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Abstract 

In this paper, a new implicit-explicit local method with an arbitrary order is produced for stiff 

initial value problems. Here, a general method for one-step time integrations has been created, 

considering a direction free approach for integrations leading to a numerical method with 

parameter-based stability preservation. Adaptive procedures depending on the problem types 

for the current method are explained with the help of local error estimates to minimize the 

computational cost. Priority error analysis of the current method is made, and order conditions 

are presented in terms of direction parameters. Stability analysis of the method is performed for 

both scalar equations and systems of differential equations. The currently produced parameter-

based method has been proven to provide 𝐴 −stability, for 0.5 ≤ 𝜃 < 1, in various orders. The 

present method has been shown to be a very good option for addressing a wide range of initial 

value problems through numerical experiments. It can be seen as a significant contribution that 

the Susceptible-Exposed-Infected-Recovered equation system parameterized for the COVID-

19 pandemic has been integrated with the present method and stability properties of the method 

have been tested on this stiff model and significant results are produced. Some challenging stiff 

behaviours represented by the nonlinear Duffing equation, Robertson chemical system, and van  

der Pol equation have also been integrated, and the results revealed that the current algorithm 

produces much more reliable results than numerical techniques in the literature. 
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1. Introduction 

Capturing numerical behaviour of differential equations encountered in various fields of science 

including physics, chemistry, engineering, biology etc. is vital. In general, exact solutions of 

the equations cannot be derived easily all the time, or analytical expressions are very 

complicated to observe behaviour of the physical system. Even for the large linear equation 

systems, analytical evaluations are not easy to implement, and symbolic calculations lead to 

enormous computational time. These drawbacks of analytical approaches can be handled by 

considering accurate and economic numerical methods. In numerical techniques, it is in general 

easy to convert differential equations to algebraic equations and solve explicit or implicit 

recursive relations. By appropriate selection of parameters used in a numerical method, the 

convergence of the method can generally be controlled. However stiff differential equations are 

not easy task to handle and to find out reliable numerical solutions in the entire domain. Stiff 

behaviours are modelled by not only ODEs [1-2] but also PDEs [3-4] and arise in various 

phenomena. Numerical techniques are also classified according to the stiff and non-stiff 

problems in the literature [2,5]. The methods constructed to solve stiff problems are event of 

special interest due to the instability of classical method. Unwanted oscillations, divergence or 

slow convergence are commonly faced in solving stiff problems under the consideration of 

some inappropriate numerical techniques. Additionally, stiff ODE systems do not only come 

out directly in applications but also are encountered in discretization of some challenging 

processes described by PDEs [6]. 

In recent years, various numerical techniques have been derived in the literature to deal with 

challenging stiff problems [7-15]. A quasi-consistent fixed-step size numerical integration was 

used as an implicit stiff IVP solver in literature [7]. The method was found to be stable and was 

seen to preserve accuracy but is not computationally optimal due to the use of fixed step sizes. 

Another numerical study on solving stiff IVPs was presented as a one-leg explicit-implicit 

method [8], which is second order A-stable. Although this method offers an important 

numerical approach for stiff IVPs, the low degree of the method and assuming fixed step sizes 

lead to a computationally ineffective algorithm. For solving stiff differential-algebraic 

equations, an adaptive implicit Euler scheme was proposed in literature [9]. Even if the method 

produces acceptable results for stiff differential-algebraic equations, the order of the method is 

one, and the adaptive procedure requires a lot of time steps to achieve acceptable results over 

long intervals of time. Abdi et al. proposed arbitrary sequential barycentric rational finite 

difference method regarding the backward difference formulations (BDFs) [10]. This method 

class was shown to be adaptable to stiff IVPs, but the A-stable cases are obtained for at most 
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second order formulations as it is also the case in the BDFs. A multistep method based on the 

BDFs has been derived for linear stiff problems in the literature [11]. The proposed method 

class offers a different perspective on the construction of constrained optimization in terms of 

the coefficients of BDFs rather than using predetermined coefficients. The authors tested their 

method on the linear equation, and the method seems to have a lack of computational efficiency 

for nonlinear stiff problems due to the extra cost of the optimization process. It is known from 

the literature that the discontinuous Galerkin methods (DGM) class is very effective for the 

differential equations representing shock behaviours. In the study of Fortin and Yakoubi [12], 

advantages of the DGM have been discussed for stiff IVPs and an adaptive formulation has 

been presented. A considerable disadvantage of the DGM is the coupling the degree of freedom 

at common interior nodes and this makes the method a bit computationally ineffective. Also, a 

modified approach based on radial basis functions that improve the quality of known numerical 

solvers was offered by Gu and Jung in [13] for non-stiff problems. In addition, recently some 

techniques such as various versions of Runge-Kutta methods [14-18], backward differentiation 

methods [19-21] and collocation methods [22-24] have been presented to solve stiff problems. 

All the above methods used to solve stiff IVPs in the literature are artificial because they use 

the differential equation taken into account in the derived formulae and, unlike our method, 

cannot get all the information from the differential equation. 

As described in the literature above, a large number of continuous and discrete methods have 

been analysed and successfully implemented to deal with the problems of interest. Despite all 

these underlined advantages, those methods still have suffered from certain drawbacks such as 

having specific formulae as in finite difference-based algorithms, having enormous degrees of 

freedom, as in finite element-based techniques, having poor stability properties, as in 

differential transform-based methods. The present method overcomes the corresponding 

disadvantages with its arbitrarily high order and minimized degrees of freedom. As evidenced 

in the following sections, the current approach leads to optimization of the known information 

in each iteration and allows easy computation of adaptive meshes. This method, which we call 

the implicit-explicit local differential transformation method (IELDTM), is a multi-derivative 

time integration. In the proposed method, which is a stability-preserved numerical solver that 

accepts the idea of differential transformation as a starting point, all information about the 

numerical process is taken directly from the corresponding differential equations. An efficient 

method has thus here been produced for establishing parameter-dependent and adaptive 

implicit-explicit LDTM, which is appropriate for both stiff and non-stiff differential equations 

with optimum cost. It has been proved than the present numerical method offers much more 
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better convergence properties than existing the semi-analytic DTM [25] and the explicit local 

DTM [26-28]. Priori error analysis of the present method has been done thoroughly, and order 

conditions are also produced. Stability analysis of the current method has been done for single 

equations and system of equations. Stability results are discussed by determining 𝐴 −stable and 

𝐿 −stable states depending on direction parameters and it has been proved that the IELDTM 

contains up to fourth order 𝐴 −stable schemes. Stability regions are demonstrated for special 

directions, i.e. for forward, central and backward cases. Depending on problem types, we have 

produced adaptive procedures for the current method to minimize computational effort. In this 

approach, we have used the known local differential transform values of the functions that come 

out in local error estimates to find a reliable adaptive procedure. It has been proved that the 

current numerical method has ability to accurately solve stiff IVPs without any considerable 

limitation. In numerical experiments, we have focused on various types of challenging stiff 

differential equations and illustrated the efficiency of the method. Since the stiff ODE solvers 

of MATLAB, ode15s, ode23s, ode113 and ode45, are widely and effectively used in the related 

problems, the effectiveness of the present method has been compared with those solving 

challenging stiff problems represented by the SEIR epidemiological system, the Van der Pol 

equation, the Robertson chemical system and the cubic nonlinear Duffing equation. In finding 

the results, the IELDTM has been observed to be far more cost-effective and accurate than the 

MATLAB stiff solvers, ode15s, ode23s, ode113 and ode45.  

 

2. Implicit-explicit Local Differential Transform Method 

The background of the local differential transformation can be seen in literature [26-28]. For 

simplicity, we omit the differential transform properties here. In this section, the IELDTM is 

introduced for a first order IVP with priori error analysis and stability analysis. Following the 

analysis of the currently produced method, adaptive procedures are presented for various 

problem types.  

