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• A pre-screening fast-track decision network to detect COVID-19 and other lung pathologies.
• A new deep-learning network, named DenResCov-19, for robust and accurate classification.
• Evaluating the accuracy and robustness of DenResCov-19 over heterogeneous chest x-ray image datasets with binary

and multi-class labels (COVID-19, pneumonia, tuberculosis, and healthy).
• Evaluating the robustness of DenResCov-19 over a Monte Carlo cross validation scheme for multi-class classification.
• Comparison of DenResCov-19 with established networks of ResNet-50, DenseNet-121, VGG-16, and Inception-V3.
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ABSTRACT
The global pandemic of COVID-19 is continuing to have a significant effect on thewell-being of global
population, increasing the demand for rapid testing, diagnosis, and treatment. Along with COVID-
19, other etiologies of pneumonia and tuberculosis constitute additional challenges to the medical
system. In this regard, the objective of this work is to develop a new deep transfer learning pipeline
to diagnose patients with COVID-19, pneumonia, and tuberculosis, based on chest x-ray images. We
observed in some instances DenseNet and Resnet have orthogonal performances. In our proposed
model, we have created an extra layer with convolutional neural network blocks to combine these
two models to establish superior performance over either model. The same strategy can be useful
in other applications where two competing networks with complementary performance are observed.
We have tested the performance of our proposed network on two-class (pneumonia vs healthy), three-
class (including COVID-19), and four-class (including tuberculosis) classification problems. The
proposed network has been able to successfully classify these lung diseases in all four datasets and has
provided significant improvement over the benchmark networks of DenseNet, ResNet, and Inception-
V3. These novel findings can deliver a state-of-the-art pre-screening fast-track decision network to
detect COVID-19 and other lung pathologies.

1. Introduction
Coronavirus 2019 (COVID-19), a disease caused by se-

vere acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) virus, has affected the health of populations globally [12].
In order to control the COVID-19 pandemic, there is an ur-
gent need for rapid and accurate diagnostic testing in health-
care [6, 47]. Since SARS-CoV-2 can cause COVID-19 pneu-
monia and severe lung damage, differentiating viral from
bacterial pneumonia and other respiratory infections such as
Tuberculosis (TB) using chest imaging technology is essen-
tial for managing infection control decisions and diagnosis
and for planning treatment regimes [38].

Many infectious respiratory diseases present in a simi-
lar manner, with symptoms such as difficulty in breathing,
persistent cough, and fever. Pneumonia, an infection affect-
ing the airspaces in the lung, is caused by various etiolog-
ical agents such as bacteria, viruses, and fungi. There is
wide range of symptoms associatedwith the infection, which
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include shortness of breath, fever, phlegm production, and
cough. The progression of the disease is marked by the air
space opacification, which can be detected using imaging
diagnostics [39, 46]. Despite the availability of antimicro-
bials, pneumonias contribute to the most common cause of
mortality, especially in childhood [32]. In addition, TB in-
duces a persistent cough and breathlessness with symptoms
that overlap those of pneumonia and COVID-19. The mor-
tality rates have also risen due to drug-resistant pulmonary
TB, caused by Mycobacterium tuberculosis [33]. There is
therefore a clear need for a robust artificial intelligence (AI)
system that can detect and classify the various respiratory
diseases that have overlapping presentations to the clinic, so
that the right course of treatment regime can be prescribed.

The standard imaging modalities for lung disease diag-
nosis include magnetic resonance imaging (MRI), chest X-
ray (CXR), and computed tomography (CT) scan. Although
MRI and CT scan are the gold standard for assessing lung
diseases, they are more expensive, involve radiation expo-
sure, and not readily available globally [42]. In comparison,
CXR is less expensive, readily available, and is one of the
most common diagnostic imaging techniques for cardiotho-
racic and pulmonary disorders.

CXRpatterns of lung disease present differentiation chal-
lenges and often result in high inter-reader variability across
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radiologists [53]. With potential future waves of the pan-
demic, radiologists’ workloads will increase and there is an
urgent need for new automated image analysis tools that can
enhance the radiologists’ qualitative assessment. These tools
will classify or segment sections of the CXR in order to
support the diagnostic workflow. Decision support systems
are designed to aid the clinical decision-making process and
have established themselves as emerging research trend in
healthcare [45]. Over recent months of the pandemic, auto-
mated detection of pneumonia or other lung diseases, specif-
ically their early detection and classification, have gained
significant attention from both clinical and theAI researchers.

The development of AI-based medical systems, as well
as their translation to medical practice, is playing an increas-
ingly prominent role in the treatment and therapy of patients
[13]. Along with the automated methods that rely on the
blood test results or biomarkers for diagnosis [1, 27, 43], an
increasing number of deep learning-based methods, specif-
ically the convolution neural network (CNN)-based models
[8, 28, 34, 36, 40], are being implemented and used in order
to develop accurate, robust, and fast detection techniques to
fight against COVID-19 and other respiratory diseases.

In this regard, the aim of the current study is to test the
feasibility of early automated detection and distinction be-
tweenCOVID-19, pneumonia, TB, and healthy patients based
on CXR scans. We have developed a deep transfer learning
pipeline, named DenResCov-19, to diagnose if a patient is
healthy or has a lung disease. The proposed network opti-
mally combines the DenseNet-121 and ResNet-50 networks.
This combination unifies the simplicity of ResNet structure
and the complexity of DenseNet blocks and delivers a well-
balanced result of accuracy and increased specificity and sen-
sitivity. Pretrained networks on the ImageNet cohort are
used as transfer learning techniques. We have tested the
adaptability of our proposed network for two-class (pneumo-
nia and healthy), three-class (COVID-19 positive, pneumo-
nia, and healthy), as well as four-class (COVID-19 positive,
pneumonia, TB, and healthy) classification problems. To the
best of our knowledge, this is the first work to examine the
feasibility of early automatic detection and distinction be-
tween COVID-19 positive, pneumonia, TB, and healthy pa-
tients based only on CXR scans using a DL network. The
proposed DenResCov-19 network has been able to perform
optimally in different multi-class problems and has achieved
robust and improved performance over the state-of-the-art
methods for the classification of lung-diseases in all our datasets.
The main contributions of this paper are as follows:

1. The development of a new deep-learning network, named
DenResCov-19, for robust and accurate classification.

2. Evaluating the accuracy and robustness ofDenResCov-
19 over heterogeneous CXR image datasets with bi-
nary and multi-class labels (COVID-19, pneumonia,
TB, and healthy).

