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Abstract. The novel coronavirus disease 2019 (COVID-19) character-
ized by atypical pneumonia has caused millions of deaths worldwide. Au-
tomatically segmenting lesions from chest Computed Tomography (CT)
is a promising way to assist doctors in COVID-19 screening, treatment
planning, and follow-up monitoring. However, voxel-wise annotations are
extremely expert-demanding and scarce, especially when it comes to
novel diseases, while an abundance of unlabeled data could be available.
To tackle the challenge of limited annotations, in this paper, we propose
an uncertainty-guided dual-consistency learning network (UDC-Net) for
semi-supervised COVID-19 lesion segmentation from CT images. Specif-
ically, we present a dual-consistency learning scheme that simultaneously
imposes image transformation equivalence and feature perturbation in-
variance to effectively harness the knowledge from unlabeled data. We
then quantify the segmentation uncertainty in two forms and employ
them together to guide the consistency regularization for more reliable
unsupervised learning. Extensive experiments showed that our proposed
UDC-Net improves the fully supervised method by 6.3% in Dice and
outperforms other competitive semi-supervised approaches by significant
margins, demonstrating high potential in real-world clinical practice. 2

Keywords: COVID-19 · Semi-supervised learning · Uncertainty · Seg-
mentation.

1 The first two authors contributed equally.
2 Code is available at https://github.com/poiuohke/UDC-Net.
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1 Introduction

By the end of 2020, the coronavirus disease 2019 (COVID-19) [36] characterized
by atypical pneumonia has spread over 220 countries and areas, infected more
than 81 million people, and caused near 1.8 million losses of lives1. For early
screening of the COVID-19, chest computed tomography (CT) plays a vital role
as a noninvasive and fast technique, which is reported to have high sensitivity
for detecting COVID-19-related abnormal findings [6,1,13,7]. To improve the
screening efficiency and alleviate radiologists’ reading burden, various automatic
COVID-19 chest CT analysis methods have been proposed from whole-volume
classification and triaging [20,27,8,17,4], weakly-supervised lesion localization
[16,31], to accurate segmentation of lesion regions [5,26]. Among previous studies,
segmentation of COVID-19 often provides more accurate descriptions of the
lesions, which has significant potential in assisting doctors with the diagnosis,
treatment planning, and follow-up monitoring.

Currently, advanced segmentation methods are often fully supervised and
heavily rely on pixel-wise or voxel-wise annotations. For novel diseases like
COVID-19, acquiring such annotations is extremely expertise-demanded and
time-consuming, while unlabeled data are often abundant due to increasing pos-
itive cases. Therefore, semi-supervised learning (SSL) that utilizes both labeled
and unlabeled data is of great value to develop robust and accurate COVID-19
lesion segmentation algorithms. Thus far, many SSL approaches have been de-
veloped and successfully applied to various tasks [25]. Many works [23,19,2,9,14]
adopts the smoothness assumption that two data samples that are close in the
input space share the same label. This assumption is further expanded to the
deep feature space, where similarities of feature maps are used for cluster assign-
ment [28,21,29]. Despite the achievement, these approaches do not ensure robust
learning from samples with low uncertainty. To reduce the influence of uncertain
samples, uncertainty guidance has been introduced into the literature of SSL
[34,33,30,15]. Nevertheless, semi-supervised segmentation of COVID-19 lesions
remains a challenging task, of which the annotations are extremely scarce, and
the lesions often have irregular and ambiguous contours.

To tackle the above challenges, we propose a novel deep neural network
with a uncertainty-guided dual-consistency learning scheme for COVID-19 lesion
segmentation from chest CT scan volumes. Specifically, we impose image-level
transformation equivalence out of the observation that the prediction of a sam-
ple should obtain the same transformation of the input. Meanwhile, we adopt
feature-level perturbation invariance to a multi-decoder V-Net, where auxiliary
decoder paths take perturbated features as inputs and form output consistency
with a main decoder. Dual-consistency comprehensively enforces smoothness as-
sumption into the SSL model from both input space and feature space, and hence
the network could learn more invariant representations to diverse input or fea-
ture variants. Moreover, deep neural networks could memorize and easily overfit
to noisy and uncertain contour points of COVID-19 lesions [35], which leads to

1 https://covid19.who.int

https://covid19.who.int
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Fig. 1: Overview of UDC-Net. Feature-level consistency (in green) is formed
by the main decoder’s prediction pU and auxiliary decoders’ predictions
{q1