Consider the following IVP, 

𝒙′(𝑡) = 𝐺(𝒙(𝑡), 𝑡), 𝑡 > 0,   𝒙(0) = 𝑪,           (1) 

where 𝒙(𝑡) ∈ 𝑅𝑚, 𝑪 ∈ 𝑅𝑚, 𝐺: 𝑅𝑚 × 𝑅 → 𝑅𝑚 and the function 𝐺(𝒙(𝑡), 𝑡) satisfies the Lipschitz 

condition with constant 𝐿. We assume that the IVP (1) is well-posed and the exact solution 𝒙(𝑡) 

is analytic on the considered domain.  
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Let us divide the interval [0, 𝑇] into at most 𝑁 time elements with ∆𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖 and the 

partition of the interval as 𝜔 = 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑁∗ = 𝑇 where 𝑁∗ ≤ 𝑁. Let us consider the 

convergent Taylor series representation of the function 𝑥(𝑡) about 𝑡𝑖 as 

𝒙𝑖(𝑡) = ∑ 𝑋𝑖(𝑘)(𝑡 − 𝑡𝑖)
𝑘 + 𝑂((𝑡 − 𝑡𝑖)

𝐾+1), 𝑡𝑖 − 𝜌
𝑖 ≤ 𝑡 ≤ 𝑡𝑖 + 𝜌

𝑖𝐾
𝑘=0             (2) 

where 𝑖 = 0,1, … ,𝑁∗ and 𝜌𝑖  is the radius of convergence of the representation. From our 

assumption, the function 𝒙𝑖(𝑡) is analytic and has the radius of convergence satisfying 𝜌𝑖 >

∆𝑡𝑖. The function 𝒙(𝑡) has also a convergent Taylor series representation about 𝑡𝑖+1 with the 

radius of convergence at least 𝜌𝑖+1 = 𝜌𝑖 − ∆𝑡𝑖 and on the interval of convergence 

(𝑡𝑖+1 − 𝜌
𝑖+1, 𝑡𝑖+1 + 𝜌

𝑖+1). Then, the function 𝒙(𝑡) can be written as  

𝒙𝑖+1(𝑡) = ∑ 𝑋𝑖+1(𝑘)(𝑡 − 𝑡𝑖+1)
𝑘 + 𝑂((𝑡 − 𝑡𝑖+1)

𝐾+1), 𝑡𝑖+1 − 𝜌
𝑖+1 ≤ 𝑡 ≤ 𝑡𝑖+1 + 𝜌

𝑖+1𝐾
𝑘=0 .    (3) 

Assuming 𝜌𝑖 > ∆𝑡𝑖 and 𝜌𝑖+1 > ∆𝑡𝑖, we can conclude that 

• because of the convergence assumptions, two convergent representations (2) and (3) need 

to give the same numerical result at any point of the interval [𝑡𝑖, 𝑡𝑖+1].  

• any point in the interval [𝑡𝑖 , 𝑡𝑖+1] can be written as 𝑡∗ = 𝑡𝑖 + (1 − 𝜃)∆𝑡𝑖, where 0 ≤ 𝜃 ≤ 1. 

• the explicit-implicit method can be produced with the 𝐶0-continuity of the solutions at such 

interior points. 

Convergent solutions 𝒙𝑖(𝑡) and 𝒙𝑖+1(𝑡) at the interior points 𝑡∗ = 𝑡𝑖 + (1 − 𝜃)∆𝑡𝑖 need to 

satisfy the following continuity relation 

𝒙𝑖+1(𝑡𝑖 + (1 − 𝜃)∆𝑡𝑖) = 𝒙𝑖(𝑡𝑖 + (1 − 𝜃)∆𝑡𝑖).                (4) 

With the use of the representations, the following equality needs to be hold 

∑ 𝑋𝑖+1(𝑘)(−𝜃∆𝑡𝑖)
𝑘𝐾

𝑘=0 = ∑ 𝑋𝑖(𝑘)((1 − 𝜃)∆𝑡𝑖)
𝑘𝐾

𝑘=0 + 𝑂((∆𝑡𝑖)
𝐾+1, 𝜃)         (5) 

where 𝑂((∆𝑡𝑖)
𝐾+1, 𝜃) represents the dependency of the local truncation error to time increment, 

transformation order and direction parameter. It is time to determine the algebraic relations 

between 𝑋𝑖(𝑘) and 𝑋𝑖+1(𝑘) for all 𝑘 = 0,1, … , 𝐾.  

Taking differential transform of (1), the following relation is obtained 

𝑋𝑖(𝑘 + 1) =
1

𝑘+1
𝐹(𝑋𝑖(𝑘), 𝑡𝑖)                    (6) 

where 𝑖 = 0,1, … ,𝑁∗, 𝑘 = 0,1, … , 𝐾 − 1 and 𝐹 is the transformed form of the function 𝐺(𝒙, 𝑡) 

at the local point 𝑡 = 𝑡𝑖. It is obvious that 𝑋𝑖(𝑘) can be written in terms of 𝑋𝑖(0) for each 𝑖 and 

𝑘. Thus, using the algebraic relations between 𝑋𝑖(𝑘) and 𝑋𝑖+1(𝑘) and putting into (5) the 

explicit-implicit equation 

𝑔(𝑋𝑖+1(0), 𝜃, ∆𝑡𝑖) = ℎ(𝑋𝑖(0), 𝜃, ∆𝑡𝑖)                  (7) 
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is found. Here the functions 𝑔 and ℎ are obtained from the right and left hand sides of Eq. (5). 

In the right side of (7), all parameters 𝑋𝑖(0), 𝜃 and ∆𝑡𝑖 are known because of the previous step. 

The left side of (7) depends explicit/implicitly on the unknown 𝑋𝑖+1(0). Thus, (7) is either 

linear or nonlinear equation(s) of 𝑋𝑖+1(0) depending on the function 𝐺(𝒙, 𝑡).  

Then setting the initial condition 𝑥0(0) = 𝑋0(0) = 𝑐 and predetermining adaptive parameters 

𝜃 and ∆𝑡𝑖, (7) can be solved either directly or numerically for each step. Note that we assume 

the following global solutions       

𝒙(𝑡𝑖) = 𝑋𝑖(0)           

for each 𝑖 = 0,1, … ,𝑁∗. Therefore, the following remarks should be underlined because of its 

importance for the rest of the study: 

• 𝜃 = 0 with 𝑁∗ = 1 leads to the classical semi-analytic DTM [25]. 

• 𝜃 = 0 with arbitrary number of 𝑁∗ leads to the explicit forward scheme and known as local 

or multi-step differential transform method [26-29].  

• The rest of the selections of the parameter 𝜃, i.e. 𝜃 ≠ 0, gives rise to the currently derived 

implicit schemes. To the best of the authors' knowledge, this derivation has not been studied 

in the DTM. 

• 𝜃 = 0.5 yields the produced implicit central scheme with arbitrary order here, which gives 

us a stable and order preserved method for both stiff and non-stiff cases. 

•  𝜃 = 1 leads to a derivation of the implicit backward scheme which is both stable and order 

preserved method for both stiff and non-stiff cases. 

• Stability preserving schemes can be obtained by considering 𝜃 ≥ 0.5. 

• The classical 𝜃 −method including Crank-Nicolson method is a special case of the 

IELDTM; 𝜃 = 0.5 and 𝐾 = 1. 

In the following subsection, the priori error analysis of the derived numerical technique is done 

by illustrating the order conditions. 

