implementation for symptom
aggregation on a large-scale application that entertains both client-privacy as well as distributed
learning. The procedure allows us to overcome some important issues of symptom analysis: (1)
Manual aggregation of data from multiple healthcare centres is not required. (2) Common Symptoms
that would be easily identified by the public, such as, high temperatures, fevers, cough and cold,
would also be treated with prominence, giving the general public a better chance of discerning the
infected. (3) Retains client privacy; evading efforts required for data anonymization. (4) Word
Embeddings also allow semantically similar symptoms to be treated with prominence. This may aid
researchers to study additional symptoms that the affected might be exhibiting.

3 EXPERIMENTS

The experiments were conducted on a single system, running multiple instances of client mod-
els. The system consisted of 8GB RAM and a GeForce GTX 1650, 4GB GPU. We leverage the
PyTorch framework for our experiments and the base algorithm used for Federated Learning was
FedAvg (McMahan et al|(2016)). The classifier used in our experiments consisted of (50, 32, 16,
8, 1) neurons from the top layer to the bottom layer. For our experiments, the learning rate and
batch size were chosen as 0.001 and 32 respectively along with the Adam optimizer. Our approach
involved four simulations represented by different aggregation steps, which can be employed by
local authorities. Our presentation takes statistical numbers from data; as published on Statista. We
choose GloVe (Pennington et al.[(2014))) as our encoder in our experiments because its embeddings
are light-weight and easy-to-use in a Federated learning environment when compared to embed-
dings from other State-of-the-art encoders like BERT (Devlin et al.| (2018)) and ELMO (Peters et al.
(2018)).

In this work, we present four variants of simulations (see Table :

* Simulation I: Large Medical Institutes (Baseline)
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Figure 1: Proposed Methodology of FedPandemic for ClientUpdate in cross-device learning of
prominent symptoms retrieval. The steps followed at the server are shown in Figure ]

This simulation aims towards reproducing aggregation by large medical institutes. In this
simulation, we distribute the entire corpus, into 20 institutions or clients and train a fed-
erated model. Each institution has been given an equal number of sample cases (60,000
samples). This simulation is definite as large medical institutes will already have enough
data to ensure that they can select which symptoms are prominent.

e Simulation II: Medium Ranged Medical Institutes, like Hospitals, NGOs, etc.

This simulation offers to cluster and pick symptoms from a larger collaborating group.
However, even this group is large enough to accurately classify prominent symptoms. In
this case, the data is not equally distributed and ranges between 10,000 to 20,000 samples.

* Simulation III: Small Ranged Medical Institutes, like clinics and health care centres

This simulation is the most practical one, as these institutes may be able to actively col-
laborate for training such a model. Each client will have samples ranging from 500 to
2,000.

* Simulation I'V: Individual/Family Contributions

This simulation is the toughest to learn and provides the most realistic sample which could
be implemented for the preliminary search of symptoms. Each client contains samples
between 2 and 12.

These simulations are pulled from the given distribution (refer Figure [5) and aim to replicate real-
world usage of FedPandemic. We provide experimental results on a few prominent symptoms with
different noise levels against the prediction output (refer Figure [2).

We experiment the random sampling step (refer Figure [I) with Normal and Laplacian Distribution
values. The Laplace mechanism (with a paramter of %) preserves e-Differential Privacy (Dwork &
Roth! (2014))). We vary different values of € (taking 50% as the noise level as standard across all the
simulations) to observe how our algorithm plays into Differential Privacy guarantees (as shown in

Figure [3).

We also display experiment results for different noise levels for target symptoms shown by greater
than and lesser than 10% of the Survey Population (refer Figure[A.2)).

4 CONCLUSION AND FUTURE WORK

In this paper, we showcase a novel approach using Federated learning towards Elementary Symptom
Prognosis in order to preserve client privacy and improve faster response times during a pandemic.
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Figure 2: Prediction output vs Noise levels for four of the most common symptoms across all coun-
tries sampling from the Normal distribution N ~ (0, 1).
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Figure 3: Prediction output vs Epsilon values for four of the most common symptoms across all
countries sampling from the Laplace distribution L ~ (0, 1/e).

