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Abstract

Electronic Health Record (EHR) data has been of tremendous utility in Artificial Intelli-
gence (AI) for healthcare such as predicting future clinical events. These tasks, however,
often come with many challenges when using classical machine learning models due to
a myriad of factors including class imbalance and data heterogeneity (i.e., the complex
intra-class variances). To address some of these research gaps, this paper leverages the ex-
citing contrastive learning framework and proposes a novel contrastive regularized clinical
classification model. The contrastive loss is found to substantially augment EHR-based
prediction: it effectively characterizes the similar/dissimilar patterns (by its ”push-and-
pull” form), meanwhile mitigating the highly skewed class distribution by learning more
balanced feature spaces (as also echoed by recent findings). In particular, when naively
exporting the contrastive learning to the EHR data, one hurdle is in generating positive
samples, since EHR data is not as amendable to data augmentation as image data. To
this end, we have introduced two unique positive sampling strategies specifically tailored
for EHR data: a feature-based positive sampling that exploits the feature space neighbor-
hood structure to reinforce the feature learning; and an attribute-based positive sampling
that incorporates pre-generated patient similarity metrics to define the sample proxim-
ity. Both sampling approaches are designed with an awareness of unique high intra-class
variance in EHR data. Our overall framework yields highly competitive experimental re-
sults in predicting the mortality risk on real-world COVID-19 EHR data with a total of
5,712 patients admitted to a large, urban health system. Specifically, our method reaches a
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high AUROC prediction score of 0.959, which outperforms other baselines and alternatives:
cross-entropy(0.873) and focal loss(0.931).

1. Introduction

The use and adoption of electronic health record (EHR) systems in hospitals have rapidly
grown in the past decade, and the massive amount of EHR data accumulated from routine
care has naturally facilitated a surge of research from data-driven clinical informatics appli-
cations, such as medical concept extraction (Jiang et al., 2011), patient trajectory modeling
(Ebadollahi et al., 2010), disease inference (Austin et al., 2013), and clinical decision support
systems (Kuperman et al., 2007). While primarily designed for operation processes, EHR
systems electronically store data associated with each patient encounter with the health
system, including disease diagnoses, laboratory test results, vital signs, and more. In recent
years, many machine learning techniques, including deep learning, have been leveraged to
derive insights from EHR data (Shickel et al., 2017).

One of the challenges in learning from EHR data is the heterogeneous nature by which
it is represented – in terms of not only data types involved, but also the various types of
contributing factors to disease phenotypes as well as noise, bias, and confounding variables.
More specifically, patients with the same disease or outcome can deviate in terms of pheno-
type representation leading to a high amount of intra-class variance in terms of etiology
and presentation, especially for complex diseases. Another technical barrier to successful
machine learning implementation of EHR data arises from the severe data imbalance as
commonly seen in real-world biomedical data. Many important healthcare events are rare,
and the class distribution in EHR data is often highly skewed in having a much higher
proportion of the majority, background class (i.e., healthy) than those the outcome of in-
terest, such as rare clinical diseases. These aspects can strongly bias the classifier to miss
the rare but critical classes. Additionally, many features have high missingness such as lab
test results which are sporadic and only performed in certain clinical scenarios.

Recently, contrastive learning (He et al., 2019; Chen et al., 2020a) has garnered a signif-
icant amount of interest, mainly due to its encouraging promise of learning representations
while requiring no human annotation that are on par with supervised learning. Originating
from the unsupervised learning realm, contrastive learning has also been extended to the
semi-supervised (Chen et al., 2020b) and fully-supervised (Khosla et al., 2020) settings,
allowing for effectively leveraging label information when available. The underlying idea
across these settings is to pull “similar points” (or points belonging to the same class)
together, while simultaneously pushing apart “dissimilar points” (or points belonging to
different classes), in the embedding space. Accordingly, each training sample is an anchor
with its similar and dissimilar points in the same training serving as positive and negative
samples, respectively. In another use case (Khosla et al., 2020), the supervised variant of
contrastive loss was found to consistently perform better than cross-entropy on large-scale
classification problems, while also yielding superior robustness to data noise and unseen
corruptions during testing. Lately, it was found by (Yang and Xu, 2020; Kang et al., 2021)
that when the data distribution is skewed, contrastive learning can learn a more balanced
feature space than its vanilla supervised counterpart.
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The above progress sheds light on a new opportunity to integrate contrastive learning
into EHR classification tasks, with the hope for stronger discriminative power, robustness,
and handling outcome imbalance. However, the incorporation of contrastive learning into
EHR data faces one unique roadblock: the process of sampling patients with positive out-
comes. For any ”anchor” sample, a good positive sample has to be semantically aligned
(e.g., the same class), yet also nontrivial and informative enough for learning meaningful
features. It is well-known that the quality of positive sampling determines the effectiveness
of contrastive learning to a large extent (Grill et al., 2020; Li et al., 2020). Previous liter-
ature either (in the unsupervised setting) performs data augmentation to create a similar
anchor and positive examples (He et al., 2019; Chen et al., 2020a), or (in the supervised
setting) randomly samples examples from the same class (Khosla et al., 2020; Kang et al.,
2021). Unfortunately, EHR data is not as readily amendable to data augmentation due
to the previously mentioned aspects (e.g., varying feature completeness). Furthermore,
random class-wise sampling overlooks the ultra-high intra-class variance in certain clinical
phenotypes and will easily collapse the learned features, which we find in our experiments.
In summary, no off-the-shelf positive sampling is directly applicable for contrastive learning
in EHR data.