3. Evaluating the robustness of DenResCov-19 network
over a Monte Carlo cross validation scheme for multi-
class classification.

4. The comparison of DenResCov-19 with established

networks of ResNet-50, DenseNet-121, VGG-16, and
Inception-V3.

5. Developing a pre-screening fast-track decision network
to detect COVID-19 and other lung pathologies.

The rest of the paper is organised as follows: Section 2
gives a brief overview of the relatedworks. Section 3 presents
the development of the proposed methodology, while Sec-
tion 4 summarises its implementation and the description of
clinical datasets. Numerical results of the application of our
method on four different datasets are presented in Section 5.
The final conclusions are presented in Section 6.

2. Related Works
In this section, we present a brief overview of pneumo-

nia and COVID-19 diagnosis studies, based on CXR and CT
scans.
2.1. Review of pneumonia detection in CXR

images
There exists a significant body of literature on the appli-

cation of deep learning networks on CXR images for detect-
ing pneumonia in patients [4, 23, 49, 50]. Here we give a
summary of the most important approaches.

Jaiswal et al. [23] used Mask-Region-based CNN [15]
model to automatically identify potential pneumonia cases
from CXR images. Bharati et al. [2] proposed a hybrid deep
learning framework by combining VGG [35], data augmen-
tation, and spatial transformer network (STN) with CNN.
They trained their model in NIH CXR dataset [25] with 73%
accuracy. Even though their approach did not achieve a high
accuracy, their network required training time of only 431 s
on their full dataset. Bustos et al. [4] presented a com-
prehensive study on a significantly large dataset of 160, 000
CXR images, including 19 different classes of lung diseases.
They compared four models, namely CNN, recurrent neural
network (RNN) composed of bi-directional long short-term
memory (LSTM) cells [19], CNN with per-label attention
mechanism (CNN-ATT) [31], and RNN composed of bi-
directional LSTM cells with per-label attention mechanism
(RNN-ATT). Among the four models, the RNN-ATT model
achieved the best results with 86.4% accuracy with only 41
epochs training. Varela-Santos and Melin [49] implemented
an automated system for future detection of COVID-19 dis-
ease in CXR and CT lung images. They efficiently utilised
the image texture feature descriptors from CXR images in
feed-forward and convolutional neural networks for detect-
ing COVID-19 and healthy individuals.
2.2. Review of COVID-19 detection in CXR and

CT images
Prior to COVID-19, deep learning (DL)models have been

used extensively for the classification of pneumonia and other
lung diseases. Following their successes, a range of DL ap-
proaches have been developed for diagnosing and differen-
tiating COVID-19 lung infections [11, 18]. Most of these
new approaches are based on CXR and CT modality, which
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are the most widely used imaging modality for diagnosing
pneumonia and COVID-19 [8, 28, 40]. Here we review the
performance of some of these studies.

Ozturk et al. [34] proposed the DarkCovidNet model
to assist clinicians and radiologists to diagnose COVID-19.
Their network, inspired by DarkNet, achieved accuracy of
98.08% and 87.02% respectively, for binary (COVID-19 vs
healthy) andmulti-class classification (COVID-19, pneumo-
nia or healthy). DarkCovidNet is based on the DarkNet,
which is good for fast performance (e.g., with self-driving
cars); but in our case, time is not really a critical issue. More-
over, the network was only tested on a limited number of
cases. Larger datasets will be able to test its robustness.

Pereira et al. [36] designed the network model RYDLS-
20, that achieved F1 value of 89% for COVID-19 diagno-
sis. Their dataset was highly imbalanced, with 1000 healthy
cases and 90 patients affected by COVID-19. More impor-
tantly, their classification performance was presented with-
out any cross-validation step.

Yoo et al. [54] proposed a combination of three decision-
tree classifiers for pre-screening fast-track decision making
in order to detect COVID-19. Their pipeline was a com-
bination of three binary decision trees, each trained by a
deep learning model with CNN. The accuracies of the bi-
nary decision trees ranged between 80% to 98%. However,
their network did not test any pathologically confirmed data.
In addition, they did not incorporate any data augmentation
technique during training in order to reduce the overfitting
effects. A large dataset of 5000 CXR scans was used by Mi-
naee et al. [30] for classification of healthy and COVID-19
cases. They used four different models, including ResNet18
[16], ResNet50 [16], SqueezeNet [21], and DenseNet-161
[20], and achieved on average a sensitivity of 98% and speci-
ficity of 92%.

Another set of studies have presented satisfactory out-
comes in the classification of COVID-19 and healthy cases
from CT images [5, 14, 29, 44, 52]. Li et al. [29] studied CT
images deployed at sixteen different hospitals. They used
a U-net to first segment the lung regions and then applied
a ResNet-50 to classify the patient as COVID-19 affected
or not. Their pipeline achieved a good accuracy, because
there was no noise in peripheral organ regions due to the
segmentation of lungs. One of the limitations of their study
is that their dataset had higher number of positive cases that
made the prediction biased (723∕1136). However, the ma-
jor achievements of this study are the incorporation of inter-
hospital variations in datasets and the use of six independent
experts to arrive at the ground truth.

In another study, Li et al. [28] used statistical methods,
which included ‘total severity score’ to classify healthy and
unhealthy patients based on CXR images. The authors ap-
plied theWilcoxon-rank test to predict the level of severity of
the patients. They computed their ground truth using inter-
scan and inter-observer variability and also provided thor-
ough details on how the severity level was computed. How-
ever, their severity dataset was not large enough and also,
they did not incorporate any data splitting based on advanced

age, underlying diseases, and pleural effusions.
Song et al. [44] implemented a deep learning-based CT

diagnosis system, named Deep-Pneumonia, to identify pa-
tients with COVID-19. They manually segmented the lung
region and then classified COVID-19 or healthy cases using
a DL network. This network, named DRE-Net, is a com-
bination of ResNet-50, feature pyramid network (FPN), and
an attention module. The main advantages of this study are
the multi-vendor datasets from three different hospitals, the
very high sensitivity (95%) and specificity (96%) values, and
the fast diagnosis time per patient (30 s). However, its draw-
backs include: the need of semi-automatic lung segmenta-
tion, the classification of datasets based only on CT images
without any splitting depending on advanced age, underlying
diseases, or pleural effusions, and the absence of any refer-
ence in inter-observer variability of the ground truth.

