
COVID-19 detection using chest X-rays: is lung

segmentation important for generalization?

Pedro R. A. S. Bassi*, Romis Attux

*Department of Computer Engineering and Industrial Automation, School of Electrical
and Computer Engineering, University of Campinas - UNICAMP. 13083-970,

Campinas, SP, Brazil. E-Mail: p157007@dac.unicamp.br. Acknowledgments: This work
was partially supported by CNPq (process 308811/2019-4) and CAPES.

Abstract

We evaluated the generalization capability of deep neural networks (DNNs),
trained to classify chest X-rays as COVID-19, normal or pneumonia, using a
relatively small and mixed dataset.

We proposed a DNN architecture to perform lung segmentation and clas-
sification. It stacks a segmentation module (U-Net), an original intermediate
module and a classification module (DenseNet201). We compared it to a
DenseNet201.

To evaluate generalization, we tested the DNNs with an external dataset
(from distinct localities) and used Bayesian inference to estimate the proba-
bility distributions of performance metrics, like F1-Score.

Our proposed DNN achieved 0.917 AUC on the external test dataset, and
the DenseNet, 0.906. Bayesian inference indicated mean accuracy of 76.1%
and [0.695, 0.826] 95% HDI with segmentation and, without segmentation,
71.7% and [0.646, 0.786].

We proposed a novel DNN evaluation technique, using Layer-wise Rele-
vance Propagation (LRP) and the Brixia score. LRP heatmaps indicated that
areas where radiologists found strong COVID-19 symptoms and attributed
high Brixia scores are the most important for the stacked DNN classification.

External validation showed smaller accuracies than internal validation,
indicating dataset bias, which segmentation reduces. Performance in the
external dataset and LRP analysis suggest that DNNs can be trained in
small and mixed datasets and detect COVID-19.
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COVID-19 detection, Layer-wise Relevance Propagation, Lung
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1. Introduction

Diagnosis is an important aspect for controlling COVID-19 spread and
helping infected patients. The most common diagnosis method is reverse
transcriptase-polymerase chain reaction (RT-PCR) (Wang et al. (2020)).
However, this method is expensive, requires a considerable amount of time
and is at high demand.

X-ray is one of the cheapest and most available COVID-19 alternative
detection methods, mostly when we consider the disease spread in developing
countries. But the images’ analysis can be complicated. Thus, we think that
artificial intelligence will be able to help in the creation of a reliable system
to help clinicians in this task.

Deep neural networks (DNN) for COVID-19 detection were already pro-
posed (Shoeibi et al. (2020)). However, some researchers raised concerns
about the possibility of bias. Maguolo and Nanni (2020) mixed different
chest X-ray datasets, removed most of the lungs from the images and trained
DNNs to classify to which dataset the images belonged. They were able
to obtain high accuracies and, according to them, this reveals that dataset
biases may influence DNNs trained with mixed datasets. We do not think
this test alone shows that the biases are strong enough to highly influence
DNN decisions (a DNN is a very flexible model: if we delete the relevant
information in the X-rays, it may be able to learn even very small dataset
particularities). But we agree that the study proves the existence of dataset
bias.

In March 2021, we still cannot find an open and large COVID-19 X-
ray dataset, with all images collected from the same sources. This would
be the best case scenario, as different classes would not present different
biases. But COVID-19 classification datasets are generally relatively small
and mixed, i.e., different classes have different sources, (Shoeibi et al. (2020)).
Our objective is to understand how bias affects a DNN classifying pneumonia,
healthy individuals and COVID-19 in a dataset like this. Therefore, we used
external testing and validation (holdout) databases, whose X-rays as not from
the hospitals that provided the training images. Furthermore, we analyzed
if utilizing lung segmentation reduces bias and improves generalization.
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We presented a large DNN, containing 3 stacked modules. The segmen-
tation module is an U-Net (Ronneberger et al. (2015)), trained beforehand
to receive X-rays and output segmentation masks (which are white in the
lung regions and black everywhere else). Then comes an original interme-
diate module, which uses the U-Net output and the input image to erase
the unimportant X-rays regions, and performs batch normalization. Finally,
the classification module, a 201-layers dense neural network (Huang et al.
(2016)), returns the probabilities of the X-ray containing healthy lungs, pneu-
monia or COVID-19. We compare this network to a DenseNet201.

We trained for classification with twice transfer learning, downloading
ImageNet (Deng et al. (2009)) pretrained classification networks, training
them on a large lung disease classification database (Wang et al. (2017)) and
then on our dataset (including COVID-19, normal and pneumonia).

We evaluated our networks with traditional performance measurements
(point estimates). But, due to the small number of available COVID-19
X-rays, our test dataset is small. This lowers the reliability of these mea-
surements when predicting the classifier real-world performance. Therefore,
we quantified the measurements’ uncertainty, using a Bayesian model (Zhang
et al. (2015)) to estimate the performance metrics probability distributions
and their statistics. We expanded the model in Zhang et al. (2015) to also
estimate class specificity and mean specificity.

We used layer-wise Relevance Propagation (LRP, Bach et al. (2015)) to
create X-ray heatmaps, showing which areas most contributed to the classifi-
cation and which were more representative of other classes. These maps help
us to better understand how DNNs make decisions, improving interpretabil-
ity. They also show if the proposed DNN is truly ignoring the unimportant
information outside the lungs and allow us to compare how the two trained
models are classifying the images. Finally, the maps may be helpful for a
clinician in finding the COVID-19 signs in an X-ray and evaluating the DNN
prediction.