U, · · · , qk
U}. Image-level consistency (in blue) is formed by pU and the predic-

tion p̃U of transformed image. The confidence uncertainty um and the consensus
uncertainty us are quantified by mean and standard deviation of the multi-
decoders’ predictions, which are then used to guide the consistency learning (in
red). A supervised loss is also used on the labeled data (in orange).

poor generalization in real-world clinical practice. Hence, we further introduce a
novel uncertainty guidance to the consistency learning process. Particularly, we
quantify both the confidence uncertainty and the consensus uncertainty based
on the multi-decoder structure. The estimated uncertainties are then used to-
gether in an indicator function to filter out uncertain samples during training.
The proposed uncertainty-guided dual-consistency network (UDC-Net) is evalu-
ated on a large-scale COVID-19 dataset with 852 whole-volume chest CT scans.
Extensive experiments show that our approach outperforms other competitive
SSL-based segmentation approaches, yielding state-of-the-art performance on
semi-supervised COVID-19 lesion segmentation.

2 Method

As shown in Fig. 1, our UDC-Net consists of a modified 3D multi-decoder V-Net
[18] as its backbone. Apart from the supervised loss, our method makes full use of
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the unlabeled data by both feature-level and image-level consistency modules.
Moreover, both the confidence uncertainty and the consensus uncertainty are
estimated to guide more robust consistency learning. .

2.1 Dual-consistency Learning for Semi-supervised Segmentation

Image-level Consistency Learning via transformation equivalence of deep
segmentation models fseg indicates that while a transformation T (·) is applied to
an input image x, there should be fseg(T (x)) = T (fseg(x)) [32]. We conduct ran-
dom transformation on the images to get the perturbated version T (x) as the in-
put to our network. Subsequently, we have the corresponding prediction f(T (x))
given by the V-Net and the inverse transformation to the output T−1(f(T (x))),
which should be consistent to the output of input data without transformation
f(x). Following the notations set before, let p = f(x) and p̃ = f(T (x)) ,we
introduce an image-level consistency regularization by minimizing the L2 loss
between the two versions of output:

LIC =
1

N

N∑
i=1

‖pi − [T−1(p̃)]i‖22 (1)

where i and N are the index and the total number of voxels, respectively.

Feature-level Consistency Learning via perturbation invariance can also
enrich the learned representation of the model [19]. Particularly, different pertur-
bated versions of the same feature maps should maintain the same predictions.
Following [21], we append several auxiliary decoders to the V-Net and inject
shared encoder’s outputs with various types of perturbations. Each auxiliary de-
coder receives a different version of the perturbated feature map, while the main
decoder receives the un-perturbated feature map. Denoting the prediction from
the main decoder as p, the prediction from the k-th auxiliary decoder as qk, the
feature-level consistency is achieved by regularizing p and each qk as follows:

LFC =
1

N ·K

N∑
i=1

K∑
k=1

‖pi − qki ‖22 (2)

where K is the total number of extra decoders. Following [21], seven types of fea-
ture perturbations, i.e., Feature noise, Feature dropout, Object masking, Context
masking, Guided cutout, Intermediate VAT, and Random dropout, were intro-
duced to seven auxiliary decoders, respectively. Detailed descriptions of each
perturbation strategy can be found in the supplementary. All extra decoders
were required to generate consistent prediction with the main decoder.

2.2 Dual Uncertainty Quantification for Robust Learning

The perturbation of the hidden representations during the consistency learning
process could amplify the feature noises and uncertainty caused by the difficulty
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of accurately delineating the lesion contours of COVID-19. To this end, we pro-
pose to quantify both the confidence uncertainty and the consensus uncertainty
of the multi-decoders, to guide more robust unsupervised learning.

Confidence Uncertainty indicates whether the model generates confident pre-
dictions. Previous works [34,15] used the entropy of the mean prediction of mul-
tiple perturbated inputs from self-ensembling models to estimate the prediction
uncertainty. In our case, this form of uncertainty can be easily quantified using
the main decoder and the K auxiliary decoders as below:

µi =
1

K + 1

[(
K∑
k=1

qki

)
+ pi

]
and umi = −µilogµi (3)

where i indicates the voxel index, K is the total number of auxiliary decoders,
µ is the mean prediction, and um is the estimated uncertainty. The higher umi
is, the less confidence the model is on its prediction.

