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Abstract 

Reopening strategies are crucial to balance efforts of economic revitalization and bringing back 

a sense of normalcy while mitigating outbreaks and effectively flattening the infection curve. 

This paper proposes practical reopening, monitoring and testing strategies for institutions to 

reintroduce physical meetings based on SIR simulations run on a student friendship network 

collected pre-Covid-19. These serve as benchmarks to assess several testing strategies that can 

be applied in physical classes. Our simulations show that the best outbreak mitigation results 

are obtained with full knowledge of contact, but are also robust to non-compliance of students 

to new social interaction guidelines, simulated by partial knowledge of the interactions. These 

results are not only applicable to institutions but also for any organization or company wanting 

to navigate the Covid-19 ravaged world. 

 

Keywords: contact networks, Covid-19, friendship networks, reopening strategies, SIR on 

networks 
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Abstrak 

Strategi pembukaan semula sangat penting dalam menyeimbangkan usaha pemulihan semula 

ekonomi tanpa mengabaikan usaha melandaikan lengkung jangkitan. Makalah ini 

mencadangkan beberapa strategi pengawasan dan pengujian yang praktikal bagi mengadakan 

perjumpaan fizikal berdasarkan simulasi ke atas rangkaian persahabatan pelajar yang dikumpul 

sebelum penyebaran Covid-19. Simulasi ini boleh digunakan sebagai penanda aras untuk 

menguji beberapa strategi pembukaan semula yang boleh digunapakai dalam kelas. Simulasi 

kami menunjukkan bahawa strategi terbaik diperolehi dengan mengetahui maklumat penuh 

rangkaian perhubungan. Namun begitu, kami juga mencadangkan strategi yang tidak perlukan 

maklumat rangkaian. Dapatan ini bukan sahaja terhad untuk institusi tetapi ia juga boleh diguna 

pakai oleh sebarang organisasi atau syarikat dalam menghadapi norma baharu era Covid. 

 

Kata kunci: Covid-19, rangkaian kontak, rangkaian persahabatan, strategi pembukaan semula, 

SIR dalam rangkaian 
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Introduction 

Covid-19 has forced humanity to adapt to new interaction norms while keeping an eye on the 

number of cases, the growth of which must be flattened to ensure they do not grow 

exponentially and overwhelm the health services. This curve representing the number of cases 

is commonly modelled by the Susceptible-Infected-Recovered (SIR) model (Keeling & Eames 

2005; Pastor-Satorras et al. 2015) and its variants. More extensive models (Ferguson et al. 

2020; Chinazzi et al. 2020) utilize estimated contact networks derived from population level 

observations as the underlying model of the SIR spread especially in light of the contact-based 

transmission of Covid-19. Therefore, contact networks are crucial elements to inform realistic 

and effective reopening strategies in the face of Covid-19. 

 

In this paper, our aim is twofold. Firstly, we shall model the spread of Covid-19 on a real 

Malaysian contact networks of first year university students. We shall simulate the dynamics 

of potential super spreaders in an institutional setting. Second, we shall propose practical 

reopening strategies for institutions based on the concept of centralities and friendship paradox 

on networks. 

 

Contact Networks 

Human to human interaction is key to the transmission of infectious diseases in general and 

Covid-19 in particular. An intuitive way to view human interactions is through contact 

networks (Yang & Jung 2020; Herrera et al. 2016). For example, two people are considered 

connected if they have been in contact at workplaces, households or schools. Underlying 

contact networks have been used to model previous outbreaks such as Influenza (Ferguson et 

al. 2006), Measles (Hunter et al. 2018), the 2019 H1N1 (Pastor-Satorras et al. 2015; Liu et al. 

2018) and the MERS in 2015 (Yang & Jung 2020).  
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A contact network formed through connections of individual and hospitals where individuals 

are connected by being at the hospital at the same time, highlighted that nosocomial infection 

was the main cause for the 2015 Middle East Respiratory Syndrome (MERS) outbreak in Korea 

(Yang & Jung 2020). The structure of contact networks can readily explain the existence of 

super-spreaders and clusters formation in epidemic spreading (Yang & Jung 2020, Herrera et 

al. 2016, Rudiger et al. 2020) since these behaviours are common observations on real networks 

known in network analysis as hubs and communities respectively. 