Chen et al. [5] trained their deep network using 46, 096
anonymous images from 106 admitted patients, including
51 patients with laboratory confirmed COVID-19 pneumo-
nia and 55 control patients with other diseases, in Renmin
Hospital of Wuhan University. They used a U-net++ net-
work to segment the lungs and classified whether the region
had a scar area. The statistical comparison of two-tailed
paired Student’s t-test with 0.05 significance level was used
for time comparison between radiologist and the model. The
key advantages of this study include: the large and well-
balanced training dataset, the high classification accuracy
(over 95%), and the use of three expert radiologists account-
ing for the inter-observer variability to extract the ground
truth. Themain limitations of this studywere that the dataset
was collected from only one hospital and the classification
was based only onCT imageswithout any data-splitting based
on advanced age, underlying diseases, or pleural effusions.
Also, their lung segmentation step, being in a new cohort,
can potentially decrease the total classification accuracy.

As discussed, some studies have attempted to solve the
problem of automated diagnosis of pneumonia and COVID-
19, based on existing deep learning networks [30, 34, 36]
on CT [5, 14, 29, 44, 52] or on CXR [8, 28, 34, 40, 54] im-
age cohorts. However, the noted algorithms suffer from the
following limitations and challenges:

1. The lack of regularization techniques (data augmen-
tation, penalty norms, etc.) used in models to avoid
possible overfitting.

2. Lack of balance in the models between the speed and
the robustness and accuracy.

3. The lack of generalization techniques, such as cross-
validation, for accurate prediction of the models.

4. The need of manual segmentation of the lung region
from experts to deliver a robust semi-automatic clas-
sification result.

5. The validation of the models for only binary classi-
fication [30, 36, 54] or three-class (COVID-19, pneu-
monia, and healthy) classification tasks [8, 28, 34, 40].

6. The validation of the models in one specific cohort
(i.e. no cross-vendor or cross-institute validation).
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Figure 1: DenResCov-19: a deep transfer learning pipeline to classify if a patient has COVID-19, pneumonia, or tuberculosis,
based on CXR.

3. Methodology and Background
In the current study, we propose to train a deep learning

network, named DenResCov-19, to solve a multi-class prob-
lem, namely, whether a patient is healthy or has pneumonia,
COVID-19, or tuberculosis.
3.1. Background

Our approach is based on two state-of-the-art networks:
ResNet [17] and DenseNet [20]. They have recently been
used to solve similar multi-class problems.

ResNet-L is inspired by the structure of VGG nets [41].
The network comprises of L layers, each of which imple-
ments a non-linear transformation. In themajority of ResNet-
based networks, the convolutional layers have 3 × 3 filters.
Downsampling is performed by convolutional layers with a
stride of 2. The last two layers of the network are an average
pooling layer, followed by a 1000-way fully-connected (FC)
layer. The main rule of this deep network is that the layers
have the same number of filters as the number of the out-
put feature map size. In case the feature map size is halved,
the number of filters is doubled, thus reducing the time com-
plexity per layer. CNN feed-forward inputs xi are the outputs
xi−1 of the previous layer, so the transition layer is given by
xi = Hi(xi−1). In particular, ResNet adds a skip-connectionand the identity function is given by:

xi = Hi(xi−1) + xi−1 (1)
Densenet-L is a convolutional network. The network

comprises of L layers, each of which implements a non-

linear transformation. These transformations can be differ-
ent function operations, such as Batch Normalization, recti-
fied linear units (ReLU), Pooling, and Convolution. Huang
et al. [20] introduced a unique connectivity pattern infor-
mation flow between layers to direct connecting any layer to
all subsequent layers. As a result, the ith layer includes the
feature-maps of all previous layers. The input of ith layer is
given by the equation:

xi = Hi
(

[x0, x1,⋯ , xi−1]
) (2)

where [x0, x1,⋯ , xi−1] refers to the concatenation of the
feature-maps produced in layers 0,… , i − 1. All inputs of a
composite functionHi(⋅) are concatenated into a single ten-sor. Each composite function is a combination of batch nor-
malization (BN), followed by a rectified linear unit (ReLU)
and a 3 × 3 convolution (Conv).
3.2. Network architecture

To evaluate the state-of-the-art networks before we train
and test them in the CXR cohorts, we initially test them in the
open-source and widely used CT cohort of [55]. Since there
is currently a lack of existing publicly available dataset of
CXR images relating to COVID-19 cases, we have tested the
behavior of benchmark models in the CT cohort in order to
check if the expected behavior of the proposed network can
be observed (i.e. achieve high F1 and AUC-ROC values).

Table 1 highlights the results of DenseNet-121, ResNet-
50, and VGG-16 networks for classification of pneumonia,
COVID-19, and healthy cases in CT images. From the re-
sults, it can be observed that, while the ResNet has better re-
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Figure 2: A sample of healthy, COVID-19, pneumonia, and tuberculosis cases from the CXR image dataset.

Table 1
Metrics of deep learning networks to classify pneumonia,
COVID-19, and healthy cases in CT images

CT dataset [55]

Metric (%) DenseNet-121 ResNet-50 VGG-16

Recall 44.0 71.2 100.0
Precision 81.2 91.0 50.0
AUC-ROC 86.4 64.0 51.0
F1 58.4 81.0 71.4

call, precision, and F1 metrics than the Densenet and VGG,
Densenet has better AUC-ROC.Based on these observations,
we hypothesize that a combination of the twomodels can de-
liver a well-balanced AUC and F1 metric results.

The architecture of our proposedDenResCov-19 network
is presented in Fig. 1. DenResCov-19 network is a con-
catenation of four blocks fromResNet-50 and DenseNet-121
with width, height, and frames of 58×58×256, 28×28×512,
14×14×1024, and 7×7×2048, respectively. We chose these
specific blocks from the networks, as we needed layers with
the same width × height × frames, so that the information of
both models can be combined. As a result, we used four dif-
ferent layers of 58, 28, 14, and 7 size kernels, as we wanted
to concatenate the information of the two networks in differ-
ent regions of interest. Each of the four outputs feed a block
of convolution and average pooling layers. Thus, the initial
concatenate information can be translated into the convolu-
tion space. After that, we used some levels of concatenation-

CNN block techniques to create kernels that will deliver a
final layer of soft-max regression, so that the network can
conclude in the classification decision.