Consensus Uncertainty indicates whether the model generates consistent pre-
dictions over multiple runs with perturbated data [11,9]. Supposing the average
prediction of a suspicious infection area is high but the outputs from different
branches vary severely, this means the area is sensitive to perturbation. By the
smoothness assumption [3], the predictions for the target should be robust to
perturbation, and the sensitive prediction hence highly suggests a noisy sample.
Hence, we quantify the consensus uncertainty us as the standard deviation over
the multi-decoders’ predictions:

us
i =

1

K + 1

√√√√[ K∑
k=1

(qki − µi)2
]

+ (pi − µi)2 (4)

Here, us essentially indicates the consensus among different decoders, which
is complementary with um which measures the confidence of the model.

2.3 Uncertainty-guided Dual-consistency Learning for Segmentation

The quantified uncertainties are used to filter out uncertain voxels and conse-
quently guide the model to learn from more reliable unlabeled data. Denoting
i as the voxel index for the prediction volume, the reliable voxels are selected
from a set Ω = {i|us

i < τ s & um
i < τm}, where τs and τm are two thresholds.

The cross consistency loss among decoders is then guided by:

LUFC =

K∑
k=1

∑
i∈Ω
‖pi − qki ‖22 (5)

Here, the uncertainty guidance is applied onto feature-level consistency learn-
ing as the uncertainties are generated with feature perturbations. Thus, the to-
tal loss for our uncertainty-guided dual-consistency learning UDC-Net for semi-
supervised lesion segmentation is as follows:
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L = LS + αLIC + βLUFC (6)

where LS is the supervised loss consists of a Dice loss and a cross entropy loss, α
and β are two hyper-parameters weighing the contributions from different losses.

During training, we first trained a supervised V-Net and then added the
extra decoders for finetuning with uncertainty-guided consistency learning. The
training process was terminated if the Dice coefficient on the validation dataset
stagnated. Adam [10] was used as the optimizer with an initial learning rate
of 0.001 and a learning decay rate of 0.95 per epoch. As widely adopted by
SSL works [24,21], α and β were set to be two sigmoid-shape monotonically
functions of the training steps with maximum of 1. The threshold τm and τs

were set to 0.34 and 0.12 after tuning on the validation set. For testing, we carried
out sliding window inference and took only the main decoder’s prediction. All
implementation was done with Pytorch [22] on an NVIDIA TITAN X GPU.

3 Experiments

3.1 Datasets and Evaluation Metrics

Datasets. In total, 852 chest CT volumes acquired from December 2019 to
April 2020 were collected and enrolled in this study, among which 144 were
voxel-annotated by four experienced radiologists. The labeled data were divided
into: (1) 65 cases as labeled training dataset; (2) 9 cases as the validation set;
and (3) 70 cases as the testing set. The remained 708 chest CT scans were used
as the unlabeled training data.

Evaluation Metrics. We adopted Dice Score (DSC), Jaccard similarity coffi-
cient (Jaccard), and Average Symmetric Surface Distance (ASD) to evaluate the
segmentation performance.

3.2 Ablation Study on Different Components

We conduct ablation studies to analyze the contributions of our proposed meth-
ods, and the quantitative results can be seen in Table 1. Regarding the testing set
performance, image-level consistency (IC) shows increases of 2.4% in DSC, 2.5%
in Jaccard, and 3.7 in ASD comparing to 3D V-Net. Meanwhile, feature-level
consistency (FC) regularization leads to a large improvement of 4.5% in DSC,
5.5% in Jaccard, and 6.0 in ASD comparing to 3D V-Net. Unifying dual consis-
tencies further improves DSC and Jaccard with about 1%, which demonstrates
the effectiveness of learning from the unlabeled data. Further, introducing either
the confidence uncertainty or the consensus uncertainty guidance consistently
benefit the learning of the unlabeled data. Moreover, our method with dual un-
certainty achieves better DSC and Jaccard with a comparable ASD to those of
the single-uncertainty models, further demonstrating that dual uncertainties are
complementary for guiding more robust learning.



