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Abstract 

Objective:  

Automated semantic image segmentation is an essential step in quantitative image analysis and disease 

diagnosis. This study investigates the performance of a deep learning-based model for lung segmentation 

from CT images for normal and COVID-19 patients.  

Methods: 

Chest CT images and corresponding lung masks of 1200 confirmed COVID-19 cases were used for training 

a residual neural network. The reference lung masks were generated through semi-automated/manual 

segmentation of the CT images. The performance of the model was evaluated on two distinct external test 

datasets including 120 normal and COVID-19 subjects, and the results of these groups were compared to 

each other. Different evaluation metrics such as dice coefficient (DSC), mean absolute error (MAE), 

relative mean HU difference, and relative volume difference were calculated to assess the accuracy of the 

predicted lung masks. 

Results:  

The proposed deep learning method achieved DSC of 0.980 and 0.971 for normal and COVID-19 subjects, 

respectively, demonstrating significant overlap between predicted and reference lung masks. Moreover, 

MAEs of 0.037 HU and 0.061 HU, relative mean HU difference of -2.679% and -4.403%, and relative 

volume difference of 2.405% and 5.928% were obtained for normal and COVID-19 subjects, respectively. 

The comparable performance in lung segmentation of the normal and COVID-19 patients indicates the 

accuracy of the model for the identification of the lung tissue in the presence of the COVID-19 induced 

infections (though slightly better performance was observed for normal patients). 

Conclusion: 

The promising results achieved by the proposed deep learning-based model demonstrated its reliability in 

COVID-19 lung segmentation. This prerequisite step would lead to a more efficient and robust pneumonia 

lesion analysis.  
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Introduction 

The novel coronavirus named SARS-CoV-2 was first broke out in Wuhan China in December 2019 and 

has invaded most countries around the globe [1, 2]. Through infecting the respiratory tracts, this virus causes 

respiratory syndromes [3], where the real-time polymerase chain reaction (RT-PCR) is known as the 

common/standard method for the diagnosis of COVID-19. However, some concerns such as a high false-

negative rate when the viral load is low in the test specimen have limited its application [1, 4].  

On the contrary, chest X-ray or computed tomography (CT) imaging are considered as faster and 

complementary procedures that facilitate the early screening of COVID-19 infections [5, 6]. However, CT 

imaging outperforms X-ray radiography in providing more structural/anatomical details of the lung [7-13]. 

Chest CT images are reported to have a sensitivity of 0.97 in the diagnosis of COVID-19 [14], enabling to 

detect the radiological patterns like bilateral and peripheral ground-glass opacities and patchy 

consolidations in the lung of infected patients [2, 15]. Moreover, quantitative analysis of CT images 

provides key information about the size of lesions and severity of the disease [16] wherein reliable lung CT 

image segmentation is a critical prerequisite step in this regard [17, 18].  

Different approaches for lung segmentation have been adopted including manual segmentation, rule-based, 

atlas-based, machine learning-based as well as hybrid techniques [19-21]. Manual segmentation is a time-

consuming and labor-intensive task particularly in situations that the health system is overloaded [6]. Other 

conventional methods such as atlas-based or intensity-based algorithms lead to acceptable results in normal 

cases or mild disease, however, their implementation in diseases like COVID-19 that infection alters the 

common pattern/structure of the lung is inefficient [19, 22, 23]. To address this challenge, recent researches 

have evaluated the use of deep learning models for lung and lesion segmentation and demonstrated the 

promising performance of convolutional neural networks in distinguishing lung from the chest wall [24, 

25]. 

There are a number of studies that have employed the common deep learning-based image segmentation 

architectures such as U-Net, 3D U-Net, U-Net++, and V-Net for COVID-19 lung segmentation [6, 26, 27]. 

Furthermore, some studies developed and evaluated state-of-the-are algorithms for the cases with 

insufficient annotated datasets using transfer learning or weakly annotated datasets [28-30]. Due to the 

presence of considerable abnormalities in the lung caused by the COVID-19 infection, segmentation of the 

lung in COVID-19 patients faces the challenge of lung boundary and infection discrimination compared to 

the normal patients which bear distinct contrast between the lung tissue and chest wall [31]. 