 

The Global Epidemic and Mobility Model (GLEAM), a meta-population based, spatial 

epidemic model have utilized transport networks on top of contact networks to project the 

impact of travel limitations on the national and international spread of the epidemic. GLEAM 

(Chinazzi et al. 2020; Vibouda & Vespignani 2019) highlighted that the travel quarantine of 

Wuhan delayed spread at the international scale, where case importations were reduced by 

nearly 80% until mid-February. The effect of social distancing, testing and quarantine efforts 

were also observed by Aleta et al. (2020). 

 

Contact networks offer an avenue to test the effect of non-pharmaceutical interventions such 

as closing down workplaces, community centers and schools (Ferguson et al. 2006; Chinazzi 

et al. 2020, Perra 2021) and various combinations of travel restrictions and partial or complete 

lockdown. Networks can be utilized to plan strategies for vaccinations, mitigation, suppression 

(Fu et al. 2017, Hunter et al. 2018; VanderWeele & Christakis 2019) and the design of early 

warning systems for disease surveillance, especially when coupling physical interactions with 

virtual interaction through social media (Herrera et al. 2016; VanderWeele & Christakis 2019). 

Furthermore, once a network is obtained, various techniques of analysis can be utilised to 
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understand how its structure affects the dynamic taking place on it (Zulkepli et al. 2020; Razak 

& Shahabuddin 2018). 

 

Contact tracing has played a crucial role in the Malaysian response especially in the initial 

stages of the pandemic. A combination of thorough questioning and isolating all possible 

contact even before symptoms are manifested can be effective. The contact network underlying 

the contact tracing information is the reason why the strategy of contact tracing and isolation 

is highly effective in reducing the number of cases. Malaysian interaction networks have been 

modelled in (Ratanarajah et al. 2020; Razak et al. 2019). 

 

University Friendship Networks 

Network analysis is a tool based on graph theory. A network can be written as 𝐺� = (𝑉�, 𝐸�), 

where 𝑉� is the set of vertices and 𝐸� is the set of edges (Newman, 2010). Network are 

combinatorial objects used to model relations between elements of a system. Typically, a 

network is depicted in diagrammatic form as a set of dots for the vertices, joined by lines or 

curves for the edges as in Figure 1. We define the set of neighbours of a vertex as the vertices 

connected to it via an edge. Figure 1 is a network with the set of vertices 𝑉� representing 148 

individuals and the set of edges 𝐸� representing the friendships amongst them as collected in 

pre-Covid physical class setting through questionnaires (Rahman et al. 2020; Ratanarajah et al. 

2020). All participants were fully informed that their data would be used for research. The data 

sets were anonymised, stored and analysed in a secure environment. 
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Figure 1.  A network of 148 individuals as vertices linked by edges representing friendship 

relationships. Colours represent the state of each vertices - Susceptible (Blue), Infected (Red) 

or Recovered (Green) -  at the peak infection time t=13 during a simulation run of the SIR 

model. The seed vertex is labelled. The number of individuals in each state as a function of 

time are plotted in Figure 2. 

 

SIR spread on Networks 

The basic SIR model is governed by the equations  

 𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼,������

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝑅,

𝑑𝑅

𝑑𝑡
= 𝛾𝑅, 

 

(1) 

 

where 𝛽 is the infection rate and 𝛾 is the recovery rate (Keeling & Eames 2005, Pastor-Satorras 

et al. 2015). This model assumes that the population is categorized into three groups, namely 

the ‘Susceptible’, the ‘Infected’ and the ‘Recovered’. S is the number of individuals being in 

the ‘Susceptible’ state, I the number of ‘Infected’ individuals and R the number of individuals 
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in the ‘Recovered’ state.  

 

The basic SIR model assumes homogeneity and full mixing, i.e. all individuals interact with 

all other individuals and with the same probability at all times. Using contact networks adds 

heterogeneity to the modelling not only by exactly specifying who is in contact with whom but 

networks can also be customized to account for age, comorbidity, gender, different types and 

strains of viruses (Forster et al. 2020; Fu et al. 2017) or mutating pathogens that change 

infection rates (Rudiger et al. 2020). Real networks are very useful to quantify the extent to 

which real populations depart from the homogeneous-mixing assumption, in terms of both the 

underlying network structure and the resulting epidemiological dynamics. 