UDC-Net: Uncertainty-guided Dual-Consistency Learning 7

Table 1: Ablation study of different components. All results are reported as
validation/testing results. (FC: feature-level consistency; IC: image-level consis-
tency; UM: confidence uncertainty computed by the mean of the multi-decoders’
predictions; US: consensus uncertainty computed by the standard deviation of
the multi-decoders’ predictions)

Components Evaluation Metrics

IC FC UM US DSC[%] ↑ Jaccard[%] ↑ ASD[mm] ↓
70.0 / 71.1 56.5 / 56.8 12.1 / 12.1

X 70.3 / 73.5 56.7 / 59.3 12.2 / 8.4
X 71.4 / 75.6 58.4 / 62.3 12.1 / 6.1

X X 71.9 / 76.7 58.9 / 63.7 11.7 / 5.8
X X X 72.2 / 77.0 59.0 / 64.0 11.3 / 3.2
X X X 72.4 / 77.2 59.5 / 64.3 11.4 / 4.1
X X X X 72.7 / 77.4 59.9 / 64.5 10.9 / 3.9

3.3 Comparison with State-of-the-art Methods

We compare our method against other state-of-the-art semi-supervised segmen-
tation approaches. Several recent models were implemented, including Mean-
Teacher (MT) [24], Uncertainty-aware mean teacher [34], Transformation-consistent
Self-ensembling Model (TCSM) [12], and Cross Consistency Training (CCT) [21].
We run each methods four times with different random seeds.

Quantitative comparison results are reported in Table 2. For a fair compari-
son, we implemented all methods with the 3D V-Net as backbone. As observed,
UDC-Net outperforms all other methods with at least 1.8% in Dice, 2.2% in
Jaccard, and 2.2 in ASD, showing outstanding unsupervised learning efficacy.

Qualitative comparison is illustrated by visualizing the segmentation results
in Figure 2. As demonstrated, Our UDC-Net delineates more accurate lesion
contours than other methods regarding diverse shapes and sizes of lesion. Visu-
alization of the two uncertainties can be found in the supplementary.

Table 2: Quantitative comparison with other semi-supervised methods.

Methods
Evaluation Metrics

DSC[%] ↑ Jaccard[%] ↑ ASD[mm] ↓
V-Net [18] 71.1 ± 0.40 56.8 ± 0.45 12.1 ± 2.1

Mean Teacher [24] 72.5 ± 0.25 58.2 ± 0.36 11.3 ± 1.8
UA-MT [34] 74.0 ± 0.11 60.1 ± 0.15 9.2 ± 0.9
TCSM [12] 72.9 ± 0.46 58.9 ± 0.58 9.1 ± 1.4
CCT [21] 75.6 ± 0.11 62.3 ± 0.19 6.1 ± 0.7

UDC-Net(ours) 77.4 ± 0.14 64.5 ± 0.15 3.9 ± 0.5
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MT UAMT TCSM CCT Ours

Case1

Case2

Case3

Fig. 2: Qualitative comparison. Green and orange curves delineate the model
prediction and ground truth, respectively. Best viewed in color.

3.4 Analysis on Efficacy of Leveraging Unlabeled Data

We further evaluate our UDC-Net’s effectiveness by varying the ratios of labeled
and unlabeled training data. Table 3 shows that UDC-Net consistently improves
the baseline V-Net with significant margins in both DSC, Jaccard, and ASD,
whenever 32 or 65 labeled scans are provided. Moreover, the proposed approach

Table 3: Quantitative performance comparison under different numbers of train-
ing labeled/unlabeled data.

Method
# scans used Evaluation Metrics

Labeled Unlabeled DSC[%] ↑ Jaccard[%] ↑ ASD[mm] ↓
V-Net [18] 32 0 70.4 56.0 4.3

CCT [21] 32 140 74.4 60.7 5.8
UDC-Net (ours) 32 140 75.0 61.5 4.8

CCT [21] 32 708 75.2 61.6 7.0
UDC-Net (ours) 32 708 76.9 64.0 4.4

V-Net 65 0 71.1 56.8 12.1

CCT [21] 65 140 75.1 61.8 5.8
UDC-Net (ours) 65 140 76.6 63.5 5.4

CCT [21] 65 708 75.6 62.3 6.0
UDC-Net (ours) 65 708 77.4 64.5 3.9
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consistently outperforms CCT [21] (the best model among those compared with
ours) under all different scenarios. Notably, when less data are given, UDC-
Net shows comparable or even better results than CCT. For instance, UDC-net
achieves 75.0% DSC, 61.5% Jaccard, and 4.8 ASD with 32 labeled scans and
140 unlabeled scans (3rd row), which is comparable to the performance of CCT
with double labeled scans (7th row). With 65 labeled scans and 140 unlabeled
scans, UDC-Net (8th row) shows superior performance than CCT with 5 times
unlabeled data (9th row). These findings demonstrate that our method enables
more efficient unsupervised learning, suggesting