This study sought to assess the efficiency of the deep learning approach in automated lung segmentation 

from CT images of patients with COVID-19 in comparison with normal patients. Automated lung 

segmentation would assist quantitative analysis and segmentation of infections by removing unnecessary 

regions in the chest images. To conduct a meticulous investigation, a dataset of normal patients was also 

employed in addition to CT scans of infected patients to study the impact of lung abnormalities caused by 

COVID-19 infection on the lung segmentation. 

Material and Methods 

Dataset 

The dataset used in this study consists of chest CT images from 1200 patients with RT-PCR confirmed 

COVID-19 and 120 normal patients without any lung abnormalities. CT image acquisition was performed 

on a Siemens Somatom Spirit Dual Slice CT scanner with tube energy of 130 kVp, tube current of 48 mAs, 

rotation time (TI) of 0.8 s, and slice thickness of 5 mm. For generating ground truth lung masks, CT images 

were segmented semi-automatically using Pulmonary Toolkit (PTK) software [32] and the resulting binary 

masks were manually corrected to avoid any noticeable errors. Prior to the training of the network, all 

images were cropped to eliminate areas outside of the lung volume and resized to a matrix size of 296×216 

voxels by a linear interpolation algorithm. Thereafter, Hounsfield units were scaled to an intensity range 

between 0 and 1. 

Implementation detail  

The ResNet model implemented in NiftyNet was utilized for the implementation of the automated lung 

segmentation. NiftyNet is an open-source platform built upon TensorFlow that consists of common 

convolutional neural networks used in medical imaging [33].  The ResNet architecture, as shown in figure 

1, comprises 20 convolutional layers wherein every two layers are connected together by residual 

connections. In this network, dilation factors of one, two, and four are applied on the convolutional kernels 

to extract low-level, mid-level, and high-level features from the input images, respectively. Also, a fully 

connected softmax layer is embedded as the last layer of the network [34, 35]. 

From the total number of subjects included in this study, 1080 CT images and their corresponding masks 

were randomly selected for the training of the network, and the remaining 120 subjects for validation 

(external validation). To make sure that there is no risk of overfitting, 5% of the training subjects were 

employed for validation of the model within the training phase. The investigations revealed no considerable 

difference between training and evaluation losses. 



The training of the deep learning model was performed on two-dimensional slices using the following 

settings: learning rate = 0.02, optimizer = Adam, loss function = Dice_NS, decay = 0.0001, batch size = 17, 

and weights regression type = L2norm. 

Evaluation Metrics 

To evaluate the performance of the deep learning model, predicted and ground truth lung segmentations 

were compared on the external test dataset including 120 COVID-19 patients and 120 normal subjects. The 

assessment was performed via calculating the dice similarity coefficient (DSC) (Eq. 1), Jaccard index (JC) 

(Eq. 2), mean error (ME) (Eq. 3), mean absolute error (MAE) (Eq. 4) within the estimated lung region.  
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Here, 𝐼௥ and 𝐼௣ denote the reference and predicted lung masks. V and i indicate the total number of voxels 

in the lung area and the index of voxels in 𝐼௥ and 𝐼௣ images, respectively.  

Moreover, the false-positive ratio (Eq. 5) and false-negative ratio (Eq. 6) were estimated as follow: 
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In Eqs. 5 and 6, FP is the number of false positives, TN is the number of true negatives, FN is the number 

of false negatives and TP is the number of true positives for the voxels residing in the lung area. 

Furthermore, relative mean CT number (Hounsfield Unit (HU)) difference, absolute relative mean HU 

difference, relative volume difference, and absolute relative volume difference metrics were calculated 

between the reference and predicted lung volumes. 

 



Results 

Representative results of the lung segmentation for normal and COVID-19 subjects are presented in figures 

2 and 3. Figure 2 shows a good match between the reference and predicted masks for both normal and 

infected lung tissues, which indicates the promising performance of the deep learning model in lung border 

detection. Figure 3 depicts minor segmentation errors for two cases in which the model was not successful 

to define an accurate margin for the lung and excluding bronchus from the segmented area (outlier report). 

The miss-segmentation error is more noticeable in COVID-19 patients due to the similar intensity of the 

chest wall and severe infections, which have rendered the accurate identification of the lung boundary very 

challenging. 