In this work, we address the above challenges by presenting a holistic framework for
classification tasks in EHR data using contrastive learning to explicitly take outcome im-
balance and intra-class heterogeneity into consideration. We introduce contrastive loss into
a focal loss-based classification pipeline and show that contrastive loss boosts both overall
task accuracy in different scenarios of class imbalance in EHR data. As the key innovation,
we design two unique positive sampling strategies specifically tailored for EHR data which is
less amenable to data augmentation: a feature-based positive sampling that exploits the fea-
ture space neighborhood structure to reinforce the feature learning; and an attribute-based
positive sampling that incorporates pre-generated patient similarity to define the sample
proximity. Both sampling approaches are designed to capture the high intra-class hetero-
geneity in EHR data. Our contributions can be summarized in the following three-folds:

• Framework: We are the first to integrate a bespoke approach using contrastive
learning into the challenging task of outcome classification for real-world, imbalanced,
and heterogeneous EHR data. When combined with a strong baseline using focal
loss, we demonstrate that integrating contrastive learning can further remarkably
boost predictive accuracy and be robust to data imbalance.

• Methodology: We present two new positive sampling approaches that enable the
usage of contrastive learning in EHR data. Both approaches take better care of the
high intra-class variance in EHR data, and outperform existing vanilla options. These
approaches may open a new set of possibilities for extending contrastive learning to
many other domains where data augmentation is less feasible.

• Experiments: We test our model on predicting 24-hour mortality using real-world
COVID-19 EHR data from a large, diverse health system. We assess our contrastive
regularizer and two positive sampling strategies. We assess the robustness of this
framework in chunks of data with different sample sizes and imbalance ratios. Our
method, particularly the attribute-based positive sampling contrastive regularizer,
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achieves a boost in performance over vanilla focal loss, reaching a high AUROC pre-
diction score of 0.959, largely outperforming other alternatives.

2. Related Work

Phenotype Intra-class Heterogeneity and Subphenotypes. Clinical phenotypes,
and therefore EHR data, are often heterogeneous by nature. Most complex diseases, for
instance, have varying manifestations, presentations, sequelae, and outcomes. As such,
these diseases are manifested by a variety of clinical data types, including lab test result
ranges or disease diagnostic codes. Therefore, it is often the case that patients in the
same outcome class (i.e., those that develop severe COVID-19) could have large intra-
class variance in terms of etiology and presentation. Patterns in this phenomenon can
be considered subphenotypes of a disease. Exploring different subphenotypes is valuable
to precision medicine and can enhance the performance of the predictive tasks and lead to
more personalized recommendations. There is a large body of work exploring computational
methods for subphenotyping, such as Parkinson’s disease (Lewis et al., 2005), scleroderma
(Schulam et al., 2015), and Glioblastoma (Verhaak et al., 2010). To better capture the
pattern of subtypes, methods such as multi-task learning and hierarchical models (Suresh
et al., 2018; Alaa et al., 2018) have been studied. Recently, Su et al. characterized the
heterogeneity of COVID-19 into four distinct clinical subphenotypes Su et al. (2021).