Our experiments include various noise levels and the accuracy levels drop consistently as the noise
values are increased (refer Table[3). Simulation IV displays highest output predictions as we evaluate
over a large client space which signifies more personalized models (see Figure [2). We see that the
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Laplacian variant of our algorithm provides e-DP (as € increases, lower amount of noise is added
which intuitively means higher utility and higher accuracy) in Figure We believe that either
Simulation II and III could make best use of FedPandemic (given their size range and number
of clients) with the 50% noise level readings by best replicating real-world situations. We hope to
improve our method by making it robust to malicious attacks and Byzantine failures. We wish to
improve the training model by incorporating data from other countries as well.
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A APPENDIX

A.1 NOISE IMPLEMENTATION

We present multiple simulations with different levels of noise simulated. In our experiments, we
introduce five different noise levels (We include 10% and 90% readings as shown in Figure ?? to
display results with extreme noise levels) :

1. 10: Almost perfect simulation, with minimal amount of noise. The experiment can be
thought of as a setting where only individuals infected with the novel coronavirus or the
pandemic in consideration. There is little to no influence of any other symptoms the clients
may have been facing during learning.

2. 25: Close to ideal simulation. Here the noise levels are increased by 25%. That is, an
individual may report symptoms other than that from the disease in consideration with a
25% probability. This setting is closer to reality, as the general public would not know
whether the symptoms they feel are relevant to the pandemic or not.

3. 50: Here noise levels have been set to 50%. That is, an individual may report symptoms
other than that from the disease in consideration with a 50% probability. A step closer
to reality and probably the closest, as most citizens are still healthy or if suffering would
recognize new symptoms easily. However, noise would still be generated due to the large
sample space.

4. 75: Noise levels are set to 75%. In this case the citizens have a higher chance of entering
symptoms that are not related to the pandemic in question, however, due to the frequency
presented in the total population, insignificant/not associated symptoms would be lost.

5. 90: If a person does not put a symptom related to the virus, they will put another arbitrary
symptom. Using 90% noise level, we show that this is entirely based on the frequency
analysis shown during a pandemic. The only reason our federated model is expected to
converge and learn in such a case, is the sheer frequency of pandemic victims. Therefore,
we specifically target our project towards pandemics like novel coronavirus.
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Algorithm 1 Noise Implementation

1:
2:
3:

4:

Input:

Survey_Population <— People using the application;

Prominent_ COVID19_symptoms < [cs1, cS2, ..

the research conducted by Statista. Ex: [Fever, Cough, Headache]
Symptom_Probability <— [ps1, pse, ..., psnl; probability of prominent symptoms that was dis-
played by the research conducted by Statista. Ex: [0.37, 0.2, 0.1]

ulcers, etc.]

..., Fever, Cough, Headache, ...

., CSp1; the actual symptoms displayed as per

: Medical_Corpus <— [S1, S2, ..., Sy, CS1, CS2, ..., CS, |; medical corpus present in GloVe which the
public may identify. Ex: [Stomach Ache, Anemia, Red Eyes,

Training Completed

6: random.random() <— random number sampled from the normal distribution N(0,1).
Algorithm:
7: for ¢ € Survey_Population do
8:  Symptoms_Displayed = [];
9:  for s € Prominent_ COVID19_Symptoms do
10: if random.random() < Symptom_Probability[s] then
11: Symptoms_Displayed.append(s);
12: else if random.random() < Noise_Level* then
13: Symptoms_Displayed.append(random_symptom(Medical_Corpus));
14: end if
15:  end for
16: end for
0
Averaging
Wi (t) 4 : Yo k(1)
No
Initialize 6y for client[k] £ S(t)

wlk|(t) « ClientUpdate(k, w(t

1)

Figure 4: Function of the Central Server for running FedPandemic.

Simulations | Size Range No. of clients | Local epochs | Global epochs
I (60000, 60000) | 20 5 5
I (10000, 20000) | 80 5 5
111 (500, 2000) 900 5 5
v (2, 12) 100000 5 5

Table 1: Simulations characteristics

*For the Laplacian mechanism, we employ ‘random.laplace(0, 1/e) > Noise_Level® in order to satisfy e-DP
properties.
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Noise Levels | Accuracy
0% 1.0