 

2.1 Error Analysis 

Consider the following initial value problem, 

𝒙′(𝑡) = 𝐺(𝒙(𝑡), 𝑡), 𝑡 > 0,   𝒙(0) = 𝐶,           (8) 

where 𝐶 ∈ 𝑅𝑚 and 𝐺: 𝑅𝑚 × 𝑅 → 𝑅𝑚. Considering the procedure explained in the previous 

section and assuming the fixed time increment ∆𝑡𝑖 = ∆𝑡, the present scheme leads to,  

𝑋𝑛(𝑘 + 1) =
1

𝑘+1
[𝐹(𝑋𝑛(𝑘), 𝑡𝑛)], 𝑘 = 0,1,2, … , 𝐾 − 1, 𝑛 = 0,1,2, … ,𝑁,                                (9) 
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𝒙(𝑡𝑛+1) ≅ 𝒙𝑛+1 = 𝑋𝑛+1(0) = ∑ 𝑋𝑛(𝑘)((1 − 𝜃)∆𝑡)
𝑘
− ∑ 𝑋𝑛+1(𝑘)(−𝜃∆𝑡)

𝑘𝐾
𝑘=1

𝐾
𝑘=0      (10) 

where 𝑋𝑛 and 𝐹 are the transformed forms of the functions 𝒙𝑛(𝑡) and 𝐺(𝒙𝑛(𝑡), 𝑡). The exact 

solution of (8) at point 𝑡 = 𝑡𝑛+1 can be expressed in the Taylor expansion form as 

𝒙(𝑡𝑛+1) = 𝑋𝑛+1(0) = ∑ 𝑋𝑛(𝑘)((1 − 𝜃)∆𝑡)
𝑘
− ∑ 𝑋𝑛+1(𝑘)(−𝜃∆𝑡)

𝑘 + ∆𝑡𝜌𝑛
𝐾
𝑘=1

𝐾
𝑘=0       (11) 

where 𝑛 = 0,1,2, … ,𝑁 − 1. Local truncation error can be obtained from the residuals of the 

Taylor expansions as follows  

𝜌𝑛 = [(1 − 𝜃)
𝐾+1𝑋𝑛(𝐾 + 1) − (−𝜃)

𝐾+1𝑋𝑛+1(𝐾 + 1)]∆𝑡
𝐾 + 𝑂(∆𝑡𝐾+1).     (12) 

Now using the expansion 𝑋𝑛+1(𝐾 + 1) = 𝑋𝑛(𝐾 + 1) + ∆𝑡(𝐾 + 2)𝑋𝑛(𝐾 + 2) + 𝑂(∆𝑡
2) leads 

to 

𝜌𝑛 = [(1 − 𝜃)
𝐾+1𝑋𝑛(𝐾 + 1) − (−𝜃)

𝐾+1𝑋𝑛(𝐾 + 1)]∆𝑡
𝑘 + 𝑂(∆𝑡𝐾+1).    (13) 

Thus, the present scheme is of order 𝐾 + 1 if 𝜃 = 1/2 and 𝐾 is odd and is of order 𝐾 for other 

selections of parameter 𝜃 and 𝐾. To have convergent numerical scheme, we also need to have 

bounded global error of the scheme. For further analysis about global discretization error, 

assume that the problem is linear, 𝐺(𝒙(𝑡), 𝑡) = 𝐴𝒙(𝒕) + 𝐵(𝑡) and let 𝜀𝑛 = 𝒙(𝑡𝑛) − 𝒙𝑛 for 𝑛 =

0,1, … ,𝑁. The present method for this equation yields the following discretization, 

∑ 𝑋𝑛+1(𝑘)(−𝜃∆𝑡)
𝑘𝐾

𝑘=1 = ∑ 𝑋𝑛(𝑘)((1 − 𝜃)∆𝑡)
𝑘𝐾

𝑘=0 .         (14) 

With the use of recursive relation (5) with 𝐺(𝒙(𝑡), 𝑡) = 𝐴𝒙(𝒕) + 𝐵(𝑡), the general term 𝑋𝑛(𝑘) 

can be stated as 

𝑋𝑛(𝑘) =
1

𝑘!
𝐴𝑘𝑋𝑛(0) + ∑

𝑝!

𝑘!

𝑘−1
𝑝=0 𝐹(𝑡𝑛, 𝑝)               (15) 

where 𝐹 is transformed form of the function 𝐵(𝑡). Then, substituting (15) into (14) gives the 

following recursive form 

∑
1

𝑘!
𝐴𝑘(−𝜃∆𝑡)𝑘𝑋𝑛+1(0)

𝐾
𝑘=0 = ∑

1

𝑘!
𝐴𝑘((1 − 𝜃)∆𝑡)

𝑘
𝑋𝑛(0) + ∑ ∑

𝑝!

𝑘!

𝑘−1
𝑝=0 [𝐹(𝑝, 𝑡𝑛)((1 −

𝐾
𝑘=0

𝐾
𝑘=0

𝜃)∆𝑡)
𝑘
− 𝐹(𝑝, 𝑡𝑛+1)(−𝜃∆𝑡)

𝑘].                (16) 

Let us define the following stability functions 

𝑅1(∆𝑡𝐴, 𝜃) = 𝐼 + (1 − 𝜃)∆𝑡𝐴 + ((1 − 𝜃)∆𝑡)
2
𝐴2 +⋯+ ((1 − 𝜃)∆𝑡)

𝐾
𝐴𝐾               (17) 

𝑅2(∆𝑡𝐴, 𝜃) = 𝐼 − 𝜃∆𝑡𝐴 + (𝜃∆𝑡)
2𝐴2 +⋯+ (−𝜃∆𝑡)𝐾𝐴𝐾 .               (18) 

With the use of (15) into also exact expansion (11) and subtraction of (16) from (11) gives the 

following relation 

𝜀𝑛+1 = 𝑅(∆𝑡𝐴, 𝜃)𝜀𝑛 + 𝛿𝑛.                (19) 
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where 𝛿𝑛 = (𝑅2)
−1∆𝑡𝜌𝑛 and 𝑅(∆𝑡𝐴, 𝜃) = (𝑅2)

−1𝑅1. Here the important fact is that the scheme 

is of order 𝑝 if ||𝛿𝑛|| = 𝑂(∆𝑡
𝑝+1). To bound global discretization error in terms of initial error 

𝜀0 and local discretization error, recursive relation (19) becomes,  

𝜀𝑛 = 𝑅
𝑛𝜀0 + ∑ 𝑅𝑛−𝑝−1𝑛−1

𝑝=0 𝛿𝑝.                (20) 

Stability of the scheme is also depending on the bound of the norm estimate ||𝑅𝑛|| for all 𝑛∆𝑡 ≤

𝑇, where 𝑇 is the final time. So, assuming the following stability criteria, 

||𝑅𝑛|| ≤ 𝑆, for all 𝑛 ≥ 0 and 𝑛∆𝑡 ≤ 𝑇,               (21) 

||(𝑅2)
−1|| ≤ 𝑃,                              (22) 

the error norm bound becomes  

‖𝜀𝒏‖ ≤ 𝑆||𝜀0|| + 𝑆 ∑ ||𝛿𝑝||
𝑛−1
𝑝=0 .              (23) 

Then finally, using the definition of local discretization error ||𝛿𝑝|| ≤ 𝑃𝜔∆𝑡𝐾+1 for all 𝑝, 𝜔 is 

defined as 

𝜔 =

{
 
 

 
 |

1

(𝐾+2)!
𝑚𝑎𝑥⏟
𝑡∈[0,𝑇]

(|
𝑑𝑥𝐾+2(𝒙(𝑡),𝑡)

𝑑𝑡𝐾+2
|) ((

1

2
)
𝐾+1

(𝐾 + 1)| , 𝑖f 𝜃 = 1/2 and 𝐾 is odd 

|
1

(𝐾+1)!
𝑚𝑎𝑥⏟
𝑡∈[0,𝑇]

(|
𝑑𝐾+1𝒙

𝑑𝑡𝐾+1
|) [(1 − 𝜃)𝐾 − (−𝜃)𝐾 ]| , if 𝜃 ≠

1

2
and 𝐾 is arbitrary.  