4 Conclusions

In this paper, we present an uncertainty-guided dual-consistency learning method
for semi-supervised COVID-19 lesion segmentation from chest CT scans. Image-
level transformation equivalence and feature-level perturbation invariance are
both introduced to form dual consistency learning from unlabeled data. Mean-
while, the dual uncertainty mechanism further improves the learning process
with more reliable and robust guidance. Extensive experiments on a large COVID-
19 dataset demonstrate the efficiency of our method in real-world scenarios.
Future work will include improving the method with more robust knowledge
distillation and generalizing to other semi-supervised learning tasks.
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No. ITS/426/17FP.), and National Natural Science Foundation of China with
Project No. U1813204.

References

1. Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., Xia, L.:
Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in
china: a report of 1014 cases. Radiology p. 200642 (2020)

2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.:
Mixmatch: A holistic approach to semi-supervised learning. In: NeurIPS. pp. 5049–
5059 (2019)

3. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE TNNLS
20(3), 542–542 (2009)

4. Di, D., Shi, F., Yan, F., Xia, L., Mo, Z., Ding, Z., et al.: Hypergraph learning for
identification of covid-19 with ct imaging. MedIA p. 101910 (2020)

5. Fan, D.P., Zhou, T., Ji, G.P., Zhou, Y., Chen, G., Fu, H., et al.: Inf-net: Automatic
covid-19 lung infection segmentation from ct images. IEEE TMI (2020)

6. Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., et al.: Sensitivity of chest
ct for covid-19: comparison to rt-pcr. Radiology p. 200432 (2020)



10 Yanwen Li, Luyang Luo, et al.

7. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al.: Clinical features
of patients infected with 2019 novel coronavirus in wuhan, china. The Lancet
395(10223), 497–506 (2020)

8. Jin, C., Chen, W., Cao, Y., Xu, Z., Tan, Z., Zhang, X., et al.: Development and
evaluation of an artificial intelligence system for covid-19 diagnosis. Nat. Commun
11(1), 1–14 (2020)

9. Ke, Z., Wang, D., Yan, Q., Ren, J., Lau, R.W.: Dual student: Breaking the limits
of the teacher in semi-supervised learning. In: ICCV. pp. 6728–6736 (2019)

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)

11. Lee, J., Chung, S.Y.: Robust training with ensemble consensus. In: ICLR (2020),
https://openreview.net/forum?id=ryxOUTVYDH

12. Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-
consistent self-ensembling model for semisupervised medical image segmentation.
IEEE TNNLS (2020)

13. Liang, W., Yao, J., Chen, A., Lv, Q., Zanin, M., Liu, J., Wong, S., et al.: Early
triage of critically ill covid-19 patients using deep learning. Nat. Commun 11(1),
1–7 (2020)

14. Liu, Q., Yu, L., Luo, L., Dou, Q., Heng, P.A.: Semi-supervised medical image
classification with relation-driven self-ensembling model. IEEE TMI (2020)

15. Luo, L., Yu, L., Chen, H., Liu, Q., Wang, X., Xu, J., et al.: Deep mining external
imperfect data for chest x-ray disease screening. IEEE TMI 39(11), 3583–3594
(2020)

16. Ma, J., Nie, Z., Wang, C., Dong, G., Zhu, Q., He, J., Gui, L., Yang, X.: Active
contour regularized semi-supervised learning for covid-19 ct infection segmentation
with limited annotations. Physics in Medicine & Biology (2020)

17. Mei, X., Lee, H.C., Diao, K.y., Huang, M., Lin, B., Liu, C., et al.: Artificial
intelligence–enabled rapid diagnosis of patients with covid-19. Nat. Med pp. 1–
5 (2020)

18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: 3DV. pp. 565–571. IEEE (2016)

19. Miyato, T., Maeda, S.i., Koyama, M., Ishii, S.: Virtual adversarial training: a reg-
ularization method for supervised and semi-supervised learning. IEEE TPAMI
41(8), 1979–1993 (2018)