The convolution layer is defined as:

xli,j =
M−1
∑

a=0

M−1
∑

b=0
!aby

l−1
(i+a)(j+b), (3)

where xli,j is a unit in layer l, !ab is a M × M filter, and
yl−1(i+a)(j+b) is the nonlinearity of previous convolutional layergiven by:

ylij = �(xlij). (4)
The average pooling layer is defined over aK×K region

and outputs a single value, which is the average over that
region. The inputs of the lth (l = 1, 2, 3, 4) layer block are
provided according to the equation:
xl = Hdes

l
(

[xdes0 , xdes1 ,⋯ , xdesi−1]
)

+Hres
l

(

xresi−1
)

+xresi−1, (5)
whereHres

l (⋅) is the composite function of lth ResNet layer
and Hdes

l (⋅) is composite function of lth DenseNet layer.
The last step of the pipeline is the combination of two pair
concatenation and a global concatenation followed by a 512-
way fully-connected softmax layer.
3.3. Evaluation metrics

The most common metrics for evaluating classification
performance are the precision, recall, and F1-Score, which
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follow the standard definitions:
Precision = TP

TP + FP
, (6)

Recall∕True Positive Rate = TP
TP + FN

, (7)
False Positive Rate = FP

FP + TN
, (8)

where TP , TN , FP , and FN are the true positive, true neg-
ative, false positive, and false negative values, respectively.
The F1-score is defined as the harmonic mean of the preci-
sion and recall, as follows

F1 = 2 × Precision × Recall
Precision + Recall = 2TP

2TP + FP + FN
. (9)

Besides thesemetrics, we have also used theAUC-ROCmet-
ric values [9] for evaluation. TheAUC (area under the curve)-
ROC value can be computed by integrating over the receiver
operating characteristic (ROC) curve, plotting the true posi-
tive rate against the false positive rate.

4. Implementation
This section describes the implementation details of the

proposed DenResCov-19 pipeline.
4.1. Cohort details

In order to train and validate our proposed network, we
have used three different publicly available open-source co-
horts of CXRs images, namely, the Pediatric CXRs dataset
to detect pneumonia vs healthy cases [25] (source-1), the
IEEECOVID-19 CXRs dataset [7] (source-2), and theTu-
berculosis CXRs from Shenzhen Hospital x-ray dataset
[22] (source-3). It is important to mention that there were no
multi-label cases, such as pneumonia and COVID-19 find-
ings in the same patient, in any of these datasets.

In order to demonstrate the adaptability of our model
in multi-class datasets, we created four different datasets,
namelyDXR1, DXR2, DXR3, andDXR4. TheDXR1 dataset
was based on source-1 cohort with 3883 pneumonia images
and 1350 healthy images. This dataset is a binary classi-
fication dataset to detect pneumonia and healthy cases. The
source-1 cohort is collected based on paediatric populations.
Next, in DXR2, we have trained and tested the models for
classification of COVID-19, pneumonia, and healthy patients
in the IEEE COVID-19 x-rays dataset (source-2) with 69
COVID-19 images, 79 pneumonia images, and 79 healthy
cases. In the third dataset (DXR3) of our study, we have
trained and validated our network on source-2 and the tu-
berculosis (TB) cases of Shenzhen Hospital x-ray dataset
(source-3) to detect TB, COVID-19, pneumonia, and healthy
cases. As the source-3 had more than 300 CXR images for
both TB and healthy classes, the combination of the two
sources would end up with an unbalanced dataset. Thus, we
randomly selected 79 tuberculosis images from source-3 and
69COVID-19 images, 79 pneumonia images, and 79 healthy
cases from source-2, in order to generate the DXR3. In the
DXR4 dataset of our study, we have trained and validated

our network on a combination of source-1, source-2, and
source-3 to detect TB, COVID-19, pneumonia, and healthy
cases. Only in this case, we mixed the pediatric and adult
patients populations of the three sources, in order to test the
robustness of our proposed model in multi-class dataset with
a variation of the patient’s age. To avoid the bias effects, we
created the dataset with randomly selected balanced num-
ber of images. In the healthy class, we included 110 images
from each source to generate a total of 330 healthy cases. In
the pneumonia class, we included 79 images from source-2
and 221 images from source-1 to generate 300 pneumonia
images. Finally, 310 tuberculosis images source-3 and 69
COVID-19 images from source-2 were included to prepare
the final DXR4 dataset. To the best of our knowledge, there
was no other COVID-19 CXR open-source dataset available,
in order to balance the number of images in the COVID-19
class. Figure 2 depicts a sample of the CXR scans from the
healthy, COVID-19, pneumonia, and tuberculosis patients,
as determined by expert radiologists. Summarizing the four
different cases:

• DXR1: 3883 pneumonia and 1350 healthy cases [25].
• DXR2: 69 COVID-19 images, 79 pneumonia images,

and 79 healthy cases [7].
• DXR3: 69 COVID-19 images, 79 pneumonia images,

79 tuberculosis images, and 79 healthy cases [7, 22].
• DXR4: 69 COVID-19 images, 300 pneumonia im-

ages, 310 tuberculosis images, and 330 healthy cases
[7, 22, 25].

Here, the DXR4 is simply an extended version of DXR3,
generated usingmore images from the datasets of [7, 22, 25].
4.2. Cohort’s pre-processing image analysis

Image analysis techniques have been applied on all slices
to reduce the effect of noise and increase the signal-to-noise
ratio (SNR). We have used noise filters such as binomial de-
convolution, Landweber deconvolution [51], and curvature
anisotropic diffusion image filters [37] to reduce noise in the
images. We have normalized the images by subtracting the
mean value from each image and dividing by its standard de-
viation. Finally, we have used data augmentation techniques
including rotation (rotation around the center of image by a
random angle in the range of −15◦ to 15◦), width shift range
(width shift of image by up to 20 pixels), height shift range
(height shift of image by up to 20 pixels), and ZCA whiten-
ing (add noise in each image) [26].
4.3. Hyper-parameters initialization

After random shuffling, each dataset has been partitioned
into 70% and 30% of the total CXR images using the re-
peated random subsampling validation technique (also known
as the Monte Carlo cross-validation split), before training
and testing the models, respectively. We have used the cat-
egorical cross-entropy as cost function. The loss function is
optimized using the stochastic gradient descent (SGD)method
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with learning rate of 0.001 and with 30 epochs (the mod-
els converged after 20-25 epochs). We have applied trans-
fer learning techniques on the ResNet-50 and DenseNet-121
networks using the ImageNet dataset [10] (http://www.image-net.
org). It consists of over 14 million images and the task is to
classify the images into one of almost 22, 000 different cat-
egories (cat, sailboat, etc.).
4.4. Software

The code developed in this study is written in the Python
programming language usingKeras/TensorFlow (Python) li-
braries. For training and testing of the deep learning net-
works, we have used an NVIDIA cluster, with 4 GPUs and
64 GB RAM memory. The code implementation is avail-
able on a public repository with url: https://github.com/

team-globs/COVID-19_CXR.