Table 1 summarizes the minimum, maximum, mean, and standard deviation of the quantitative metrics for 

lung segmentation including DSC, JC, ME, MAE, False Positive Ratio, False Negative ratio, mean HU 

difference within the lung mask, and volume difference calculated for external validation datasets. Overall, 

the proposed model showed better performance in lung segmentation of normal subjects compared to 

COVID-19 patients due to the high-density infections residing close to the chest wall in COVID-19 

subjects. 

The mean DSC and JC values in normal group were 0.980 ± 0.003 and 0.962 ± 0.007, and in COVID-19 

group were 0.971 ± 0.017 and 0.938 ± 0.040, respectively. The deep learning model achieved ME of -0.015 

± 0.009 HU and -0.024±0.042 HU, and MAE of 0.037±0.007 HU and 0.061±0.040 HU within the lung 

mask for the normal and COVID-19 subjects, respectively. Moreover, comparable measures of false 

positive and false negative ratios were obtained for the two test datasets. The quantitative assessment 

revealed relative Mean HU Differences of (-2.679±0.382% and -4.403±4.097%) and relative volume 

differences of (2.405±7.359% and 5.928±17.261%) calculated for the lung tissue in the normal and COVID-

19 subjects, respectively. 

Figure 4 illustrates boxplots of DSC, JC, ME, MAE, Relative Mean HU Difference, and Relative Volume 

Difference metrics calculated for the two test datasets. Overall, considering the entire metrics, larger 

standard deviation and outliers were observed in the COVID-19 patients compared to the normal subjects. 

Discussion 

Recent studies suggest that chest CT imaging findings play a significant role in COVID-19 diagnosis and 

management [36, 37]. Accurate lung segmentation is a crucial step for the calculation of the quantitative 

indices, measurement of lung engagement, and disease severity [38, 39]. The existing segmentation 

methods, that have shown satisfactory performance in normal or mild lung diseases, are either time-



consuming or face serious challenges in the segmentation of COVID-19 infected lung tissue due to the 

close similarity between infections and normal tissues [7]. Deep learning-based models have been widely 

adopted lately by researchers as a dependable solution to assist clinicians in fast and efficient COVID-19 

lung and lesion segmentation [40, 41]. This study set out to investigate the performance of a state-of-the-

art deep learning approach in lung segmentation. The network was evaluated on two external test datasets 

including normal and COVID-19 subjects. Multiple evaluation metrics were used to perform a 

comprehensive performance assessment of the model. 

Gerard et al. [22] developed a segmentation algorithm called LobeNet aiming at the prediction of the left 

and right lung regions in the presence of diffuse opacities and consolidations. The quantitative assessment 

of LobeNet performance on 87 patients with COVID-19 showed an average Dice coefficient of 0.985. 

Moreover, Ma et al. [38] reported a DSC score of 0.973 and 0.977 obtained from a 3D U-Net for the left 

and right lung segmentation from COVID-19 CT images. Tilborghs et al. [40] compared the performance 

of various deep learning algorithms using a multicenter COVID-19 dataset. They concluded that combining 

different methods could improve the segmentation performance and increased the Dice coefficient up to 

0.987. The proposed ResNet model implemented in this study achieved average Dice coefficients of 

0.980±0.003 and 0.971±0.017 in normal and COVID-19 external test data set, respectively. This indicates 

a very good segmentation overlap between predicted and ground truth lung masks.  

Yan et al. [6] established a new network called COVID-SegNet for the segmentation of CT images with 

COVID-19 infection. They compared their proposed method against other state-of-the-art models including 

FCN, UNet, VNet, and UNet++. The COVID-SegNet achieved DSC, sensitivity, and precision of 0.865, 

0.986, and 0.983, respectively. In another study conducted by Trivizakis et al. [42], the U-Net architecture, 

one of the most common image segmentation architectures, was implemented for COVID-19 lung 

segmentation. They reported a DSC of 0.950, sensitivity of 0.920, and specificity of 0.875.  Muller et al. 