20. Oh, Y., Park, S., Ye, J.C.: Deep learning covid-19 features on cxr using limited
training data sets. IEEE TMI (2020)

21. Ouali, Y., Hudelot, C., Tami, M.: Semi-supervised semantic segmentation with
cross-consistency training. In: CVPR. pp. 12674–12684 (2020)

22. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
et al.: Pytorch: An imperative style, high-performance deep learning library. In:
NeurIPS. pp. 8026–8037 (2019)

23. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-
supervised image recognition. In: ECCV. pp. 135–152 (2018)

24. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. NeurIPS 30,
1195–1204 (2017)

25. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach Learn
109(2), 373–440 (2020)

26. Wang, G., Liu, X., Li, C., Xu, Z., Ruan, J., Zhu, H., et al.: A noise-robust framework
for automatic segmentation of covid-19 pneumonia lesions from ct images. IEEE
TMI 39(8), 2653–2663 (2020)

https://openreview.net/forum?id=ryxOUTVYDH


UDC-Net: Uncertainty-guided Dual-Consistency Learning 11

27. Wang, L., Lin, Z.Q., Wong, A.: Covid-net: A tailored deep convolutional neural
network design for detection of covid-19 cases from chest x-ray images. Sci. Rep
10(1), 1–12 (2020)

28. Wang, X., Chen, H., Ran, A.R., Luo, L., Chan, P.P., Tham, C.C., et al.: Towards
multi-center glaucoma oct image screening with semi-supervised joint structure
and function multi-task learning. MedIA 63, 101695 (2020)

29. Wang, X., Chen, H., Xiang, H., Lin, H., Lin, X., Heng, P.A.: Deep virtual adversar-
ial self-training with consistency regularization for semi-supervised medical image
classification. Medical image analysis 70, 102010 (2021)

30. Wang, X., Tang, F., Chen, H., Luo, L., Tang, Z., Ran, A.R., et al.: Ud-mil:
Uncertainty-driven deep multiple instance learning for oct image classification.
IEEE JBHI (2020)

31. Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., et al.: A weakly-supervised
framework for covid-19 classification and lesion localization from chest ct. IEEE
TMI (2020)

32. Worrall, D.E., Garbin, S.J., Turmukhambetov, D., Brostow, G.J.: Harmonic net-
works: Deep translation and rotation equivariance. In: CVPR. pp. 5028–5037
(2017)

33. Xia, Y., Yang, D., Yu, Z., Liu, F., Cai, J., Yu, L., et al.: Uncertainty-aware multi-
view co-training for semi-supervised medical image segmentation and domain adap-
tation. MedIA 65, 101766 (2020)

34. Yu, L., Wang, S., Li, X., Fu, C.W., Heng, P.A.: Uncertainty-aware self-ensembling
model for semi-supervised 3d left atrium segmentation. In: MICCAI. pp. 605–613.
Springer (2019)

35. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. In: ICLR (2017)

36. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al.: A novel coronavirus
from patients with pneumonia in china, 2019. New England Journal of Medicine
(2020)



12 Yanwen Li, Luyang Luo, et al.

5 Supplementary Materials

Table 4: List of perturbations used in feature-level consistency learning.
Perturbations[21] Description

Feature Noise A noise tensor N is applied to the output of encoder z to get z̃ = z ∗N + z.

Feature Dropout
Generating a randomly dropout mask Mdrop to obtain perturbated
z̃ = z ∗Mdrop.

Object Masking
Generating a object mask Mobj using the output of main decoder
to get z̃ = z ∗Mobj .

Context Masking Generating a context mask Mcon = 1−Mobj to obtain z̃ = z ∗Mcon.

Guided cutout
Zero-out a random crop within each object’s bounding box from
the corresponding feature map z.

Intermediate VAT
Using VAT to push the distribution to be isotropically smooth. Finding
the adversarial perturbation radv alter its prediction the most and
injected into z to obtain z̃ = radv + z.[19]

Random dropout Spacial dropout applied to z as a random perturbation
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Fig. 3: Visualization of input images, ground truth masks, confidence uncertainty
map, and consensus uncertainty map. The visualization results demonstrates
that our proposed confidence and consensus uncertainties are complementary.

Fig. 4: An example of monitoring the lesion development of a patient from mild
infection (stage 1), to common infection (stage 2), severe infection (stage 3), and
finally to recovery stage (stage 4).