 

 

Figure 2.  Outcome of a simulation run of the SIR model on the students contact network for 

100 time steps. S, I and R represent the number of individuals being in the ‘Susceptible’, 

‘Infected’ and the ‘Recovered’ state at every time step respectively. In this simulation, even 
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with one randomly selected initial infected individual, the pathogen can spread through the 

whole population. No interventions, such as the isolation of infected individuals, were 

implemented. The grey dotted line represents peak infection time and Figure 1 is the network 

visualization of the individuals states at this time step. 

 

Figure 2 is the typical outcome of an SIR simulation on the student network where the pathogen 

spreads through the whole population with no intervention. In this paper we assume that 

Recovered individuals can no longer be infected. We simulate the SIR process on networks in 

this paper with 𝛽 = 0.054 and 𝛾 = 0.05 in conforming with 𝑅0 =
𝛽

𝛾
= 1.08 given by the 

MySejahtera app as of 25/1/2021 and define the unit of time to be days.  We assume that testing 

can be done on each day for the purposes of monitoring and intervention. MySejahtera is the 

official app the Government of Malaysia developed to provide statistics of infections and assist 

in monitoring the Covid19 outbreak.  

 

The final size of the outbreak, quantified by the total number of infections, depends on the ratio 

between infection and recovery rates: 𝑅0. 𝑅0 can be calculated using 𝑅0 =
𝛽

𝛾
 (Newman 2010) 

where 𝛽 and 𝛾 are from equation (1). 𝑅0 represents the average number of individuals infected 

by one infected individual and should not be confused with R representing the number 

‘Recovered’ individuals. This number characterises the virulence of the pathogen modelled. 

 

To model the epidemic spread on networks, an agent-based model approach is usually taken in 

replicating the SIR spread (Ferguson et al. 2020; Chinazzi et al. 2020). In a network setting, 

transmission can only occur between vertices that are connected to each other. Therefore, the 

infection spreading depends on the connectivity of each infected vertex. In this paper we 
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capture the idea of the basic SIR model on a network by setting the model parameters of 

infection rate 𝛽 and recovery rate 𝛾 equal for each vertex in the network, assuming 

homogeneity of the student population response to Covid-19. The main mechanism is 

summarized in these steps. 

1. Infected vertices recover exponentially at rate 𝛾. 

2. Infected vertices may infect susceptible neighbours at an exponential rate 𝛽 until it 

recovers. 

3. Recovered vertices are not infectious and can no longer be infected. 

Thus, at each time step every vertex is in one of the S, I or R states. Figure 1 depicts a 

visualization of our network at peak infection in one of our simulations. In this particular 

realization, 83% of the population is infected at time 13, which corresponds to peak infection 

time as seen in Figure 2.  

 

Flattening the Infection Curve 

The infected curve resulting from the SIR process, the red line in Figure 2, representing the 

numbers of infected individuals at every time step, is the oft-repeated curve that requires 

flattening.  The SIR process is stochastic, therefore one needs to run several iterations to get a 

representative outcome when modelled on a heterogeneous interaction medium such as a 

network, as the location of the seed patient in the network will impact the speed at which the 

epidemics will spread through the system.  
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Figure 3.  1000 iterations of the simulated SIR on the network. The Median behaviour 

highlighted in blue peaks at time 12 with 84% of the population infected. 

 

Therefore, to initialize the infection we randomly choose one single vertex at random for every 

simulation run, so as to qualify the randomness of the simulation as a reflection of the contact 

structure rather than the stochastic nature of infection and recovery. The former being the 

important thing to consider when devising monitoring strategy: you want it to be effective 

whatever the origin of the infection. In Figure 3, we simulated 1000 iterations for 100 time 

steps and highlighted the median in blue. As we are interested in the evolution to peak time of 

an outbreak, we set a maximum simulation time of a 100 time steps, as peak time never exceeds 

50 time steps in our simulations. 

 

For each time step, we use the median value over all iterations and take it as the most likely 

evolution of the process. From our simulations of randomly infecting one vertex at every run, 

we observed that the median for 1000 and the first 100 iterations both resulted in peaks at time 

12 with 84% of the population infected at the peak. Thus in this paper, all the simulations results 
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in Figures 4-9, are represented by the median obtained from 100 runs of 100 time steps with 

𝛽 = 0.054 and 𝛾 = 0.05 with a randomly chosen initial infection seed for every run replicated  

using the software R.  