    

Assumption of 𝒙(0) = 𝒙0 leads to the following error norm estimates 

||𝒙(𝑡𝑛) − 𝒙𝑛|| ≤ 𝜔
∗∆𝑡𝐾+1, if  𝜃 = 1/2 and 𝐾 is odd       (24) 

||𝒙(𝑡𝑛) − 𝒙𝑛|| ≤ 𝜔
∗∆𝑡𝐾, otherwise                      (25) 

where 𝜔∗ = 𝑆𝑃𝜔𝑡𝑛 for all 𝑛 = 1, 2… ,𝑁. Thus, whenever the exact solution is smooth and 

stability criteria (21)-(22) are satisfied, then the present IELDTM converges to the exact 

solution with order 𝐾 + 1 or 𝐾 depending on the selection of the parameters 𝜃 and 𝐾. 

 

2.2 Stability Analysis 

In order to visualize the behaviour of the currently presented IELDTM, we have analysed the 

stability properties over the scalar test equation and the system of linear equations. 

 

2.2.1 Scalar Test Equation 

At first, let us consider the following scalar-complex test equation  

𝑥′(𝑡) = 𝜆𝑥(𝑡), 𝑥(0) = 𝑥0                 (26) 

with 𝜆 ∈ 𝐶. Application of the IELDTM, with order 𝐾, to this test problem gives  

𝑥𝑛+1 = 𝑅(∆𝑡𝜆)𝑥𝑛,   
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𝑅(𝑧) =
1+(1−𝜃)𝑧+

((1−𝜃)𝑧)
2

2!
+⋯+

((1−𝜃)𝑧)
𝐾

𝐾!

1−θ𝑧+
(𝜃𝑧)2

2!
+⋯+

(−𝜃𝑧)𝐾

𝐾!

≅ 𝑒𝑧 , 𝑧 → 0             (27) 

If we perturb the initial value 𝑥0 to 𝑥̃0, we get the recursion 𝑥̃𝑛+1 = 𝑅(∆𝑡𝜆)𝑥̃𝑛 then the 

difference 𝑥̃𝑛 − 𝑥𝑛 leads to the following stability requirement  

 𝑥̃𝑛 − 𝑥𝑛 = 𝑅(∆𝑡𝜆)𝑛(𝑥̃0 − 𝑥0)                 (28) 

and therefore, stability region of the present method is the set  

𝑆 = {𝑧 ∈ 𝐶: |𝑅(𝑧)| ≤ 1 }  

where 𝑆 ⊂ 𝐶. To analyse the current approach, we need to remind the maximum modulus 

theorem [1]. In the light of this theorem, we have concluded that: 

• The central schemes, 𝜃 = 1/2 of order 𝐾 = 1, 2, 3, 4, are 𝐴-stable. 

• The backward schemes, 𝜃 = 1 of order 𝐾 = 1, 2 are 𝐴-stable as well as 𝐿-stable. 

• The schemes, with 𝜃 < 1/2 of any order including LDTM (𝜃 = 0), have conditional 

stability. 

• For higher order implicit schemes, 𝜃 ≥ 1/2, we have almost 𝐴-stability that means just the 

stability condition fails in a very little region in ℂ−. 

The stability regions of the currently produced method, the IELDTM, have been illustrated with 

𝜃 = 0, 𝜃 = 1/2 and 𝜃 = 1 for various orders, respectively, as seen in Figs. 1-3. As realized in 

the Figures, stability properties of the central and backward cases are much more stronger than 

the forward cases. 

 

Fig. 1. Stability region (blue) of the forward schemes, 𝜃 = 0, for various orders on the 

complex plane. 
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Fig. 2. Stability region (blue) of the central schemes, 𝜃 = 0.5, for various orders on the 

complex plane. 

  
Fig. 3. Stability region (blue) of the backward schemes, 𝜃 = 1, for various orders on the 

complex plane. 

 

2.2.2 Stability for Linear Systems 

Consider the following linear homogeneous system 

𝒙′(𝑡) = 𝐴𝒙(𝑡),  𝒙(0) = 𝒙0                  (29) 

with 𝐴 ∈ 𝑅𝑚×𝑚 and 𝒙0 ∈ 𝑅
𝑚. Application of the IELDTM yields the following localized 

differential transformation coefficients 

𝑋𝑛(𝑘) =
1

𝑘!
𝐴𝑘𝑋𝑛(0).                  (30) 

Writing these coefficients into (5) leads to 
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∑ [
1

𝑘!
𝐴𝑘𝑋𝑛+1(0)] (−𝜃∆𝑡𝑖)

𝑘𝐾
𝑘=0 = ∑ [

1

𝑘!
𝐴𝑘𝑋𝑛(0)] ((1 − 𝜃)∆𝑡𝑖)

𝑘
𝐾
𝑘=0              (31) 

where 𝑋𝑛 is the transformed form of 𝒙(𝑡). We define the stability functions as 

𝑅(𝜃, ∆𝑡𝐴) = [𝐼 − 𝜃∆𝑡𝐴 +
(𝜃∆𝑡𝐴)2

2
+⋯+

(−𝜃∆𝑡𝐴)𝐾

𝐾!
]
−1

[𝐼 + (1 − 𝜃)∆𝑡𝐴 +
((1−𝜃)∆𝑡𝐴)

2

2
+⋯+

 
((1−𝜃)∆𝑡𝐴)

𝐾

𝐾!
].                   (32) 

Recalling 𝒙(𝑡𝑛+1) = 𝑋𝑛+1(0) and 𝒙(𝑡𝑛) = 𝑋𝑛(0), then (31) becomes 

𝒙(𝑡𝑛+1) = 𝑅(𝜃, ∆𝑡𝐴)𝒙(𝑡𝑛).                  (33) 

For a perturbed system with initial condition 𝒙̅0, we get the same formula with (33). Subtraction 

of (33) from the corresponding perturbed system leads to 

𝒙(𝑡𝑛) − 𝒙̅(𝑡𝑛) = 𝑅(𝜃, ∆𝑡𝐴)
𝑛(𝒙0 − 𝒙0).               (34) 

Thus, the stability function 𝑅(𝜃, ∆𝑡𝐴)𝑛 determines how much initial error will grow. 

Fortunately, we have a rich literature about stability conditions of like Eqn. (32) as all details 

analysed in [2]. First, we assume the following important theorem related to the bound of  ||𝑅|| 

[2]. 

Theorem 1. Let the rational function 𝑅(𝑧) be bounded for 𝑅𝑒(𝑧) ≤ 0 and assume that the 

matrix 𝐴 satisfies  

𝑅𝑒(𝑦, 𝐴𝑦) ≤ 0 for all 𝑦 ∈ ℂ𝑛                 (35) 

where (. , . ) denotes the Euclidean scalar product. Then, in the matrix norm corresponding to 

the scalar product we have  

‖𝑅(𝐴)‖ ≤ 𝑠𝑢𝑝⏟
𝑅𝑒(𝑧)≤0

|𝑅(𝑧)|.                 (36) 

Note that for the homogeneous system (29), the following diminishing property leads to 

condition (35) as follows 

  
𝑑

𝑑𝑡
‖𝑥‖2 =

𝑑

𝑑𝑡
(𝑥, 𝑥) = 2𝑅𝑒(𝑥, 𝑥′) = 2𝑅𝑒(𝑥, 𝐴𝑥).               (37) 

When the condition (35) is not satisfied, depending on the logarithmic norm of the matrix 𝐴, 

the following Corollary becomes useful for the bound of stability function 𝑅 [2]. 