5. Performance analysis and discussions
This section presents the performance of our proposed

DenResCov-19 network, along with a quantitative perfor-
mance comparison with established DL networks, on four
different datasets. The underlying reason behind choosing
the DenseNet-121 and ResNet-50 networks in our study is
that we wanted to combine the advantages of both networks
to develop a new networkwithwell-balancedAUC-ROC and
F1 metric values. VGG-16 is a network with relatively faster
training time and, in the majority of cases, it has very good
AUC-ROC, but comparatively poor F1-value. Hence, we
wished to check if the performance of our network is su-
perior enough from VGG, to compensate for the relatively
slower training procedure. We preferred to choose ResNet-
50 as a well-balanced choice regarding the training time and
accuracy of the network, since ResNet is very fast in low
layers (such as ResNet-18), but the accuracy improves as the
layers of the structure increase (50, 110 etc.). The same ap-
proach was followed for the DenseNet too.

In addition, in the study presented in [3], the DL struc-
tures with superior performance in classification were de-
termined as ResNet, DenseNet, AlexNet, Inception, VGG,
and SqueezeNet. Among these networks, the most superior
AUC-ROC value in COVID 19 image data collection and
CXR cohort were the ResNet-50, DenseNet-161, VGG-19,
and AlexNet. Regarding the Area Under the Precision Re-
call Curve and Sensitivity and Specificity, the best networks
were the ResNet-50, DenseNet-161, VGG-16, andAlex-Net.
Since ResNet-50 and DenseNet-161 presented satisfactory
performance in the majority of the cases, we preferred to
consider them as the benchmark networks. However, instead
of DenseNet-161, we used the DenseNet-121 due to its sig-
nificantly less computation time during training.
5.1. Evaluating the classification performance

As explained in Section 4.1, we have created four dif-
ferent CXR image collections to evaluate the performance
of the models in binary and multiclass classification. Ta-
ble 2 summarizes the metrics for the different networks and

datasets. Our initial hypothesis that our networkDenResCov-
19 will have more balanced AUC-ROC and F1 measure-
ments compared to the DenseNet-121 and ResNet-50 net-
works, has been verified in all four datasets.

In particular, DenResCov-19 has AUC-ROC of 99.60,
96.51, and 95.00%, contrary to the 98.95, 92.12, and 93.21%
of ResNet-50 and 99.10, 93.20, and 91.00% of DenseNet-
121 for the DXR1, DXR2, and DXR4 datasets, respectively.
In addition, DenResCov-19 has F1 values of 98.21, 87.29,
and 75.75%, contrary to the 96.34, 78.11, and 69.51% of
ResNet-50 and 96.27, 80.37, and 70.07% of DenseNet-121
for the DXR1, DXR2, and DXR4 datasets, respectively. Our
network has achieved more than 98% in all metrics in the bi-
nary label classification (pneumonia or healthy) of theDXR1
dataset. With the exception of the recall values in DXR2
and DXR4 datasets of VGG-16, our approach outperforms
all other networks for all four metrics in all four datasets.

From the results presented in Table 2, it is clear that as
the number of label classes increases, the accuracies of eval-
uation metrics decrease. In our DenResCov-19 network, the
recall value of 98.12% in DXR1 has decreased in DXR2,
DXR3, and DXR4 datasets with a variation between 59.28%
to 89.38%. In a similar way, the precision value has re-
duced from 98.31% to 79.56 − 85.28%, AUC-ROC from
99.60% to 91.77 − 96.51%, and the F1-value from 98.21%
to 68.09 − 87.29%. However, as previously discussed, the
results or our network are still better than the state-of-the-
art networks. It should also be noted that the metric results
in DXR4 dataset are better than the results in DXR3, al-
though the numbers of label classes in two datsets are the
same (COVID-19, pneumonia, tuberculosis, and healthy).
This happens as the number of training data has increased
from almost 80 images to almost 300 images per class (ex-
cept for the COVID-19 cases, which remains at 69). It is
worthmentioning that, since the number of labelled COVID-
19 X-ray images is very limited (69 images), it has affected
the quantitative results of both precision and recall values in
DXR2, DXR3, and DXR4 datasets. Incorporation of addi-
tional labelled data in future would significantly improve the
performance with respect to these two indices.
5.2. Evaluating the cross validation results

For any classification task, it is very important to mini-
mize the bias effects generated from a fixed validation scheme
(70% training, 30% testing). Thus, we have compared the
three networkd (DenseNet-121, ResNet-50, andDenResCov-
19) in DXR4 dataset for classification over four randomly
shuffled fixed ratio validation schemes (also known asMonte
Carlo cross-validation method). For each cross-validation
set, we have calculated the F1 and AUC-ROC metrics and
the ‘micro’, ‘macro’, and ‘weighted’ versions of the indices.
The ‘micro’ version is calculated by counting the total num-
ber of true positives, false negatives, and false positives. The
‘macro’ version computes the metric for each class and finds
their unweighted means. The ‘weighted’ version measures
themetric for each class and determines their weightedmeans.

Table 3 summarises the results of four different cross-
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Table 2
Comparative performance metrics of the different deep learning networks performing clas-
sification of pneumonia, TB, COVID-19, and healthy cases. *Boldface indicates the best
metric among the networks.