Contrastive Learning for Data Imbalance. It is long known that real-world
datasets, particularly EHR data, have issues with outcome imbalance which limits per-
formance for many analyses (Santiso et al., 2019; Wu et al., 2010)(see section 3.2 for more
details). Traditional methods like ensemble learning (Khalilia et al., 2011) or re-balancing
classes (Buda et al., 2018) have been utilized for certain tasks in this realm but come
with their own set of limitations. The incorporation of focal loss achieved higher accu-
racy on EHR-based classification tasks (Wang et al., 2018, 2020). These facets suggest
that contrastive learning may serve to better address imbalance in addition to focal loss.
Studies found that decoupling the data representation and classifier can lead to better
classification for long-tailed datasets (Kang et al., 2019). Yang and Xu (2020) proposed
either to use a simple pseudo-labeling strategy to alleviate label bias with extra data in a
semi-supervised manner, or to abandon labels at the beginning and pre-train classifiers in a
self-supervised manner, can both improve the performance class-imbalanced learning. Kang
et al. (2021) compared self-supervised contrastive learning and supervised methods for long-
tailed datasets and found that self-supervised contrastive learning constantly outperforms
supervised methods on heavily imbalanced data. Their study shows that representation
learned from the self-supervised contrastive loss performs well on both balanced and imbal-
anced datasets because it can generate a balanced feature space with similar separability
for all classes.

Supervised Contrastive Learning. Self-supervised contrastive learning takes an
augmented anchor as the single positive for each anchor without taking the advantage of
pre-labeled class information. So, in one batch, images from the same class of the anchor
have been treated as the negative samples which can reduce the performance (Khosla et al.,
2020). Supervised contrastive learning can leverage label information to generate better
positive samples that embeddings of objects from the same classes should be similar, while
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embeddings of objects from different classes should be dissimilar. Khosla et al. (2020) pro-
posed the multiple positives per anchor in addition to many negatives and provide a unified
loss function which can be viewed as the generalization of both triplet (Weinberger and
Saul, 2009) and N-pair (Sohn, 2016) losses. Their loss is less sensitive to hyperparameters,
which can provide consistent boosts for accuracy for different datasets, and is robust to
natural corruptions. But taking multiple positive samples from the same class in EHR
data can be problematic because there are complex intra-class variances in the EHR data
which can lead to over-collapsing feature spaces. Kang et al. (2021) proposed k-positive
contrastive learning to take advantage of supervised contrastive learning and also solve the
issue of imbalanced data. The proposed k-positive contrastive learning takes k instances of
the same class of the anchor as the positives and demonstrates superior performance over
the latest contrastive learning methods on both balanced data and long-tailed data. The
proposed k-positive contrastive loss is different from (Khosla et al., 2020)’s supervised con-
trastive learning which uses all the instances from the same class to be the positive pairs and
cannot avoid the dominance of large classes in the representation space. While Kang et al.
(2021)’s k-positive contrastive loss can carefully balance the equal number of positive pairs
for all classes, especially for the long-tailed data which class instances vary dramatically.
Therefore, k-positive contrastive loss can generate feature spaces with desirable balance and
discriminative ability.

Applications of Contrastive Learning on Clinical Data. There have been en-
couraging studies that have demonstrated the potential utility of contrastive learning in
health data, albeit only a few. Contrastive learning has been applied for more robust learn-
ing of various patient data modalities. Kiyasseh et al. (2020) created CLOCS, a family of
contrastive learning methods on unlabeled cardiac physiological data for downstream tasks
like better quantifying patient similarity for disease detection. Kostas et al. (2021) created
BENDR, which leverages transformers and contrastive self-supervised learning to better
learn representations of electroencephalogram data. Moving to the realm of EHR data, Li
et al. (2019) built a framework that enhanced predictive performance for common diseases
across multiple sites without the need to share data by leveraging Distributed Noise Con-
trastive Estimation. Wanyan et al. (2021) demonstrated that contrastive learning enhanced
prediction of critical events in COVID-19 as well as led to better patient representations.
Chen et al. (2021) used transformers and contrastive learning to learn embedding represen-
tations of EHR data and showed that these representations allow for better predictions in
disease retrieval tasks. It is clear that the potential utility of this framework into the realm
of healthcare, especially EHR, is just at the beginning.

3. Methodology

3.1. Addressing EHR Data Imbalance: Contrastive-Regularized Focal Loss

Focal loss (Lin et al., 2017) has been shown to work well in imbalanced EHR data and
significantly improves performance in such tasks as predicting mortality from heart fail-
ure (Wang et al., 2020). However, focal loss may underperform in situations where there is
a lot of patient intra-class heterogeneity. This may be the case because of the unimodal loss
structure of focal loss which classifies based solely on label information, making it unable to
leverage and learn from the rich features that constitute patient data within a group (Oord
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et al., 2018). To leverage the above problem, we propose a learning framework by adding a
contrastive regularizer to the base focal loss, for boosting the performance on EHR tasks on
outcome imbalance as well as intra-class heterogeneity. We apply our contrastive learning
framework similar to Chen et al. (2020a), then compile an end-to-end training strategy that
incorporates our novel k-positive selection approaches (described in more detail in the next
section):