 

The clarion call to physical distancing was instigated by the need to flatten the infection curve 

by reducing interactions between individual and thus pathogen spreading opportunities, thus 

reducing the total infected number to a fraction of the population. For example in Figure 3, the 

flattening can be achieved both by reducing the percentage of maximum infected population 

from 84% and/or by delaying the time of peak infection. Using a network representation of 

contacts makes the mechanism by which social distancing operates clear: if all edges are 

severed, no infection can spread. In reality this effect is achieved by testing and isolating the 

infected individuals as well as all their contacts regardless of symptoms, effectively breaking 

infection chains in the network, as the pathogen can only spread along edges.  

 

The student friendship network gives an estimation of the most likely contacts between 

individuals. By analysing the structure of the network, the monitoring process of the population 

can be simplified. We simulate the effect of monitoring by “testing” a pre-selected subset of 

vertices at every time step. If a vertex is tested positive, i.e. it has transitioned from the 

susceptible to the infected state, it is removed from the network, i.e. quarantining, by effectively 

having its edges temporarily deleted, until it becomes recovered, thus breaking the transmission 

chain. The main mechanism is summarized in these steps. 

1. Infected vertices recover exponentially at rate 𝛾. 

2. Infected vertices may infect susceptible neighbours at an exponential rate 𝛽 until it 

recovers unless the vertex is in the monitored group in which case the vertices and all 

neighbours shall be quarantine. 
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3. Recovered and Quarantined vertices are not infectious and can no longer be infected. 

 

Figure 4.  Medians of the 100 iterations simulated for randomly selected groups of students to 

be monitored. Colours represent different monitored percentage. 

 

Figure 4 illustrates median curves of infection obtained by monitoring a randomly selected 

percentage of the population. The random selection is done separately for each of the 100 

iteration. The black line for example represents 1%, or 2 individuals, monitored out of the 148 

individuals. As the number of monitored individuals increase, the peak number of infected 

individuals decreases from 84% with no monitoring to 5% with 20% of students randomly 

monitored and the peak time is delayed from 12 to 15.  

 

The question is: can we do better by targeting individuals based on their position in the contact 

network rather than randomly monitoring a fraction of the population? The aim of all 
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monitoring strategies is to identify vertices in the network whose removal when infected would 

reduce the spreading as much as possible, or in other words how to reduce the connectivity of 

a network in the most efficient way to slow down or even suppress the epidemic spreading 

(Holme 2002; Watanabe & Masuda 2010). It is a similar problem to the planning of optimal 

immunisation and vaccination strategies (Holme & Litvak 2017; VanderWeele & Christakis 

2019; Pastor-Satorras & Vespignani 2002). In this paper, we focus on the role of vertices in the 

contact network to devise monitoring strategies. 

 

The importance of individuals in the contact network 

Networks, in general, possess a heterogeneous structure, and it is therefore possible to quantify 

topological differences between nodes. This naturally leads to the idea the importance, or 

centrality of a vertex in the network with respect to a metric. The concept of centrality 

originates from the discipline of social network analysis (Freeman 1977; Freeman 1979). 

Defining a value for each vertex according to a centrality measure implies that vertices can be 

ranked. A next natural problem is to find which measure of a vertex role correlates the best 

with observables from a dynamical process. For example, which are the individuals that if 

monitored for infections status and removed when infected, mitigate the most the number of 

total infected individual or shift the peak time the most. A similar problem is to identify 

individuals whose vaccination would reduce the most the spread of an epidemic. 

 

There exists a slew of centrality metrics that each measure particular aspects of a vertex, but 

we will use the three ‘original’ ones introduced by Freeman: degree, closeness and betweenness 

centrality that we define precisely below. Despite their simplicity, they capture particularly well 

relatively orthogonal and essential properties of vertices that are of interest when considering 

spreading dynamics: direct connectivity, ease of reach from other vertices and role in bridging 
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subparts of a network. Perhaps the simplest centrality measure is the degree centrality (DC). 

The degree ki of a vertex i is the number of edges connected to it: the number of it’s direct 

neighbours. The effective infection rates will be proportional to the number of neighbours a 

vertex has, therefore it makes sense to monitor individuals with the highest degree (Holme and 

Litvak 2017). In Figure 4, the monitored group was randomly chosen but in Figure 5 the 

monitored group consist of individuals with the highest DC. In order to rank by DC, we first 

calculate the degree ki of each vertex 𝑖. We then rank the vertices according to ki using the sort 

function in software R. This needs to be done only once for all the simulations because the 

networks is static. The black line in Figure 5 represents 1%, or 2 individuals with the highest 

DC, monitored out of the 148 individuals. The grey line in Figure 5 represents 20%, which 

entails the monitoring 30 individuals with the highest value of ki. Figure 5 illustrates the 

reduction in the number of infected individuals when a certain percentage of individuals with 

the highest DC is monitored.   