25%* 0.75

50% 0.75

75% 0.6875
100% 0.5625

Table 2: Noise Levels vs Accuracy after four global epochs

Country USA China | Germany | Italy Kenya
Total 373883 | 55924 | 747900 34142 | 14616
Fever 161330 | 49157 | 209412 25606 | 13161
Cough 186941 | 37860 | 299160 12973 | 10815
Shortness of breath 104687 | 10401 | O 0 0
Myalgia 134784 | O 0 0 0
Runny nose 22619 18678 | 194454 0 9025
Sore throat 74402 | 7773 157059 0 4194
Headache 127867 | 7605 | 0 0 8038
Nausea/Vomiting 42435 | 2796 | O 0 0
Abdominal pain 28228 | 0O 0 0 0
Diarrhea 71037 | 2069 |0 2048 | O
Loss of smell or taste | 30845 0 157059 0 0
Fatigue 0 21307 | O 0 0
Muscle Pain 0 8276 | 0 0 0
Chills 0 6375 |0 0 0
Nasal Congestion 0 2684 | 0 24923 | 10231
Pneumonia 0 0 7479 0 0

Table 3: This table consists of absolute values of the people showing these symptoms according to
country. We extract the base probability distribution on which the simulations are performed.

A.2 EXPERIMENTAL DATA

Country USA Country Kenya
Total 3,73,883 | Total 14,616
Fever, cough, or shortness of breath | 69.8% Fever 90.05%
Fever 43.15% | Dry cough 74%
Cough 50% Difficulty in breathing | 70%
Shortness of breath 28% Sneezing 61.75%

For the work presented in this paper, we employ simulations for data collection and cross-device
setup. As there is no similar objective or dataset, the paper has taken the liberty to implement these
simulations based on real-world data recordings. We take the data collected by Statista for COVID-
19 symptoms in different countries. The data presented is a statistical representation of the % of
people exhibiting a certain symptom. The total number of samples taken from the entire corpus
makes up 1,226,465 people’s data. The countries whose data has been used for simulation are:

* Kenya

* Germany

* Italy

* United States
* China

We present the statistics of each of these countries in Table|l} and the aggregate statistics we pulled
in Table[3] The data presented in Table [3|has been visualized (as a bar graph) in Figure[3]
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Country China Country Germany | Country Italy
Total 55924 | Total 7,47,900 | Total 34142
Fever 87.9% | Cough 40% Fever 75%
Dry cough 67.7% | Fever 28% Dyspnoea | 73%
Fatigue 38.1% | Runny nose | 26% Cough 38%
Sputum production | 33.4% | Sore throat | 21% Diarrhea | 6%

Table 4: These are the 4 most prominent symptoms as well as the total number of participants from
every country included in our dataset.

Bar Graph of Symptom Display

No. of people exhibiting

o

500000 -
400000 -
300000 -
200000 -
100000 4
) Cough Fever

Runny nose Sore throat Loss of smell/taste Headache
Symptom

Myalgia Shortness of breath Diarrhea

Nausea/Vomiting

Figure 5: This figure is bar graph representation, of the total populations displaying said symptoms.
In retrospect, these values represent the general display such symptoms as the total number of par-
ticipates makes up 1.2 Billion people. The perturbations are generated from the same distribution in
order to approach realistic sample spaces.

simulation 1 - targets greater than 10%

simulation 2 - targets greater than 10%
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Figure 6: Simulations for 0% noise and target Symptoms exhibited by greater than 10% of the

Survey population. [X-Axis: Number of global epochs; Y-Axis: Accuracy]
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Figure 7: Simulations for 25% noise and target Symptoms exhibited by greater than 10% of the
Survey population. [X-Axis: Number of global epochs; Y-Axis: Accuracy]
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Figure 8: Simulations for 50% noise and target Symptoms exhibited by greater than 10% of the
Survey population. [X-Axis: Number of global epochs; Y-Axis: Accuracy]
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Figure 9: Simulations for 75% noise and target Symptoms exhibited by greater than 10% of the
Survey population. [X-Axis: Number of global epochs; Y-Axis: Accuracy]
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Figure 10: Simulations for 100% noise and target Symptoms exhibited by greater than 10% of the
Survey population. [X-Axis: Number of global epochs; Y-Axis: Accuracy]
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Figure 11: Simulations for 0% noise and target Symptoms exhibited by lesser than 10% of the
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Figure 12: Simulations for 25% noise and target Symptoms exhibited by lesser than 10% of the
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Figure 13: Simulations for 50% noise and target Symptoms exhibited by lesser than 10% of the
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Figure 14: Simulations for 75% noise and target Symptoms exhibited by lesser than 10% of the
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Figure 15: Simulations for 100% noise and target Symptoms exhibited by lesser than 10% of the
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