Corollary 1. If a matrix occurred in the system (29) satisfies 𝑅𝑒(𝑣, 𝐴𝑣) ≤ 𝑠||𝑣||
2
 for all 𝑣 ∈

ℂ𝑚 with 𝜇 = 𝜇(𝐴) ≤ 𝑠 is the logarithmic norm of the matrix 𝐴, then 

||𝑅(𝐴)|| ≤ 𝑠𝑢𝑝⏟
𝑅𝑒(𝑧)≤𝑠

|𝑅(𝑧)|.                               (38) 

Proof. Assumption of 𝑅̅ = 𝑅(𝑧 + 𝑠) and 𝐴̅ = 𝐴 − 𝑠𝐼 for Theorem 1 leads to the desired result. 
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In the light of Corollary 1, the present 𝐴 −stable methods will be unconditionally stable for 

linear systems (29) whenever the logarithmic norm of the matrix A satisfies 𝜇(𝐴) ≤ 0 as will 

be stated in the next Corollary. 

Corollary 2.  If 𝜇(𝐴) ≤ 0, the 𝐴 −stable cases of the IELDTM are unconditionally stable for 

homogeneous system (29). 

Proof. Application of Corollary 1 to Eq. (34) gives 

 ||𝒙(𝑡𝑛) − 𝒙̅(𝑡𝑛)|| ≤ ( 𝑠𝑢𝑝⏟
𝑅𝑒(𝑧)≤0

|𝑅(𝑧)|)

𝑛

||𝒙0 − 𝒙̅0||.          (39) 

The 𝐴 −stability assumption leads to the following estimate  

𝑠𝑢𝑝⏟
𝑅𝑒(𝑧)≤0

|𝑅(𝑧)| ≤ 1, for all 𝑧 ∈ ℂ.                            (40) 

Thus, the 𝐴 −stable cases of the IELDTM are seen to be unconditionally stable. The table below 

provides information on some cases of 𝐴 −stability of the IELDTM. 

Note that for the implicit schemes, 𝜃 ≥ 0.5, with the rest of the orders have not been mentioned 

in Table 1, are almost 𝐴 −stable as illustrated in the scalar case. Except that the central or 

backward cases of the IELDTM with 𝜃 ≥ 0.5 stated in Table 1, it is possible to find out various 

𝐴 −stable cases up to fourth-order approximation. 

 

Table 1. Some special 𝐴 −stable cases of the IELDTM 

𝜃 𝐾 

0.5 1 

0.5 2 

0.5 3 

0.5 4 

1 1 

1 2 

 

 

2.3 Adaptive Searching 

The IELDTM needs to selection of suitable parameters ∆𝑡𝑖 and  𝜃 to control both accuracy and 

stability. This situation also depends on the nature of the considered physical model. The 

established numerical approach is seen to be general implicit-explicit method depending on the 

parameter 𝜃. Since the stability properties of the implicit schemes and computational costs have 
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been explained, an optimized technique needs to be obtained in terms of accuracy, stability and 

computational cost. To do this, the following adaptive techniques are produced depending on 

the nature of the problem. 

Case 1:   

In this case we assume that the problem is nonlinear and non-stiff. In non-stiff problems, the 

current forward methods generally produce convergent and computationally effective results. 

Thus, assuming explicit schemes are preferable in the present method by selecting the parameter 

as 𝜃 = 0. Even if the model equations are nonlinear, algebraic equations can directly be solved 

without using any symbolic nonlinear solver. An adaptive procedure is here proposed for the 

time increment ∆𝑡𝑖 to reduce the computational cost. Considering the transformation of order 

𝐾 with the selection parameter 𝜃 = 0 leads to global error of order 𝐾 as we proved in error 

analysis. For a given tolerance the following criteria need to be satisfied for scalar equations as 

analysed in the literature [30], 

∆𝑡𝑖 < (
𝑡𝑜𝑙

|𝑋𝑖(𝐾+1)|
)

1

𝐾
.                  (41) 

where 𝑡𝑜𝑙 is predetermined tolerance and 𝑋𝑖(𝐾 + 1) can be obtained from the recursive 

relation. For a system of equations, the relation (41) can be modified to the related matrices and 

vectors by considering suitable norms. In this study, the norm || . ||∞ is considered for the 

selection of adaptive ∆𝑡𝑖. 

Case 2:  

In this case, stiffness of the problem is assumed to be arbitrary. In such cases 𝜃 = 0.5 and  𝜃 =

1 will lead to accurate, stable and effective approaches. It is obvious from the error analysis 

that the error bounds of implicit schemes, 𝜃 ≠ 0, depend on both 𝑋𝑖(𝐾) and 𝑋𝑖+1(𝐾).  

The error bounds of central schemes have been analysed and thus concluded that taking odd 

values of the order 𝐾 is preferable. Then similar analysis for the central schemes, 𝜃 = 0.5, with 

odd orders leads to the following bounds 

∆𝑡𝑖 < (
𝑡𝑜𝑙

|((
1

2
)
𝐾+1

(𝐾+1))𝑋𝑖(𝐾+2)|

)

1

𝐾+1

.                             (42) 

where 𝑡𝑜𝑙 is the predetermined tolerance and 𝑋𝑖(𝐾 + 2) is obtained from the recursion. For the 

backward adaptive cases, 𝜃 = 1, the estimate (41) is also valid for the arbitrary selection of the 

transformation order 𝐾. The scalar adaptive procedure given in equation (42) can be enlarged 

to vectors and matrices with the use of suitable norms. 
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3. Numerical Experiments 

Considering the quantitative and qualitative results of various test problems, the numerical 

representation and efficiency of the derived method are presented here. To measure the 

effectiveness of the current method in terms of accuracy and stability, challenging physical 

processes represented by stiff differential equations such as the stiff SEIR equation system, 

cubic nonlinear Duffing equation, Robertson equation system, and van der Pol equation have 

been dealt with. The computed results are compared with the results produced with FDM [10], 

ode23s, ode15s, ode45 and ode113 [31] as well as the exact solutions. To evaluate the error 

norms of the current results, absolute pointwise errors 𝐸𝑖  and maximum error norms ‖𝐸‖∞ 

have been preferred. The trust-region dogleg method [32] based fsolve built-in function of the 

MATLAB program have been applied to solve the resulting nonlinear algebraic equation 

system.  

Problem 1 [33] Consider the following Susceptible-Exposed-Infected-Recovered/Removed 

(SEIR) system of equations  

𝑑𝑆

𝑑𝑡
= −𝛽 (

𝑆(𝑡)

𝑁
) [𝑃(𝑡) + 𝐷(𝑡) + 𝜇𝐴(𝑡)]  

𝑑𝐸

𝑑𝑡
= 𝛽 (

𝑆(𝑡)

𝑁
) [𝑃(𝑡) + 𝐷(𝑡) + 𝜇𝐴(𝑡)] −

1

𝑑1
𝐸(𝑡)  

𝑑𝑃

𝑑𝑡
= 𝛼

𝐸(𝑡)

𝑑1
−
𝑃(𝑡)

𝑑2
  

𝑑𝐴

𝑑𝑡
= (1 − 𝛼)

𝐸(𝑡)

𝑑1
−
𝐴(𝑡)

𝑑3
           (43) 

𝑑𝐷

𝑑𝑡
=

𝑃(𝑡)

𝑑2
−
𝐷(𝑡)

𝑝
  

𝑑𝑅

𝑑𝑡
=

𝐷(𝑡)

𝑝
+
𝐴(𝑡)