 

Figure 5.  Medians of the 100 iterations simulated for groups selected from those with the 
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highest degree ki to be monitored. Colours represent different monitored percentage. 

 

 

A path in a network is any sequence of vertices such that every consecutive pair of vertices in 

the sequence is connected by an edge in the network. The distance 𝑑𝑖𝑗�between two vertices, 

𝑖, 𝑗 ∈ 𝑉 is defined as the number of edges along the shortest path, i.e. minimum number of 

edges used to connect them. Every pair of vertices directly connected by an edge are thus at a 

distance of 1. The Closeness Centrality (CC) of vertex 𝑖� ∈ 𝑉� can be defined as the reciprocal 

of the average distance a vertex is from all other vertices (Newman 2010; Freeman 1979), such 

that 

 
𝑙𝑖 =

1

∑ 𝑑𝑖𝑗𝑗∈𝑉
 

(2) 

 

   

It uses the inverse sum of distances from a vertex to all other vertices in the network to rank 

the vertices. The larger the CC value the ‘closer’ the vertex is to all other vertices. Therefore it 

makes sense to monitor the vertices with highest CC as illustrated in Figure 6 where 20% 

monitoring renders almost no other infections other than the initial one forced onto the 

simulation. In order to monitor by CC, we used the same steps utilized for DC. 



16 

 

 

Figure 6.  Medians of the 100 iterations simulated for groups selected from those with the 

highest Closeness Centrality 𝑙𝑖 to be monitored. Colours represent different monitored 

percentage. 

 

The Betweenness Centrality (BC) of vertex 𝑖� ∈ 𝑉� can be defined (Freeman 1977; Newman 

2010) as 

 
𝑥𝑖 = ∑ ∑   

𝑛𝑠𝑡(𝑖)

𝑁𝑠𝑡
𝑡≠𝑖, 𝑡∈𝑉𝑠≠𝑖,𝑠∈𝑉

 (3) 

 

 

where 𝑛𝑠𝑡(𝑖) is the number of shortest paths from 𝑠� to 𝑡� that passes through vertex 𝑖�. 𝑁𝑠𝑡 is 

the total number of shortest paths from 𝑠� to 𝑡�. The more “in-between” other vertices a vertex 

is the more central it is. Clusters of vertices that are more connected among themselves that 

with others are a common feature of complex networks (Girvan & Newman 2002). High BC 

vertices can act as connectors between different clusters formed in the network. Thus by 
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quarantining these vertices the separate parts of the network become less connected with each 

other therefore a larger proportion of the network can be protected from infection as evidence 

in Figure 7 where BC monitoring performs better than all the other groups. In order to monitor 

by BC, we used the same steps utilized for DC. 

 

Figure 7.  Medians of the 100 iterations simulated for groups selected from those with the 

highest Betweenness Centrality 𝑥𝑖 to be monitored. Colours represent different monitored 

percentage. 

 

Reopening Strategies and the Friendship Paradox  

An ideal reopening strategy would be to know the actual contact networks of all individuals in 

the institution in real time thus providing full knowledge of the network and consequently 

enabling monitoring of high centrality individuals to prevent super spreader events. However 

gathering such information about contact networks may not be practical in many situations, 

particularly contact tracing apps that are typically run by government rather than individual 
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institutions that only have more limited resources available. Questionnaire based contact 

networks also have their limitations unreported non-compliance to new social interaction 

guidelines by having contact outside prescribed “bubbles”, render the underlying contact 

network incomplete. In these cases we only have partial knowledge of the network. 