L = L̂+ αL∗ (1)

Where L̂ is the focal loss, L∗ is the additional contrasitve loss as a regularizer, α is the reg-
ularization coefficient that controls the loss magnitude. Different from (Chen et al., 2020a),
we use the supervised contrastive learning framework (Khosla et al., 2020) to generate aug-
mented positive samples from the same class group, for each batch, we sample N samples,
and use our proposed sampling strategies to generate K positive samples from the same
class for each data in batch, then use all (N − 1)×K samples as the negative samples:

L∗ = − 1

N

N∑
p=1

K∑
i=1

log
exp(zp · z+

i /τ)

exp(zp · z+
i /τ) +

∑(N−1)K
j=1 exp(zp · z−

j /τ)
(2)

Where zp is the embedding vector of one patient data in batch, z+
i are positive sample

embeddings. z−
j are negative sample embeddings. K is the positive sample numbers, τ is the

temperature hyper-parameter. Intuitively, we apply a vanilla k-random positive sampling
strategy (Kang et al., 2021) as our first positive sampling strategy as well as a baseline for
comparison with our next proposed two rational sampling strategies, the learning algorithm
with this k-random positive sampling is shown in Alg 1. We highlight the part in red to
mainly distinguish the K-random sampling algorithm from our next proposed two positive
sampling strategies.

Algorithm 1 K-Random Positive Sampling Contrastive Learning

Input: longitudinal EHR features
Output: Embedding vector representation for patients

1: Initialize all weights W
2: for each epoch do
3: while not converged do
4: sample a mini-batch training patients P ∈ Pall.
5: for each p ∈ P , randomly sample k positive data p+

k ∈ Pall that have the same label
as p.

6: Compute: L = L̂+ αL∗
7: compute gradient of loss function ∇L and update weight matrices W .
8: end while
9: end for

10: return embedded representation cp,∀p ∈ Pall
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3.2. Addressing EHR Data Heterogeneity: Two Proximity-based Positive
Sampling Approaches

A key knob in contrastive learning is to find positive pairs for anchor examples and to max-
imize their learned features’ similarity to inject the desired invariance. As class labels are
available for us, a vanilla option is to follow the k-random positive sampling strategy (Kang
et al., 2021) for supervised contrastive learning, which just randomly picks samples belong-
ing to the same class to form anchor-positive pairs. However, we demonstrate this naive
baseline is unable to work well for EHR data since it neglects the high intra-class variance as
seen in heterogeneous phenotypes like COVID-19, and such learned features will easily col-
lapse and fail to generalize. To this end, we develop two unique positive sampling strategies
specifically tailored for EHR data: a feature-based positive sampling that exploits the fea-
ture space neighborhood structure to reinforce the feature learning; and an attribute-based
positive sampling that incorporates the raw features to define the sample proximity. Both
sampling approaches are designed to capture the high intra-class variance in EHR data.
The main difference between the two lies in how they compute sample similarity, which has
been highlighted in Algorithm 2 (blue) and Algorithm 3 (orange), respectively.

Feature-based Sampling In our feature-based k nearest neighborhood (knn) positive
sampling method, we construct a knn graph by ranking patients by their similarities among
the embedding vectors within the same class and selecting positive samples for every training
patient from its top k neighbors in the feature knn graph. We define the similarity score
between one pair of features as their cosine similarity:

z · z̄/‖z‖‖z̄‖ (3)

Where z and z̄ are two embedding feature vectors. Since constructing a knn graph would
take large computational resources, especially when data is huge, we update the knn graph
every epoch instead of every iteration. Our feature-based knn sampling contrastive regu-
larizer loss is then written as follow:

L∗feature = − 1

N

N∑
p=1

K∑
i=1

log
exp(zp · z+

i(feature)/τ)

exp(zp · z+
i(feature)/τ) +

∑(N−1)K
j=1 exp(zp · z−

j /τ)
(4)

Where z+
i(feature) are the top k sample embeddings from the feature knn graph. The knn

feature based contrastive learning algorithm is shown in Alg 2.
Attribute-based Sampling In our attribute-based positive sampling model, we con-

struct the knn graph to rank patients by their similarities by lab test features. Since the
input values are in different scales, we scale the feature values into the range of [0,1] based
on their mean and standard deviation, and define the attribute similarity score by their Eu-
clidean distance. We included 34 lab test features that were present in 80% of the cohort
(see Appendix A):

m∑
k̄=1

‖Xik̄ −Xjk̄‖2 (5)