𝑑3
  

where 𝑆(𝑡) + 𝐸(𝑡) + 𝑃(𝑡) + 𝐴(𝑡) + 𝐷(𝑡) + 𝑅(𝑡) = 𝑁 is the total population, 

𝑆(𝑡), 𝐸(𝑡), 𝑃(𝑡), 𝐴(𝑡), 𝐷(𝑡), 𝑅(𝑡) denote susceptible, exposed, pre-symptomatic, 

asymptomatic, hospitalized and recovered/removed number of individuals in the population, 

respectively. The parameters 𝛽, 𝜇 and 𝛼 are daily transmission rate, transmission reduction 

factor and pre-symptomatic ratio, respectively. 𝑑1, 𝑑2, 𝑑3 and 𝑝 represent the mean latency 

period, mean pre-symptomatic infectiousness period, mean asymptomatic infectiousness 

period, and mean hospitalization period, respectively. The SEIR model (43) is one of the key 

compartment models describing the spread of any infectious disease, such as the COVID-19 

pandemic [33], in a population. If the basic reproduction number 𝑅0 = 𝛽[𝛼(𝑑2 + 𝑝) +

(1 − 𝛼)𝑑3] is greater than one, then the number of susceptible individuals will asymptotically 
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decrease to a threshold value with a stiff or non-stiff dynamic depending on the transmission 

rate 𝛽. 

Taking differential transform of equation system (43) write as follows: 

𝑋𝑖(𝑘 + 1) =
1

𝑘+1
(𝐴𝑋𝑖(𝑘) + 𝐵𝑖(𝑘))               (44) 

where 

𝑋𝑖(𝑘) = [𝑆𝑖(𝑘), 𝐸𝑖(𝑘), 𝑃𝑖(𝑘), 𝐴𝑖(𝑘), 𝐷𝑖(𝑘), 𝑅𝑖(𝑘)]
𝑇 , 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0

0 −
1

𝑑1
0 0 0 0

0
𝛼

𝑑1
−

1

𝑑2
0 0 0

0
1−𝛼

𝑑1
0 −

1

𝑑3
0 0

0 0
1

𝑑2
0 −

1

𝑝
0

0 0 0
1

𝑑3

1

𝑝
−𝛼]

 
 
 
 
 
 
 
 
 

  

and  

𝐵𝑖(𝑘) =

[
 
 
 
 
 
 −

𝛽

𝑁
∑ 𝑆𝑖(𝑘 − 𝑗)[𝑃𝑖(𝑗) + 𝐷𝑖(𝑗) + 𝜇𝐴𝑖(𝑗)]
𝑘
𝑗=0

𝛽

𝑁
∑ 𝑆𝑖(𝑘 − 𝑗)[𝑃𝑖(𝑗) + 𝐷𝑖(𝑗) + 𝜇𝐴𝑖(𝑗)]
𝑘
𝑗=0

0
0
0
0 ]

 
 
 
 
 
 

  

for all 𝑘 = 0,1, … , 𝐾 − 1 and 𝑖 = 0,1, … ,𝑁 − 1. The parameter values 𝑑1 = 3.69, 𝑑2 = 3.47, 

𝑑3 = 3.47, 𝑝 = 1.92, 𝛼 = 0.14, 𝛽 = 1.12 and 𝑁 = 3. 106, which are obtained by Li et. al. 

(2020) for the dynamics of COVID 19 pandemics, considered for all simulations. The SEIR 

model does not describe a stiff behavior for moderate values of the transmission rate 𝛽.  

The advantages of the IELDTM (with 𝜃 = 0) over the existing LDTM [26-27,34-35] can be 

seen in Figure 4 to solve the moderately-stiff SEIR model (43). The LDTM suffers from 

instability when rapid decreasing is observed in the susceptible population. As compared with 

the reference ode15s solution of the system, the behaviours of the state variables are accurately 

captured by the central IELDTM using the same parameter values. The IELDTM with 𝜃 ≥ 0.5 

destroys the instability drawback of the LDTM by solving the problem implicitly.  

To increase the stiffness of the SEIR model, the transmission rate is modified to have the 

following time-dependent form 

𝛽(𝑡) = {
1.12,        𝑡 ≤ 𝑡𝑐 
1.12η,     𝑡 > 𝑡𝑐

                  (45) 
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where η ≥ 1 is the scaling factor of the transmission rate. If 𝑡𝑐 is selected in an interval in which 

rapid decreasing of the susceptible population occurs, then the scaling factor η increases the 

stiffness of the problem. The SEIR model is solved by the adaptive central IELDTM and various 

MATLAB ode solvers with 𝑡𝑐 = 66 and η ∈ [1, 12] and the results are illustrated in Figure 5. 

The required number of time steps are compared with respect to the changing stiffness of the 

problem in Figure 5a. It has been observed that the sixth and eighth order central IELDTMs 

need much less time elements than the adaptive MATLAB ode23s, ode15s, ode113, and ode45. 

Even if the number of required time steps of the MATLAB solvers increases with increasing 

𝜂 values, the IELDTM is not affected by increasing stiffness.  The behavior of the stiff dynamics 

of the susceptible population is illustrated in Figure 5b. It is observed that the central IELDTM 

accurately captures the dynamics at optimum cost. 

 

Fig. 4. Comparison of the central IELDTM and LDTM with the reference ode15s solutions of 

the SEIR model (43) for 𝐾 = 6 and ∆𝑡 = 3.  
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Fig. 5. a) Comparison of the required number of time steps of the central adaptive 

IELDTM, ode23s, ode15s, ode113 and ode45 for solving SEIR model (43) with the 

changing values of η and 𝑡𝑜𝑙 = 10−5 , b) The effect of the stiffness factor η on the 

dynamics of the susceptible population 𝑆(𝑡) is captured by the central adaptive IELDTM 

with an optimized degrees of freedom.

 

Problem 2 [27] Consider the following cubic nonlinear Duffing equation 

𝑥′′ + 𝛼𝑥′ + 𝛽𝑥 + 𝛾𝑥3 = 0  for 0 ≤ 𝑡 ≤ 𝑡𝑓               (46) 

with initial displacement and velocity 

𝑥(0) = 𝑥0   and   𝑥′(0) = 𝑥0
∗.                   (47)         

In the study of Tunc and Sari (2019b), it is proved that the logistic function 𝑥(𝑡) =
1

1+𝑒−𝑡
 is 

exact solution of Eq. (46) with the following parameters, 

𝛼 = −3,  𝛽 = 2, 𝛾 = −2,  𝑥0 = 0.5,  𝑥0
∗ = 0.25               (48) 

With the use of 𝑥1(𝑡) = 𝑥(𝑡) and 𝑥2(𝑡) = 𝑥̇(𝑡), the cubic nonlinear Duffing equation is 

transformed to the following nonlinear system 

𝑥1
′(𝑡) = 𝑥2(𝑡)                                                             (49) 

𝑥2
′ (𝑡) = −𝛼𝑥2(𝑡) − 𝛽𝑥1(𝑡) − 𝛾𝑥1

3(𝑡).              (50) 

Taking differential transformation of (49)-(50) one can obtain 

 𝑋𝑖(𝑘 + 1) =
1

𝑘+1
(𝐴𝑋𝑖(𝑘) + 𝐵𝑖(𝑘))       (51) 

Where 𝑘 = 0,1, … , 𝐾 − 1, 𝑋𝑖(𝑘) = [(𝑋1)𝑖(𝑘), (𝑋2)𝑖(𝑘)]
𝑇 is the differential transformation of 

[𝑥1(𝑡), 𝑥2(𝑡)]
𝑇, 𝐵𝑖(𝑘) = [0, 𝛾 ∑ ∑ (𝑋2)𝑖(𝑛)(𝑋2)𝑖(𝑙 − 𝑛)

𝑙
𝑛=0 (𝑋2)𝑖(𝑘 − 𝑙)

𝑘
𝑙=0 ]

𝑇
 and the constant 

matrix 𝐴 can be defined as follows 

𝐴 = [
0 1
−𝛽 −𝛼

].                  (52) 

The IELDTM yields the following equation  

∑ 𝑋𝑖+1(𝑘)(−𝜃∆𝑡𝑖)
𝑘𝐾

𝑘=0 = ∑ 𝑋𝑖(𝑘)((1 − 𝜃)∆𝑡𝑖)
𝑘𝐾

𝑘=0        (53) 

where 𝑋0(0) = [𝑥0, 𝑥0
∗]𝑇, 𝑖 = 0,1, … ,𝑁 − 1 and the coefficients can be evaluated from Eq. 