DXR1 dataset: pneumonia and healthy [25]

Metric DenResCov-19 DenseNet-121 ResNet-50 Inception-V3

Recall (%) 98.12∗ 97.80 97.71 93.32
Precision (%) 98.31∗ 94.62 95.01 90.10
AUC-ROC (%) 99.60∗ 99.10 98.95 92.80
F1 (%) 98.21∗ 96.27 96.34 91.68

DXR2 dataset: COVID-19, pneumonia and healthy [7]

Metric DenResCov-19 DenseNet-121 ResNet-50 VGG-16

Recall (%) 89.38 83.54 83.53 99.83∗

Precision (%) 85.28∗ 77.45 73.35 33.38
AUC-ROC (%) 96.51∗ 93.2 92.39 50.07
F1 (%) 87.29∗ 80.37 78.11 49.51

DXR3 dataset: COVID-19, pneumonia, tuberculosis and healthy [7, 22]

Metric DenResCov-19 DenseNet-121 ResNet-50 VGG-16

Recall (%) 59.28 57.71 56.66 66.53∗

Precision (%) 79.56∗ 74.87 74.00 26.53
AUC-ROC (%) 91.77∗ 89.49 92.12 53.11
F1 (%) 68.09∗ 65.17 64.17 38.00

DXR4 dataset: COVID-19, pneumonia, tuberculosis and healthy [7, 22, 25]

Metric DenResCov-19 DenseNet-121 ResNet-50 VGG-16

Recall (%) 69.7 62.70 62.00 93.69∗

Precision (%) 82.90∗ 79.35 78.60 27.17
AUC-ROC (%) 95.00∗ 91.00 93.21 54.99
F1 (%) 75.75∗ 70.07 69.51 42.13

validations in theDXR4 dataset for theDenseNet-121, ResNet-
50, and DenResCov-19 networks. DenResCov-19 achieves
the highest score in all average, higher, and lower values of
the metrics. DenseNet-121 has higher recall and precision
average values (62.7, 79.3% against 62.0, 78.6%) and lower
AUC-ROC (91.0 against 93.2%) as compared the ResNet-50
network.

Figure 3 presents the ROC curves for multi-class clas-
sification by ResNet-50, DenseNet-121, and DenResCov-19
networks. The ROC curves are computed in four different
cross-validation cases in DXR4 dataset. Based on these fig-
ures, it is clear that the true/false positive rate and the ROC
curves’ results of the DenResCov-19 network (Fig. 3 third
row) are much better in all classes, as compared to the other
two networks (Fig. 3 first and second rows). From the results
presented in the Fig. 3, we can find the average AUC-ROC
values of the four classes for DenseNet-121, ResNet-50, and
DenResCov-19 networks. The average AUC-ROC values of
TB, COVID-19, healthy, and pneumonia classes for ResNet-
50 are 84.8, 82.5, 92.3, 87.1%, while the same for DenseNet-
121 are 87.3, 83.1, 90.8, 89.7% and for DenResCov-19 are
94.7, 92.6, 96.4, 95.3%, respectively. Hence, the DenseNet-
121 achieves improved true/false positive rate andAUC-ROC

values as compared to the ResNet-50 (except for the healthy
class). On the other hand, the performance of DenResCov-
19 is higher in all average AUC-ROC values of TB, COVID-
19, healthy, and pneumonia classes compared to both ResNet-
50 and DenseNet-121.

Figure 5 presents the confusion matrices of multi-class
classification by the ResNet-50, DenseNet-121, andDenRes-
Cov-19 networks onDXR4 dataset (combined over four cross-
validation cases). In ResNet-50 network, the COVID class
has 69.2% true positive and 30.8% false negative predictions
among the total number of positive cases, combined over
four cross-validation iterations; while in the Pneumonia class,
the network has 92.3% true positive and 7.7% false nega-
tive predictions. In the TB class, the network has 80.2%
true positive and 19.8% false negative predictions, and in the
Healthy class 75.8% true positive and 24.2% false negative
predictions. On the other hand, the DenseNet-121 has in
the COVID class 70.9% true positive and 29.1% false nega-
tive predictions, in the Pneumonia class 89.4% true positive
and 10.6% false negative predictions, in the TB class 85.6%
true positive and 14.4% false negative predictions, and in the
Healthy class 77.5% true positive and 22.5% false negative
predictions. In comparison, the DenResCov-19 network has
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Table 3
Quantitative evaluation metrics for four cross-validation cases on the DXR4 dataset, and
the resulting average and standard deviation. Superscript max/min indicates the high-
est/lowest score among the cross validation sets.

Classification performance of ResNet-50 in DXR4 dataset: COVID-19, pneumonia, tuberculosis and healthy [7, 22, 25]

Metric (%) Cross validation
#1

Cross validation
#2

Cross validation
#3

Cross validation
#4

Average value

Recall 62.7max 61.9 62.4 61.5min 62.0 ± 0.5
Precision 81.0max 78.9 77.1min 77.6 78.6 ± 1.7
AUC-ROC 94.1max 93.2 92.7 92.6min 93.2 ± 0.7
AUC-ROC macro 89.9 89.0min 91.0max 89.5 89.9 ± 0.9
AUC-ROC micro 88.1min 88.8 90.4max 88.8 89.0 ± 1.0
AUC-ROC weighted 87.3min 88.4 89.6max 88.2 88.4 ± 0.9
F1 70.7max 69.9 69.0 68.6min 69.5 ± 0.9
F1 macro 70.7max 70.0 69.1 68.6min 69.6 ± 0.9
F1 micro 70.5max 69.8 68.8 68.4min 69.4 ± 0.9
F1 weighted 70.7max 70.1 69.0 68.7min 69.6 ± 0.9

Classification performance of DenseNet-121 in DXR4 dataset: COVID-19, pneumonia, tuberculosis and healthy [7, 22, 25]

Metric (%) Cross validation
#1

Cross validation
#2

Cross validation
#3

Cross validation
#4

Average value

Recall 63.3max 62.4 62.3min 62.9 62.7 ± 0.5
Precision 80.1 80.8max 79.3 76.8min 79.3 ± 1.7
AUC-ROC 93.8max 91.2 89.0min 89.8 91.0 ± 2.1
AUC-ROC macro 90.1min 92.5max 90.2 91.5 91.1 ± 1.1
AUC-ROC micro 89.2 91.2max 88.8min 89.2 89.6 ± 1.1
AUC-ROC weighted 88.7 90.6max 87.6 87.2min 88.5 ± 1.5
F1 70.7max 70.4 69.8 69.2min 70.0 ± 0.6
F1 macro 70.0max 69.6 69.0 68.3min 69.3 ± 0.7
F1 micro 70.7max 70.4 69.8 69.2min 70.0 ± 0.6
F1 weighted 70.4max 69.9 69.6 69.0min 69.8 ± 0.6

Classification performance of DenResCov-19 in DXR4 dataset: COVID-19, pneumonia, tuberculosis and healthy [7, 22, 25]