Where Xi and Xj are two input vectors representing two individual patients, m is the input
feature dimension. k̄ represents each highlighted feature. The contrastive regularizer loss
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Algorithm 2 Feature-based K-nearest Neighborhood Sampling Contrastive Learning

Input: Longitutinal EHR features
Output: Embedding vector representation for all patients

1: Initialize all weights Wp

2: for each epoch do
3: Compute similarities between all pairs of embedding feature representations based on

equation 3, and build knn graph from it.
4: while not converged do
5: sample a mini-batch training patients P ∈ Pall.
6: for each p ∈ P , sample k positive data p+

k ∈ Pall that have the same label as p, and
are connected to node p in the knn graph.

7: Compute: L = L̂+ αL∗feature
8: compute gradient of loss function ∇L and update weight matrices Wp.
9: end while

10: end for
11: return embedded representation cp,∀p ∈ Pall

is written as follow:

L∗attribute = − 1

N

N∑
p=1

K∑
i=1

log
exp(zp · z+

i(attribute)/τ)

exp(zp · z+
i(attribute)/τ) +

∑(N−1)K
j=1 exp(zp · z−

j /τ)
(6)

Where z+
i(attribute) are the top k sample embeddings from the attribute knn graph. Alg 3

shows our attribute-based contrastive learning algorithm. While our feature-based sampling
strategy updates the knn graph every epoch, the attribute-based knn graph is computed
before training begins. In other words, we use pre-computed patient similarity metrics to
select positive samples which are not learned by our algorithm.

4. Experiment

4.1. Dataset Description and Experimental Design

We assess our framework in a clinically-relevant EHR task, specifically predicting mortality
from real-world COVID-19 data. Our dataset is comprised of patients from a large and
diverse health system in an urban environment. We obtain such data for 5,712 patients who
tested positive for COVID-19 and were hospitalized ( 23% mortality rate). The collected
EHR data contains the following information: COVID-19 status, demographics, laboratory
test results, vital signs, and comorbidities (see Appendix A for details).

Our primary task was to predict mortality in COVID-19 patients 24 hours before the
event. We model the EHR data using a standard longitudinal RNN model framework as
in Choi et al. (2016). Longitudinal data (i.e., features with multiple values), specifically lab
tests and vital signs, were binned and averaged within 6-hour windows across their hospital-
ization. We concatenated non-longitudinal categorical features, specifically demographics
and co-morbidities, into a separate shallow neural network layer. We then concatenated the
output embedding vector from this layer with the embedding vector from the RNN model
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Algorithm 3 Attribute Based K-nearest Neighborhood Sampling Contrastive Learning

Input: Longitudinal EHR features
Output: Embedding vector representation for all patients

1: Initialize all weights Wp

2: Pre-compute similarities between all pairs of embedding features based on equation 5,
and build knn graph from it.

3: for each epoch do
4: while not converged do
5: sample a mini-batch training patients P ∈ Pall.
6: for each p ∈ P , sample k positive data p+

k ∈ Pall that have the same label as p, and
are connected to node p in the knn graph.

7: Compute: L = L̂+ αL∗attribute
8: compute gradient of loss function ∇L and update weight matrices Wp.
9: end while

10: end for
11: return embedded representation cp,∀p ∈ Pall

(i.e., the last time frame) to form the final patient embedding representation zp. All analy-
ses were performed using TensorFlow 1.15.1 and utilized the Adam optimizer (Kingma and
Ba, 2014). We set the batch size to be 32, with 6 training epochs, and set our embedding
dimension to be 100. For all experiment below, we specifically pick our model parameters
to be: k = 5, α = 0.2, and τ = 1. We conduct a thorough investigation of optimal model
parameters in Appendix B.

4.2. Performance of Contrastive Regularizer Positive Sampling Strategies

For testing the overall performance of our contrastive regularizer on our task, we split our
data into 70% for training and 30% for testing for performing the 7-fold cross-validation.
The performance metrics are shown in Table 1. We first assess the effect of focal loss
compared to the commonly used cross-entropy loss. In this comparison, we find focal loss
outperforms cross-entropy loss in terms of both AUROC ( 6% improvement) and AUPRC
( 3% improvement).

We then assess any performance improvements over the base focal loss for our various
positive sampling approaches, specifically k-random (random), feature-based (feature), and
attribute-based (attribute). We find that all of our three positive sampling strategies confer
performance improvements over the base focal loss, specifically 2%, 3%, and 3% for
random, feature, and attribute respectively. We then compare the overall contribution of
the two sampling approaches we developed (feature and attribute) compared to the random
k-positive selection for focal loss.