(51). 

The performance of the current IELDTM is shown by comparing the maximum errors 

depending on the varying values of the direction parameter 𝜃 (see Figure 6). As theoretically 

expected, the maximum errors are reduced exponentially by increasing the order of the method. 

It can be observed from Figure 6 that choosing 𝜃 = 0.5 with odd-numbered 𝐾 values leads to 
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an (𝐾 +  1) − 𝑡ℎ order numerical method. The present adaptive central scheme is used for 

various transformation orders from 𝐾 = 3 to 𝐾 = 9 with the estimate 𝑡𝑜𝑙 = 10−15 and the 

numerical results are compared in terms of both accuracy and computational costs in Fig. 7. As 

seen in Fig. 7, increasing values of the parameter 𝐾 cause the computational cost to decrease as 

expected. The theoretical order expectations and experimental order averages of the current 

IELDTM are compared with various values of the transformation order 𝐾 and direction 

parameter 𝜃 as given in Table 2. There, the theoretical expectations are almost matching with 

the experiments. The current adaptive central scheme and the ode15s-ode23s solvers are 

compared with the maximum errors in Table 3 to measure the advantages of the IELDTM over 

the existing stiff ode solvers. In all comparisons, the central adaptive IELDTM appears to give 

better results with both high accuracy and using less time step than the literature [31]. 

 
 

Fig. 6. Order refinement results of the IELDTM at 𝑡𝑓 = 1 for various values of the direction 

parameter 𝜃 with the time increment ∆𝑡 = 0.05. 
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Fig. 7. Pointwise errors computed by the central adaptive IELDTM with various values of 𝐾 

and 𝑡𝑜𝑙 = 10−15 

 

Table 2 Effect of the approximation order of the IELDTM with various direction parameters 

in comparative way for Problem 2 

 𝜃 = 0 𝜃 = 0.5 𝜃 = 1 

𝐾 Experimental 

Average 

Order 

Theoretical 

Expectation 

Experimental 

Average 

Order 

Theoretical 

Expectation 

Experimental 

Average 

Order 

Theoretical 

Expectation 

𝐾 = 1 0.8348 1 1.9804 2 1.2583 1 

𝐾 = 2 2.0603 2 1.9970 2 1.9319 2 

𝐾 = 3 2.9458 3 4.0142 4 3.0477 3 

𝐾 = 4 3.7102 4 4.0041 4 4.2008 4 

𝐾 = 5 4.9576 5 5.9965 6 5.0311 5 

𝐾 = 6 5.8559 6 6.0821 6 6.2854 6 

 

 

Table 3 Comparison of the present ACM-N and the ode15s-ode23s solvers with 𝑡𝑜𝑙 = 10−10 

for the adaptive time steps and maximum errors in Problem 2 

 IELDTM, 𝐾 = 3 

 

IELDTM, 𝐾 = 5 

 

ode15s  

[31] 

ode23s  

[31] 

𝑡𝑓 
Step 

Numbe

r 

Maximu

m Error 

Step 

Numbe

r 

Maximu

m Error 

Step 

Numbe

r 

Maximu

m Error 

Step 

Numbe

r 

Maximu

m Error 

1 51 7.93E-11 9 2.38E-10 64 1.37E-09 825 8.61E-08 

2 92 4.62E-09 16 8.45E-09 99 3.08E-08 1487 2.99E-06 

4 152 1.01E-05 27 1.49E-05 161 6.53E-05 2595 6.47E-03 
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Problem 3 [10] Consider the following modified Robertson chemical stiff system of nonlinear 

differential equations  

𝑥1
′ = −0.04𝑥1 + 10

4𝑥2𝑥3 − 0.96𝑒
−𝑡 ,  

𝑥2
′ = 0.04𝑥1 − 10

4𝑥2𝑥3 − 3. 10
7𝑥2

2 − 0.04𝑒−𝑡,         (54) 

𝑥3
′ = 3. 107𝑥2

2 + 𝑒−𝑡,       

where 𝑡 ∈ [0, 4] and the initial conditions are 

𝑥1(0) = 1, 𝑥2(0) = 𝑥3(0) = 0.                 (55) 

As stated in literature (Abdi et. al. 2019), the system (54) has the exact solution 𝑥1(𝑡) = 𝑒−𝑡, 

𝑥2(𝑡) = 0 and 𝑥3(𝑡) = 1 − 𝑒−𝑡.  Taking of differential transformation of (54) leads to the 

following relations, 

(𝑋1)𝑖(𝑘 + 1) =
1

𝑘+1
[−0.04(𝑋1)𝑖 + 10

4∑ (𝑋2)𝑖(𝑠)
𝑘
𝑠=0 (𝑋3)𝑖(𝑘 − 𝑠) − 0.96

𝑒−𝑡𝑖

𝑘!
]  

 (𝑋2)𝑖(𝑘 + 1) =
1

𝑘+1
[0.04(𝑋1)𝑖 − 10

4 ∑ (𝑋2)𝑖(𝑠)
𝑘
𝑠=0 (𝑋3)𝑖(𝑘 − 𝑠) −

 3.107∑ (𝑋2)𝑖(𝑠)
𝑘
𝑠=0 (𝑋2)𝑖(𝑘 − 𝑠) − 0.04

𝑒−𝑡𝑖

𝑘!
]              (56) 

(𝑋3)𝑖(𝑘 + 1) =
1

𝑘+1
[3.107∑ (𝑋2)𝑖(𝑠)

𝑘
𝑠=0 (𝑋2)𝑖(𝑘 − 𝑠) +

𝑒−𝑡𝑖

𝑘!
]  

where (𝑋1)0(0) = 1, (𝑋2)0(0) = 0, (𝑋3)0(0) = 0, 𝑘 = 0,1, … , 𝐾 − 1 and 𝑖 = 0,1, … ,𝑁 − 1. 

Thus, the IELDTM yields the following equations  

∑ (𝑋1)𝑖+1(𝑘)(−𝜃∆𝑡𝑖)
𝑘𝐾

𝑘=0 = ∑ (𝑋1)𝑖(𝑘)((1 − 𝜃)∆𝑡𝑖)
𝑘𝐾

𝑘=0                     

∑ (𝑋2)𝑖+1(𝑘)(−𝜃∆𝑡𝑖)
𝑘𝐾

𝑘=0 = ∑ (𝑋2)𝑖(𝑘)((1 − 𝜃)∆𝑡𝑖)
𝑘𝐾

𝑘=0                               (57) 

∑ (𝑋3)𝑖+1(𝑘)(−𝜃∆𝑡𝑖)
𝑘𝐾

𝑘=0 = ∑ (𝑋3)𝑖(𝑘)((1 − 𝜃)∆𝑡𝑖)
𝑘𝐾

𝑘=0       

where 𝑖 = 0,1, … ,𝑁 − 1 and the coefficients can be calculated from Eq. (56). 