Metric (%) Cross validation
#1

Cross validation
#2

Cross validation
#3

Cross validation
#4

Average value

Recall 70.0 71.0max 67.0min 70.7 69.7 ± 1.8
Precision 80.0min 83.0 86.0max 82.6 82.9 ± 2.4
AUC-ROC 93.9min 95.0 96.0max 95.2 95.0 ± 0.8
AUC-ROC macro 94.7min 94.7 94.7max 94.8 95.6 ± 0.1
AUC-ROC micro 93.9min 94.4 98.2max 93.9 95.1 ± 2.1
AUC-ROC weighted 93.3min 94.1 98.0max 93.6 94.7 ± 1.8
F1 75.0min 76.5max 75.3 76.2 75.8 ± 0.7
F1 macro 76.2 77.6max 76.1min 77.1 76.7 ± 0.7
F1 micro 74.9min 76.3max 75.3 76.2 75.6 ± 0.7
F1 weighted 75.0min 76.5max 75.3 76.2 75.7 ± 0.7

in the COVID class 89.5% true positive and 10.5% false neg-
ative predictions, in the Pneumonia class 96.0% true positive
and 4.0% false negative predictions, in the TB class 94.5%
true positive and 5.5% false negative predictions, and in the
Healthy class 88.5% true positive and 11.5% false negative
predictions. Based on these evidences, we can infer that our
proposed network results in higher true positive and lower
negative false positive values as compared to the two estab-
lished networks. Detailed results for the confusion matrices
of individual cross validation cases of the three networks are
provided in the supplementary material.

The quantitative performance analysis of theMonte Carlo
cross-validation experiment for ResNet-50, DenseNet-121,
and DenResCov-19 networks over DXR4 dataset has been
presented as box-plots in Fig. 4. From the box-plots pre-
sented in Fig. 4, it is clearly visible that the proposedDenRes-
Cov-19 network achieves higher classification performance
for all 4 classes, irrespective of the quantitative evaluation
indices. For the statistical significance analysis of the clas-
sification performance of three networks in terms of the F1-
score, precision, and recall values, the linear mixed model
analysis has been adopted, where the four different classes,
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Figure 3: The ROC curves for the four cross-validation cases over DXR4 dataset. Top to bottom: ResNet-50, DenseNet-121,
and DenResCov-19.

0.6

0.7

0.8

0.9

1.0

COVID Pneumonia TB Healthy

F
1

Network ResNet−50 DenseNet−121 DenResCov−19

0.6

0.7

0.8

0.9

1.0

COVID Pneumonia TB Healthy

P
re

ci
si

on

Network ResNet−50 DenseNet−121 DenResCov−19

0.6

0.7

0.8

0.9

1.0

COVID Pneumonia TB Healthy

R
ec

al
l

Network ResNet−50 DenseNet−121 DenResCov−19

Figure 4: Boxplots for the quantitative performance analysis of three deep learning networks on DXR4 dataset for the classification
of COVID-19, pneumonia, tuberculosis, and healthy patients.

namely COVID-19, pneumonia, tuberculosis, and healthy
patients, have been included as random effects in the linear
mixed model. Applying the Kenward and Roger’s method
for the degrees of freedomof the t-statistic [24] and the Tukey’s
method for pairwise comparisons [48], we found that the
proposed DenResCov-19 network achieves statistically sig-
nificant classification performance over both DenseNet-121
and ResNet-50 networks in DXR4 dataset in terms of all
three quantitative evaluation indices. In terms of F1-score,

the DenResCov-19 attains significant p-values of 6.5E −
09 and 5.6E − 11 as compared to the DenseNet-121 and
ResNet-50, respectively, while for the precision index, the
p-values are measured as 0.0006 and 2.3E−06 as compared
to the same two networks. Similarly with respect to the recall
values, the proposed DenResCov-19 has attained significant
p-values of 3.5E − 06 and 3.1E − 07 as compared to the
DenseNet-121 and ResNet-50 networks, respectively.
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(c) DenResCov-19
Figure 5: Confusion matrices of the three deep learning networks on DXR4 dataset (combined over four cross-validation cases).
Each blue-colored cell (i, j) in the matrix denotes the number (and percentage) of cases in target class i that has been classified
as class j during prediction. At the right edge of each cell, the percentage of cases in the cell with respect to prediction class j
is shown, while the bottom edge presents the percentage with respect to target class i. The last row and last column denote the
total number (and percentage) of cases in the target and prediction classes, respectively.

Figure 6: Main steps of the DenResCov-19 network to determine the classification decision, represented by heatmaps: The CXR
image is the input of network, and the four blocks of ResNet-50 and DenseNet-121 outputs are then concatenated, creating four
new heatmaps 56, 28, 14, and 7 (gray squares). The new heatmaps 56, 28, and 14 initialize a convolution and average max-pool
block layer (Conv-blockA, Conv-blockB, and Conv-blockC), and the exported images decreased to 7×7 pixels dimensions. Lastly,
the network combines the Conv-blockA with the Conv-blockB outputs (A-concat) and the Conv-blockC with the new-heatmap 7
(B-concat) which are concatenated in a Global-concat heatmap

5.3. Heatmap analysis
From the results presented in Table 2, we can easily ob-

serve that our network has achieved improved results in all
four different datasets. Figures 6 and 7 illustrate the heatmap
results of our pipeline and two state-of-the-art networks based
on the images from DXR4 dataset.

Figure 6 highlights the main steps of our pipeline. The
CXR image initializes the network. The outputs of the four

blocks of ResNet-50 and DenseNet-121 are then concate-
nated. This concatenation creates four new heatmaps 56, 28,
14, and 7 (gray squares). The new heatmaps 56, 28, and 14
pass from a convolution and average max-pool block layer
(Conv-blockA, Conv-blockB, and Conv-blockC), so that the
dimensions of exported images can be decreased to 7 × 7
pixels. Following this step, the network combines the Conv-
blockA with the Conv-blockB outputs (A-concat) and the
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Figure 7: Heatmap results of ResNet-50 (left), DenseNet-121 (middle) and DenResCov-19 (right). Red ellipses indicate the
(human-generated) detection areas that are correctly identified by the network and black ellipses represent the undetected areas
from the corresponding network. The successfully classified images are annotated with green ticks and the wrongly classified
images are annotated with red crosses.