We further assess the relative benefit to these sampling approaches in different EHR
cohort scenarios in subsequent generalizability experiments described below.
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Table 1: Overall Mortality Prediction Performance

Loss Model AUROC AUPRC

CE 0.873(0.003) 0.801(0.002)
FL 0.931(0.002) 0.830(0.002)
FL(random) 0.949(0.002) 0.879(0.001)
FL(feature) 0.956(0.002) 0.884(0.001)
FL(attribute) 0.959(0.002) 0.886(0.001)

Table 2: Prediction Performance on Various Sample Sizes in the same Test Set

Training data(size/positive label percentage)

Loss Model 399/23% 999/23% 1999/23% 2999/23% 3999/23%

CE 0.732(0.003) 0.845(0.002) 0.863(0.002) 0.876(0.002) 0.887(0.002)
FL 0.803(0.002) 0.916(0.002) 0.926(0.002) 0.934(0.002) 0.935(0.001)
FL(random) 0.886(0.001) 0.931(0.002) 0.941(0.001) 0.947(0.001) 0.949(0.001)
FL(feature) 0.897(0.001) 0.937(0.001) 0.944(0.001) 0.952(0.001) 0.956(0.001)
FL(attribute) 0.906(0.001) 0.938(0.001) 0.949(0.001) 0.953(0.001) 0.954(0.002)

4.3. Assessing the Robustness of the Contrastive Regulatrizer Framework
with Different Training Sample Sizes and Imbalance Ratios

Next, we test the robustness of our model and baselines to predict the same outcome in
subsets of our data at different sample sizes and imbalance ratios in the training data.
Specifically, we train on varying dataset characteristics (i.e. size and imbalance ratio) and
test in the fixed original size and imbalance ratio as the original experiment (N=1713). Like
before, we assess various baselines and implementations of positive sampling strategies.

First, the AUROC results of varying training sample sizes are shown in Table 2. Specif-
ically, we compared performance at N=399, 999, 1999, 2999, and 3999 all with the same
imbalance ratio of 23% positive outcomes. Across all scenarios, we see a marked improve-
ment of focal loss over cross-entropy loss with the larger improvements seen at smaller
sample sizes (i.e., 7% improvement in N=1999). The addition of random positive sampling
for focal loss increased performance across all experiments but was most prominent in the
smallest sample size, specifically 8% improvement over base focal loss. The incorporation
of feature- and attribute-based sampling strategies also demonstrated improvements over
the random sampling strategy in focal loss: 1.1% for feature-based and 2.0% for attribute-
based. For these experiments, we did not find a large difference between the feature-based
and attribute-based strategies with slightly higher values in attribute-based.

We next performed a similar experiment varying degrees of data imbalance via restricting
the number of positive outcome patients (same amount of negative) in the training data,
specifically at 1%, 5%, 10%, 15%, and 20%. Table 3 shows the AUROC results for this
experiment. Like before, focal loss has large improvements over cross-entropy loss, with
the largest improvement at the most imbalanced ratio, specifically 15% improvement at
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Table 3: Prediction Performance When Varying Training Outcome Imbalance Ratios

Training data(size/positive label percentage)

Loss Model 3099/1% 3245/5% 3445/10% 3645/15% 3845/20%

CE 0.693(0.002) 0.801(0.002) 0.828(0.002) 0.841(0.002) 0.847(0.002)
FL 0.849(0.002) 0.884(0.002) 0.901(0.002) 0.927(0.002) 0.932(0.002)
FL(random) 0.929(0.001) 0.934(0.001) 0.939(0.001) 0.944(0.001) 0.949(0.001)
FL(feature) 0.934(0.001) 0.942(0.001) 0.944(0.001) 0.943(0.001) 0.953(0.002)
FL(attribute) 0.940(0.002) 0.942(0.001) 0.948(0.001) 0.949(0.001) 0.959(0.001)

1% imbalance. All contrastive regularizers with different positive sampling greatly boost
the performance of focal loss, specifically 9% improvement. All three positive sampling
strategies conferred improvements over the baseline focal loss with the trend of showing
bigger improvements with higher training imbalance. The feature- and attribute-based
approaches still show improvements over random sampling across different imbalance ratios,
with an average 0.07% for feature-based and 0.11% for attribute-based. The attribute-
based sampling has slight improvement over feature-based sampling, one average 0.04% at
different ratios, note that all contrastive regularizer boosted focal losses have much stable
performance at different ratios, with the largest degradation of 2% from 20% ratio to 1%
ratio, comparing to the degradation of 15% from cross-entropy loss and 8.3% from focal
loss, our contrastive regularizer boosted focal loss provides much stable performance.