 

The friendship paradox is the phenomenon whereby most people have fewer friends than their 

friends have. Specifically that the average number of friends of friends is always greater than 

the average number of friends of individuals. In a friendship network, the numbers of friends 

of vertex 𝑖 is represented by the degree 𝑘𝑖 thus the average number of friends of individuals is 

∑ 𝑘𝑖
𝑁
𝑖=0

𝑁
 where 𝑁 is the size the network. Whereas, the average number of friends of friends can 

be obtained by  
∑ 𝑘𝑖

2𝑁
𝑖=0

∑ 𝑘𝑖
𝑁
𝑖=0

 . Therefore the friendship paradox on a network (Feld 1991) can be 

expressed by 

 ∑ 𝑘𝑖
2𝑁

𝑖=0

∑ 𝑘𝑖
𝑁
𝑖=0

≥
∑ 𝑘𝑖
𝑁
𝑖=0

𝑁
 

(4) 

 

 

This is true for all networks. Particularly, for our student friendship network with 𝑁 = 148,  

we obtain that  
∑ 𝑘𝑖

2𝑁
𝑖=0

∑ 𝑘𝑖
𝑁
𝑖=0

= �10.35886 > 9 =
∑ 𝑘𝑖
𝑁
𝑖=0

𝑁
. 

 

Therefore without full knowledge of a network, rather than choosing a random group of people 

to monitor, one should ask these random individuals to nominate a friend that they perceived 

to be more popular (VanderWeele & Christakis 2019). We call this group of people FR and the 

randomly selected group R, not to be confused with the previous recovered, R, group. The 

randomly selected group R is chosen at every iteration. For example to monitor 𝑛% of the 

population, we choose randomly choose 𝑛% out of the 148 vertices. In order to obtain the 

monitored FR group of 𝑛% in our simulations, we randomly select 𝑛% of the population at 
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every iteration and then for each member of this group, we select the individual’s most popular 

friend i.e the friend with the highest degree 𝑘𝑖 to be in the 𝑛% FR monitored group as seen in 

Figures 8 and 9. 

 

The results of simulating various monitoring strategies are displayed in Figures 8 and 9. The 

values in these figures are listed in Table 1 (See Appendix). In Figure 8, one can clearly see 

that BC and CC are the significantly better strategies to reduce the total infection in the 

population and are able to reduce total infection in the population to less than 20%. For 

monitoring of between 5 and 10% percent of the population, the monitored group based on FR, 

DC, BC and CC consistently have a lower total infected percentage than the R group. 

 

Figure 8.  Percentage of total infected individuals from the median of 100 iterations for each 

monitored group. Colours represent different monitored group. 
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In Figure 9, we present the percentage of infected individuals at the peak infection time for the 

five monitoring strategies at 5, 10, 15 and 20% of individuals monitored. The black line 

representing the randomly chosen monitored group R shows that increasing the monitoring 

percentage, while reducing significantly the size of the peak only marginally delays it. For the 

other four groups, not only was the max infected reduced but the peak infection time was also 

delayed. We also observe that BC and CC strategies are so effective, as seen on Figures 6 and 

7, that the peak time is apparently advanced. This is an artefact due to higher monitoring 

percentage, 15 and 20%, altogether stopping the epidemic early on rather than slowing it down.

 

Figure 9.  The median peak time and the percentage of the infected at this peak time. Shapes 

represent different monitored percentage. Colours represent different monitored groups. 

 

From these results, we conclude that given full knowledge of the network, monitoring a group 

with highest BC and CC will be the most effective in flattening the curve.  
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Discussion 

Monitoring and testing certain groups of the population helps to reduce infections. Ideally we 

need to vaccinate and monitor (test) everyone. However due to the significance of the cost 

involved, whether in terms of money, time, effort or availability of vaccines, we suggest 

targeted monitoring strategies that may give more return on investment. A full economic 

costing is out of the scope of this paper, but hopefully with insights provided by our research, 

different testing options can be compared in terms of security and cost. 

 

All else being equal, it if comes down to network positions for who to monitor and/or vaccinate, 

based on the outcome of this study, we recommend prioritising the highest BC group. 

Otherwise, if knowledge about the network is not available, we recommend prioritising the FR 

group, with the limitation that a potential bias can be induced if the random selected group R 

knows about this selection process. The network in this study is a static network i.e. we assume 

that the connectivity of the network does not change edges over time which introduce two 

limitations: first we assume that contacts between students will only occur with their reported 

friends and second considering a static network assumes constant interactions between 

individuals. In reality, networks are dynamic and if temporal contact information can be 

collected, via contact tracing apps for example, a more accurate picture can be painted (Lee et 

al. 2012; Holme & Luis 2019, Cencetti 2021) even when considering approximate static 

network (Holme 2013). We reiterate our point that contact tracing apps are not accessible for 

institutions and private companies, so alternative census based methods like the one presented 

here are still relevant, although alternatives to apps can be considered, e.g. proximity sensor 

based interaction measurements (Ozella 2012).  We point out that while we expect our results 

to be generalisable to larger network, the drastic effect of the BC and CC strategies at high 
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monitoring percentage could also be an effect of the size of the network and it’s particular 

structure. 