Conv-blockC with the new-heatmap 7 (B-concat). The last
step is a concatenation of A-concat and B-concat to extract
the Global-concat heatmap. Based on that, the model learns
to classify the images in the supervised training tasks. Fig-

ure 6 demonstrates the delineation of the COVID-19 detec-
tion points, denoted by red ellipses, by our proposed pipeline
from a CXR lung image. The delineated region is identical
to the area of interest detected by an expert radiologist.
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Figure 7 shows the heatmaps of DenseNet-121, ResNet-
50, and DenResCov-19 from a total of eight classification
cases. In all cases of Fig. 7, we have highlighted the last
heatmap layer of the networks. The red circle in the CXR
images are the detection points from our expert radiologist
(AS). These points are used to classify the disease in each
CXR image. In the top figure of Fig. 7, all images are accu-
rately diagnosed by the three networks. The black and red
circles in the heatmap images denote the wrong and accurate
detection points, respectively, with respect of the manual an-
notation. The extraction of the circle is based on a colormap
threshold of 0.5. If the average number of the area inside the
circle is higher than the threshold, then the detection point
assumes correct (red circle); otherwise, it assumes wrong
(black circle). In the bottom figure of Fig. 7, the DenseNet-
121 accurately diagnoses the last two images (green tick),
but wrongly classifies the first two (red cross). On the other
hand, the ResNet-50 accurately diagnoses the first two im-
ages (green tick), while wrongly classifies the last two (red
cross). In comparison, our network diagnoses correctly all
images except the first one.

In the top figure of Fig. 7, the DenseNet-121 cannot de-
tect the left circle annotation (black circle) in the COVID-19
CXR image. Additionally, it cannot clearly detect the right
circle annotation either. On the other hand, the ResNet-50
cannot detect the right circle annotation (black circle), while
it identifies the left circle. In comparison, DenResCov-19
can detect both circle annotations strongly. In the tuberculo-
sis CXR image, the DenResCov-19 also strongly detects the
circle annotation, while the ResNet-50 and DenseNet-121
cannot detect clearly the circle annotation (near the thresh-
old). However, in the pneumonia CXR image, theDenseNet-
121 strongly detects the red circle annotation, while the ResNet-
50 and DenResCov-19 cannot clearly detect it.
5.4. Discussions

One important limitation of this study is the relatively
small cohort size for patients with COVID-19. Due to this,
we mixed the pediatric and adult patients populations of the
sources-1, source-2 and 3 in DXR4 dataset, in order to test
the robustness of our proposed model in a dataset with larger
cohort size. To avoid the bias effects, we created the dataset
with randomly selected balanced number of images. Even if
we test our pipeline in a huger dataset than DXR3 or DXR2;
we had to deal with the limitation of mixed ages in the pop-
ulation (adults and children CXR images). As a result, there
are some detection features, for example the pneumonia scars
in Fig. 7 (top frame) or the healthy case in Fig. 7 (bottom
frame) in DXR4 dataset, which our pipeline cannot strongly
detect. The detection of these pathologies in DXR4 is more
challenging and a larger dataset with additional demograph-
ics is required for further investigation.

Another limitation of this study is the multi-label lung
pathology task. In order to further evaluate the generaliza-
tion and robustness of our pipeline as a whole lung multi-
pathologies classifier, we need to provide the multi-class and
multi-label classification. Although we have delivered the

multi-class challenge in the best possible way based on the
available published cohorts, we still face a luck of the gener-
alization from the multi-label aspect. An example of multi-
label sample is when a subject has both bacterial pneumonia
and COVID-19 diseases. The main reason we could not de-
liver this aspect is the lack of any publicly available multi-
label lung disease datasets.

The main advantage of this study is that, in the majority
of lung pathologies, the detection points of radiologist CXR
lung images are identified more strongly using the DenRes-
Cov-19 network, as compared to the ResNet-50 andDensNet-
121. The heatmap results presented in Fig. 6 and 7 justify
the accurate classification of our network and validate our
initial hypothesis. Moreover, all the evaluation metrics of
the different classification datasets (from DXR1 to DXR4)
demonstrate the robustness and superior performance of the
DenResCov-19 network as compared to the benchmark deep
learning based approaches.

As we discussed in Section 2, there are some limitations
in the majority of the existing studies regarding robust and
efficient detection of the Covid-19 and lung diseases. In our
current study, we have examined these limitations and tried
to solve them. We have trained our models based on regu-
larization techniques, such as data augmentation and penalty
L2 norms, to avoid possible overfitting. Furthermore, we
have verified the generalization and accurate prediction of
our model using Monte Carlo cross-validation techniques.
The proposed method is fully automated and it does not need
any manual segmentation of the lung region from experts
to deliver a robust classification result. Finally, we have
demonstrated different applications of the model over binary
and multi-class classification tasks.

6. Conclusions
In this study, we have implemented a new deep-learning

network namedDenResCov-19, which can deliver robust clas-
sification results in multi-class lung diseases. We have tested
the proposed model over three different published datasets
with four classes, namely, the COVID-19 positive, pneumo-
nia, TB, and healthy patients. We have also mitigated the
class imbalance issue by properly composing the datasets
(except for DXR4, where the dataset is imbalanced in COVID-
19 positive class due to limited number of available images).
Hence, based on our experimental analysis, we can infer a fa-
vorable generalization and robust behavior of our proposed
model. Our experimental analysis has demonstrated improved
classification accuracy of our network, as compared to the
state-of-the-art networks such as ResNet-50, DenseNet-121,
VGG-16, and Inception-V3. Our initial hypothesis that our
network can deliver a well-balanced AUC-ROC and F1 met-
ric results has been verified. In most of the cases, the detec-
tion points of our network from heatmaps are in line with the
detection points from the expert radiologist. To summarize,
we have developed a pre-screening fast-track decision net-
work to detect COVID-19 and other lung pathologies based
on CXR images.

In our future study, we will further focus on the general-
M. Mamalakis et al.: Preprint submitted to Elsevier Page 13 of 15
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ization of our model with the availability of a significantly
larger COVID-19 patients’ cohort. In addition, it will be
beneficial to extend the number of classes to include more
lung diseases if the corresponding datasets exist. Finally,
we wish to evaluate the DenResCov-19 network in different
datasets, in order to further evaluate the generalization and
robustness of our pipeline in different medical image classi-
fication tasks, such as diagnosing multi-label lung diseases
and other medical disease classification.
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