4.4. The Impact of Different Positive Sampling Strategies on Representations
Learned from EHR Data

In all previous experiments, we used the contrastive-regularized focal loss in a semi-supervised
setting to directly classify patients from the trained model. Table 1 already demonstrated
the benefit of our contrastive regularizer with an improved predictive performance in the
semi-supervised setting. Here, we demonstrate the impact of different sampling strategies
on the hidden representations learned via supervised contrastive learning (Khosla et al.,
2020). In this setting, we learn 100-dimension hidden representation of patients using the
contrasting loss functions shown in Eq. 2, 4, and 6. Fig. 1 shows the embeddings obtained
from different sampling strategies.

Table 4: Pre-trained Embedding Evaluation for Sampling Strategies

Sampling Strategy AUROC ESS SD (positive) SD (negative)

Random 0.859 0.446 0.158 0.448
Feature 0.893 0.627 0.193 0.534
Attribute 0.904 0.803 0.255 0.702

Feature- and attribute-based positive samplings better separate classes in
embedding space. To test the separation of classes in embedding space, we train a logistic
linear classifier on patient embeddings obtained from contrastive learning with different
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sampling strategies. To train the logistic regression model, we use the same split percentage
for training and testing data as used in the above section. The first column of Table 4 shows
that the prediction scores of the linear classifier trained on both attribute- and feature-based
embedding outperform the random sampling strategy, specifically 3.4% for feature-based,
and 4.5% for attribute-based. This result demonstrates that feature- and attribute-based
samplings push positive and negative classes further apart in embedding space, which helps
the linear classifier attain better accuracy.

To quantitatively measure the separation between the positive and negative patient
groups, we define a simple inter-class distance metric (here we use Embedding Separation
Score (ESS) for this metric) as follows:

‖zp − zn‖/(‖zp‖+ ‖zn‖), (7)

where zp and zn are normalized embedding centers for positive patient group and negative
patient group. Here, the value of inter-class distance is between [0, 1], and the higher the
distance the better the classes are separated in the embedding space. Table 4 column 2
shows that feature-based sampling and attribute-based sampling show higher inter-class
distance, as expected. Fig. 1 visually confirms that the new sampling strategies indeed
better separate positive and negative classes.

Feature- and attribute-based positive samplings capture more intra-class het-
erogeneity. Usually, it is desirable that points from the same class are pulled together in
embedding space to create a compact cluster. However, COVID EHR data shows tremen-
dous heterogeneity in terms of patients demographics, symptoms, and outcomes (Su et al.,
2021). Hence, it is often beneficial to keep some intra-class variability (heterogeneity) to fa-
cilitate learning from local neighborhoods of patients across the spectrum within each class.
We quantitatively measure the intra-class variance (in the embedding space) to represent
intra-class heterogeneous by computing the standard deviation of distance metric between
patient embedding with its cluster center embedding in terms of Eq. 7 for the positive class
(mortality) patient group and negative patient group, respectively. Columns 4 and 5 in
Table 4 show that feature-based and attribute-based sampling indeed preserve higher intra-
class variances to reflect the heterogeneity within each class. This benefit is because random
positive sampling contrastive loss approximates one uniform distribution within each group,
resulting in collapsing the embedding space, while our feature- or attribute-based positive
sampling contrastive loss strategies approximate different subgroup distributions within the
same class and avoid collapsing of the embedding space. Such collapsing could result in a
much closer distribution center between the positive and negative group as shown in Table 4,
thus leading to worse prediction performance.

5. Conclusion

In this work, we introduce a general framework that adds a contrastive regularizer on
top of focal loss for boosting predictive performance. We further propose two novel positive
sampling strategies, feature-based and attribute-based, that outperform k random sampling
for contrastive learning especially in datasets with high intra-class heterogeneity and data
imbalance. Through experiments predicting mortality in real-world COVID-19 EHR data,
we demonstrate the contrastive regularized framework greatly boosts the performance over
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Figure 1: UMAP visualizations of pre-trained embedding with different sampling strategies:
(A) random positive sampling; (B) feature-based positive sampling; (C) attribute-
based positive sampline. Blue dots are non-death patient embeddings, orange dots
are death patient embeddings, the orange and blue lines represent distribution
contour of the positive and negative groups.