[43] performed a similar analysis using 3D U-Net for lung segmentation using a cross-validation scheme 

to reduce/avoid the risk of overfitting. Their approach led to lung segmentation with DSC of 0.956, 

sensitivity of 0.956, and specificity of 0.998. Compared to the results reported in the literature, the false-

positive ratio of 0.005 and 0.007, and false-negative ratio of 0.026 and 0.044 obtained for the normal and 

COVID-19 patients in this study demonstrated the promising performance of the proposed deep learning 

approach. 

The investigation of the deep learning model showed high accuracy in terms of Relative Mean HU 

Difference (-2.679% and -4.403%), and Relative Volume Difference (2.405% and 5.928%) in normal and 

COVID-19 cases, respectively. Therefore, the performance of the ResNet model in COVID-19 patients, 



wherein the infection has changed the intensity of the lung, is comparable with its performance in normal 

subjects. 

The investigation of the framework proposed in this work revealed promising results in lung segmentation 

of patients with COVID-19. However, there are some limitations associated with this study that require to 

be addressed in future studies. One of these limitations would be the lack of a multicenter dataset to 

investigate the sensitivity of the developed model to the variation of the image quality and acquisition 

parameters across different scanners/centers. Moreover, in order to develop a comprehensive framework 

which is suitable for clinical practice, the performance of the ResNet model in lesion segmentation should 

be evaluated. This would enable distinguishing COVID-19 lesions from other pneumonia, and diagnosing 

subtypes of COVID-19 pneumonia. 

Conclusion 

In this work, deep learning-based automated lung segmentation from chest CT images in patients with 

COVID-19 was investigated. The proposed method achieved very promising results with a dice coefficient 

of 0.980 and 0.971 in normal and COVID-19 external test datasets, respectively. The reliable lung 

segmentation would facilitate lesion segmentation and will lead to more accurate quantitative analysis, 

diagnosis, and treatment of the COVID-19 patients. 
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Table1. Statistics of quantitative metrics including ME, MAE, RMSE, RE, RVD, Dice, JC, Sensitivity, SSIM, and PSNR 
calculated between the reference and predicted lung masks in normal and COVID-19 test datasets. 

Parameter 
Normal COVID-19 

Min Max Mean ± SD Min Max Mean ± SD 

Dice Coefficient 0.970 0.985 0.980 ± 0.003 0.903 0.986 0.971 ± 0.017 
Jaccard Index 0.942 0.971 0.962 ± 0.007 0.823 0.973 0.938 ± 0.040 
ME -0.031 0.015 -0.015 ± 0.009 -0.155 0.042 -0.024 ± 0.042 
MAE 0.028 0.057 0.037 ± 0.007 0.026 0.176 0.061 ± 0.040 
False Positive Ratio 0.001 0.022 0.005 ± 0.004 0.003 0.028 0.007 ± 0.004 
False Negative Ratio 0.020 0.036 0.026 ± 0.003 0.011 0.167 0.044 ± 0.040 
Relative Mean HU Diff (%) -3.673 -2.020 -2.679 ± 0.382 -16.799 -1.183 -4.403 ± 4.097 
Absolute Relative Mean HU Diff (%) 0 0.374 0.828 ± 1.318 0.921 10.894 3.253 ± 3.106 
Relative Volume Diff (%) -4.726 29.524 2.405 ± 7.359 -12.666 90.561 5.928 ± 17.261 
Absolute Relative Volume Diff (%) 1.960 33.164 7.875 ± 6.548 2.199 91.486 12.743 ± 16.384 

   



 

Figure 1. The architecture of the ResNet model.  



 

Figure 2. Axial views of A) Ground truth lung masks in normal subjects. B) and the corresponding 
predicted lung masks. C) Ground truth lung masks in COVID-19 subjects D) and the corresponding 
predicted lung masks.  



 

Figure 3. Outlier report. Cases with noticeable errors. Axial views of A) Ground truth lung masks in 
normal subjects. B) and the corresponding predicted lung masks. C) Ground truth lung masks in COVID-
19 subjects D) and the corresponding predicted lung masks. 

 

  



Figure 4. Box plots comparing A) Dice Coefficient, B) Jaccard Index, C) ME, D) MAE, E) Relative 
Mean HU Difference (%) and F) Relative Volume Difference(%) metrics between normal and COVID-19 
test datasets.  

 