The present central adaptive schemes and the MATLAB solvers, ode15s-ode23s [31], have 

been compared to demonstrate the efficiency of the present approach through the pointwise 

errors (Figure 8). The current adaptive IELDTM schemes of order 4 and 6 have been shown to 

produce more accurate results, using far less number of time elements, than the commonly used 

stiff solvers, ode15s-ode23s. Maximum errors of the current ACM-N have been presented in 

comparison with the LBRFDM-BDF of the literature [10] (see Table 4). In the table, it is seen 

that the current schemes give more accurate results using the same number of time elements. It 

is also obvious from Table 4 that the IELDTM is far more accurate than various versions of the 

rational finite difference techniques presented for stiff behavior in the literature [10]. 



21 

 

 

Fig. 8. Comparison of the present central adaptive IELDTM and the ode15s-ode23s through 

pointwise errors with 𝑡𝑜𝑙 = 10−12 for Problem 3. 

 

 

Table 4 Comparison of the present central IELDTM with the literature LBRFDM-BDF [10] 

through maximum errors at 𝑡 = 4 for Problem 3. 

∆𝑡 IELDTM 

𝐾 = 3 

IELDTM 

𝐾 = 4 

IELDTM 

𝐾 = 5 

LBRFDM 

(6,3)  

LBRFDM 

(6,4)  

4-Step 

BDF  

2−5 2.69E-10 4.89E-11 3.89E-13 3.11E-07 1.55E-07 1.41E-07 

2−6 4.97E-11 5.86E-12 3.79E-13 2.13E-08 1.07E-08 1.02E-08 

2−7 4.97E-12 5.94E-13 1.33E-15 1.40E-09 6.98E-10 6.83E-10 

2−8 4.76E-13 5.62E-14 8.88E-16 8.94E-11 4.47E-11 4.42E-07 

 

Problem 4. Consider the Van der Pol equation in the first-order system form, 

𝑈′ = 𝑉                           (58) 

𝑉′ = −𝑈 + 𝜀(1 − 𝑈2)𝑉  

where the initial conditions are taken to be as 𝑈(0) = 2 and 𝑉(0) = 0.  Note that the system 

(58) corresponds to the second-order nonlinear Van der Pol equation with dependent variable 

𝑈. The Van der Pol equation is a model of self-sustained oscillations of a triode electric circuit 

with the current voltage characteristics. Stiffness of the Van der Pol system (58) strongly 

depends on the parameter value 𝜀. If the parameter 𝜀 is not too large, then the equation is not 

stiff and can be solved with also non-stiff methods. However, in case of 𝜀 ≫ 1, the system (58) 

is not easy to handle and requires more accurate numerical methods for its solution. Taking of 

differential transform of the system (58) yields  

𝑼𝒊(𝑘 + 1) = 𝐴𝑼𝒊(𝑘) + 𝑭(𝑘)                              (59) 
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where 𝑼𝒊(𝑘) = [𝑈𝑖(𝑘), 𝑉𝑖(𝑘) ]
𝑇, 𝐴 = [0,1;−1, 𝜀], 𝑭(𝑘) = [0,    − ε∑ ∑ 𝑈𝑖(𝑛)𝑈𝑖(𝑙 −

𝑙
𝑛=0

𝑘
𝑙=0

𝑛)𝑉𝑖(𝑘 − 𝑙)  ]
𝑇
and 𝑘 = 0,1, … . , 𝐾 − 1. The IELDTM leads to  

the following equations  

∑ 𝑼𝒊+𝟏(𝑘)(−𝜃∆𝑡𝑖)
𝑘𝐾

𝑘=0 = ∑ 𝑼𝒊(𝑘)((1 − 𝜃)∆𝑡𝑖)
𝑘𝐾

𝑘=0           (60) 

where 𝑖 = 0,1, … ,𝑁 − 1 and 𝑼𝒊(𝑘) can be evaluated from the recursive relation (59). 

non-stiff cases of the Van der Pol equation have been illustrated through the present central 

adaptive technique. The qualitative behavior is produced by considering the parameter values 

𝐾 = 7, 𝜃 = 0.5, 𝑡𝑓 = 20 and 𝑡𝑜𝑙 = 10−10. As seen in Fig. 10, as the stiffness increases, the 

number of time steps required by the algorithm increases. The computed results of the stiff 

cases are presented as seen in Fig. 10 for the parameter values of 𝜀 = 10 and 𝜀 = 100, 

respectively, in Problem 4. The central adaptive technique is used for Fig. 10 with the parameter 

values 𝐾 = 5, 𝜃 = 0.5 and 𝑡𝑜𝑙 = 10−10. As shown in the figures, with the current techniques, 

it is seen that the stiff behaviors are correct and successfully captured. The obtained results 

showed that the effectiveness of the present method IELDTM has been realized by comparing 

the MATLAB solvers, ode15s-ode23s [31] (see Table 5). In the table, it is understood that our 

method needs much less time step than the ode solvers and still appears to give more accurate 

results. 

 
Fig. 9. Adaptive central solutions produced with 𝐾 = 7, 𝜃 = 0.5, 𝑡𝑜𝑙 = 10−10 and various 𝜀 

values for Problem 4. 
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Fig. 10. Adaptive central solutions produced with 𝐾 = 5, 𝜃 = 0.5, 𝑡𝑜𝑙 = 10−10, 𝜀 = 10 and 

𝜀 = 100 for Problem 4. 

 

Table 5 Comparison of the present central adaptive IELDTM and the MATLAB solvers [31], 

ode15s-ode23s, with the adaptive time step numbers for 𝑡𝑜𝑙 = 10−10 in Problem 4. 

𝜀/𝑇 IELDTM 

𝐾 = 3 

IELDTM 

𝐾 = 5 

IELDTM 

𝐾 = 7 

IELDTM 

𝐾 = 9 

ode15s  ode23s  

0.1/1 1788 254 95 53 700 10912 

1/10 3827 520 193 108 1256 15717 

10/100 45607 5339 1888 1068 9632 141653 

100/1000 173179 19012 15282 10820 17523 299643 

       

 

5. Conclusions 

In this paper, a new one-step implicit-explicit local differential transform methods (IELDTM) 

have been developed with an arbitrary order for especially stiff initial value problems. The 

strong stability of the numerical method produced using the Taylor series has proven to be 

preserved. A priori error estimates of the currently derived approaches have been constructed 

and order conditions of the methods have been determined depending on direction parameters. 

Stability of the present methods has been discussed and they have thus been examined by 

considering 𝐴 − and 𝐿 −stabilities. To reach optimal numerical methods, adaptive procedures 

have been produced for forward, central, and backward cases, respectively. The currently 

produced versatile methods have been seen to be effective for very challenging problems 

defined by stiff differential equations. To explain and analyse the challenging aspects of the 

problems, four striking stiff differential equations have been taken into account and thus 
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qualitative and quantitative results have been exhibited. In a comparison way, efficiency of the 

present methods in terms of accuracy, stability, versatility and computational cost have been 

proved.  In summary, the main contributions of the article are highlighted as follows: 

• A numerically reliable, adaptive, high-order and stability preserved method has been 

derived, 

• Error analysis and order conditions have been determined,     

• Depending on the nature of the problem, various adaptive procedures have been proposed, 

• 𝐴-stable and  𝐿-stable cases of the IELDTM have been identified, and the regions of stability 

have been found, 

• Reliability of the adaptive procedures produced has been demonstrated and therefore 

embedding adaptivity features into the IELDTM by increasing the order of the method has 

been shown to minimize the computational cost. 

• Versatility of the present algorithms in terms of challenging problem types has been 

discussed in detail. 

• It has been observed that the SEIR equation system parameterized for the COVID-19 

outbreak can be effectively integrated with the IELDTM and therefore the stiffness of the 

problem can be discussed in detail with this method
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