focal loss at various sample sizes and imbalance ratios. Our results show that the two
sampling strategies both outperform k random sampling in this task with the attribute-
based approach having a slight edge over the feature-based approach. Our experiments
further confirm that the two proposed sampling strategies in our contrastive regularized
framework can achieve better inter-class separation and leverage intra-class heterogeneity.
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Appendix A. Input Features For EHR data

For our experiment, the collected EHR data contains the following specific features: COVID-
19 status and demographics (age, gender, and race). We also collect vital signs, specifically:
heart rate, respiration rate, pulse oximetry, blood pressure (diastolic and systolic), tem-
perature, height, and weight. We compile 12 comorbidities: alcoholism, asthma, atrial
fibrillation, coronary artery disease, cancer, chronic kidney disease, chronic obstructive pul-
monary disease, diabetes mellitus, heart failure, hypertension, stroke, and liver disease.
Lastly, we collect 34 relevant laboratory test results, these lab tests are specifically listed
as follows:
Albumin, Alkaline Phosphatase, Alanine Aminotransferase, Amylase, Anion Gap, Partial
Thromboplastin Time, Aspartate transaminase, Atypical Lymphocytes, Band Cells, Ba-
sophil %, Basophil Count, Direct Bilirubin, Total Bilirubin, Myeloblasts, Brain Natriuretic
Peptide, Blood Urea Nitrogen, C-reactive protein, Ionized Calcium, Calcium, Chloride, Cre-
atine phosphokinase, Creatine kinase-MB, Bicarbonate, Creatinine, D-dimer, Eosinophil %,
Eosinophil, Ferritin, Fibrogen, Glucose, Hematocrit, Hemoglobin, International Normalized
Ratio, IL6, Iron, Ketone, Lactate, Lactate Dehydrogenase, Lymphocyte %, Lymphocytes,
Mean Corpuscular Hemoglobin Concentration, Mean Corpuscular Volume, Mean Platelet
Volume, Monocyte %, Monocytes, Neutrophil %, Neutrophils, Oxygen Saturation, pH,
Platelets, Partial Pressure of Oxygen, Potassium, PT, Protein, Red Blood Cell Count,
Red Cell Distribution Width, Sodium, Total Iron-Binding Capacity, Transferrin saturation,
Troponin I, Uric Acid, White Blood Cell Count

Appendix B. Studying the Effect of Model Parameters for Contrastive
Regularizer

We assess the effect of different parameters for our three positive sampling contrastive regu-
larizer models. There are three model parameters that could be customized and optimized
in our contrastive learning framework, specifically: k, α, τ , where k is the positive sample
numbers, α is the weight for contrastive regularizer, τ is the temperature parameter for
contrastive loss. First, we test on the performance using different k values, with α = 0.2
and τ = 1 fixed. the result is shown in Table 5.

Table 5: Prediction Performance on Different k

Loss Model k=1 k=3 k=5 k=9 k=11 k=15

FL(random) 0.949 0.951 0.950 0.953 0.952 0.953
FL(feature) 0.950 0.957 0.956 0.957 0.953 0.955
FL(attribute) 0.956 0.957 0.954 0.961 0.956 0.961

Second, we test the performance on the impact of different regularizer weight coefficient
α with k = 5 and τ = 1 fixed. The results of this experiment are shown in Table 6

Finally, we test the parameter τ with k = 5 and α = 0.2 fixed. The results are shown
in Table 7.
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Table 6: Predictive Performance using Different Weight Coefficients α

Loss Model α = 0.1 α = 0.2 α = 0.4 α = 0.6 α = 0.8

FL(random) 0.946 0.949 0.953 0.955 0.956
FL(feature) 0.952 0.953 0.956 0.955 0.955
FL(attribute) 0.951 0.954 0.958 0.958 0.957

Table 7: Predictive Performance using Different τ

Loss Model τ = 0.1 τ = 0.5 τ = 1 τ = 1.5

FL(random) 0.961 0.962 0.953 0.954
FL(feature) 0.963 0.965 0.956 0.955
FL(attribute) 0.967 0.966 0.958 0.957

18


	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Addressing EHR Data Imbalance: Contrastive-Regularized Focal Loss
	3.2 Addressing EHR Data Heterogeneity: Two Proximity-based Positive Sampling Approaches

	4 Experiment
	4.1 Dataset Description and Experimental Design
	4.2 Performance of Contrastive Regularizer Positive Sampling Strategies
	4.3 Assessing the Robustness of the Contrastive Regulatrizer Framework with Different Training Sample Sizes and Imbalance Ratios
	4.4 The Impact of Different Positive Sampling Strategies on Representations Learned from EHR Data

	5 Conclusion