 

Moreover, our analysis is focused on friendship relationships in a physical lecture hall of 148 

students, implying a protective “bubble” from the outside world. We foresee that in the new 

norm, reopening universities will come with social distancing rules and “student group 

bubbles”, where students are grouped by lectures, or series of lectures and should not be 

interacting with students following lectures they do not themselves attend, and this can be 

planned.  

 

It is likely that clustering students into a single bubble is not practical as different curricula 

often share lectures. Identifying student bridging bubbles is easy, and our analysis generalise 

to bubbles interactions networks. Applying the same methodology on these bubble interaction 

networks might yield a good approximation of the full contact network of the whole institution 

and provide good monitoring targets. Since betweenness centrality is a good marker for 

monitoring targets, students with the most transversal curriculum should be prioritised for 

monitoring, but this can also be influenced by their friends' groups within different bubbles. 

 

A bubble approach is effectively already implemented by some industries and institutions 

where teams within departments can only attend work of certain prescribed days or hours. We 

recommend analysing the information collected from these approaches using network analysis. 

Future research includes further utilizing the friendship paradox to give insight into how to 

adapt the monitoring strategies to accommodate for non-compliance to bubbles and potential 

out of university/institution social interactions. 
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Conclusion 

In this paper we have for the first time, to the best of our knowledge, modelled the spread of 

Covid-19 based on a real Malaysian contact network. We simulated different strategies to be 

implemented in preparation for meetings in the physical realm and the possible resulting 

epidemic spread in the event of just one random individual being infected. Three basic measure 

of effectiveness taken into consideration is the percentage of total infected individuals, the peak 

infection time and the percentage of infected individuals at peak time, to avoid overloading the 

health system. The percentage of total infected individuals in Figure 8 and the values at peak 

infection time in Figure 9, clearly indicates that given full knowledge of the network, 

monitoring the group with high BC individuals is the best strategy. Without full knowledge of 

the network, monitoring the recommended friends is a good alternative for small monitoring 

percentages. 
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Appendix  

Table 1.  The percentage of total infected, maximum infection time and the percentage of 

infected at maximum time for the median infected curves. 

Group monitored and 

percentage 

Percentage of Total 

Infected 

Max Infection Time Percentage of Infected at Max 

Time 

R0 100.0 12.0 84.1 

R1 100.0 13.0 72.6 

R2 100.0 13.0 63.5 
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R3 100.0 13.0 62.5 

R4 100.0 13.0 60.8 

R5 100.0 13.0 50.0 

R10 99.3 13.0 30.7 

R15 80.1 14.0 23.6 

R20 57.1 15.0 5.1 

FR1 100.0 13.0 66.9 

FR2 100.0 13.0 60.1 

FR3 100.0 12.0 52.0 

FR4 98.0 14.0 56.4 

FR5 98.0 13.0 41.2 

FR10 94.6 18.0 16.9 

FR15 83.4 19.0 11.5 

FR20 89.9 19.0 12.8 

DC1 100.0 12.0 69.3 

DC2 100.0 12.0 71.3 

DC3 98.0 13.0 52.0 

DC4 98.0 14.0 44.6 

DC5 98.0 13.0 45.3 

DC10 96.6 15.0 34.5 

DC15 84.8 22.0 17.2 

DC20 78.4 23.0 11.8 

BC1 100.0 12.0 62.2 

BC2 100.0 12.0 54.7 

BC3 100.0 15.0 52.7 

BC4 100.0 15.0 50.7 

BC5 84.1 17.0 36.8 

BC10 55.7 23.0 7.8 

BC15 25.3 12.0 1.0 
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BC20 12.8 1.0 0.7 

CC1 100.0 12.0 72.3 

CC2 100.0 13.0 68.2 

CC3 100.0 15.0 59.8 

CC4 100.0 14.0 59.1 

CC5 100.0 15.0 56.8 

CC10 86.8 20.0 33.4 

CC15 40.9 14.0 4.1 

CC20 15.5 1.0 0.7 

 