In this study, we introduced a new technique to compare DNN’s anal-
ysis of COVID-19 X-rays to radiologists’, using LRP and X-rays scored
with the Brixia scoring system (a methodology created for radiologists to
semi-quantitatively score COVID-19 severity in six lung zones, Borghesi and
Maroldi (2020)). Do they look at the same COVID-19 signs? Is there a
correlation between areas where radiologists find more severe symptoms to
areas with more relevance in heatmaps? Do DNNs predict higher COVID-19
probabilities in X-rays with higher Brixia scores?
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2. Methods

2.1. The source databases

In this section, we describe the databases we utilized to create the datasets
that we used in this study.

2.1.1. NIH ChestX-Ray14

ChestX-Ray14 is a very large dataset of frontal chest X-rays, containing
112120 images, from 30805 patients, showing 14 different lung diseases, as
well as healthy individuals. The dataset was originally created by the US
National Institutes of Health and the authors automatically labeled it with
Natural Language Processing, using radiological reports. The labels have an
estimated accuracy that is higher than 90% (Wang et al. (2017)).

It is an unbalanced dataset and a single patient can have more than
one disease, therefore, classifying the database is a multi-label classification
problem. The dense neural network CheXNet (Rajpurkar et al. (2017)) was
trained on this dataset.

925 images, showing healthy patients, were extracted from this database
and used in our classification training dataset. Those images correspond
to 925 different patients, with mean age of 46.8 years (with 15.6 years of
standard deviation) and who are 54.3% male. Additionally, 1295 ChestX-
Ray14 images, showing patients with pneumonia, were also included in our
classification training dataset. They correspond to 941 patients, with a mean
age of 48 years (standard deviation of 15.5 years), and who are 58.7% male.

2.1.2. Montgomery and Shenzen datasets

This database was created by the National Library of Medicine, National
Institutes of Health, Bethesda, Maryland, USA, in collaboration with the
Department of Health and Human Services, Montgomery County, Maryland,
USA and with Shenzhen No.3 People’s Hospital, Guangdong Medical College,
Shenzhen, China (Jaeger et al. (2014)). The X-rays taken in Shenzen show
336 normal cases and 326 tuberculosis cases. In the Montgomery images
there are 80 normal cases and 58 tuberculosis cases.

The Montgomery images also came with segmentation masks, created
under the supervision of a radiologist (Candemir et al. (2014), Jaeger et al.
(2014)). The dataset authors segmented the images excluding the lung part
behind the heart, and following some anatomical landmarks, such as the ribs,
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the heart boundary, aortic arc, pericardium line and diaphragm (Candemir
et al. (2014), Jaeger et al. (2014)).

The authors in Stirenko et al. (2018) created segmentation masks for most
of the Shenzen database. They are similar to the Montgomery’s (e.g., they
also exclude the lung part behind the heart).

The healthy patients in the Montgomery and Shenzen database have a
mean age of 36.1 years (with standard deviation of 12.3 years) and are 61.9%
male. Their X-rays were used in our classification training dataset.

2.1.3. COVID-19 database

COVID-19 image data collection (Cohen et al. (2020)) is one of the largest
COVID-19 X-ray databases to date. The dataset also contains other kinds
of pneumonia, such as MERS, SARS and bacterial, but we did not use them
in this study. From this dataset, we obtained 475 COVID-19 X-rays (all the
frontal COVID-19 X-rays).

It is a public open dataset, whose images were collected from public
sources or indirectly from hospitals and clinicians (Cohen et al. (2020)). It is
the largest public collection of COVID-19 chest X-rays we found, and is also
well documented. For example, it contains information about patient age,
gender and the image source.

The images we utilized correspond to 295 COVID-19 patients, with a
mean age of 42.5 years (with standard deviation of 16.5 years) and who
are 64.5% male. We have information about disease severity on some of
them: from 87 patients, the 79.3% survived; from 118 patients, 61.9% needed
ICU; from 77 patients, 61% were intubated; from 107 patients, 62.6% needed
supplemental oxygen.

2.1.4. CheXPert

The CheXPert database contains images from the Stanford University
Hospital. It has 224313 chest X-rays, from 65240 patients, showing 13 lung
diseases or no findings (Irvin et al. (2019)). As in the NIH ChestX-Ray14
dataset, the images were automatically labeled, by the database authors, us-
ing Natural Language Processing to analyze radiological reports. The labels’
estimated accuracy is also above 90%. The exceptions, in the images we
used, are 8 pneumonia X-rays and 26 normal X-rays, which were manually
labeled by three board certified radiologists (these images are part of the
original CheXPert test dataset).
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We used part of the CheXPert database in our classification dataset,
as part of the external validation. 79 pneumonia and 79 healthy images
were used, including the ones manually labeled by three radiologists. The
normal images correspond to 73 patients, with a mean age of 49.5 years (with
standard deviation of 18.5 years) and who are 56.2% male. The pneumonia
images correspond to 61 patients, with mean age of 61.9 years (standard
deviation of 18.1 years), and who are 60.7% male.

2.2. The segmentation dataset

This dataset was used to train an U-Net to segment the lungs in frontal
chest X-ray images. It contains images of COVID-19 (327), pneumonia (327),
normal lungs (327) and tuberculosis (282). As the youngest patient in the
COVID-19 database was 20 years old, we only used X-rays from adult pa-
tients in the other classes as well.

The normal and tuberculosis images were all the X-rays in Montgomery
and Shenzen datasets that had corresponding segmentation masks. The
pneumonia X-rays were randomly selected from the NIH ChestX-Ray14 im-
ages. The COVID-19 images were randomly taken from the COVID-19
database (Cohen et al. (2020)).

As targets, this dataset contains segmentation masks for each X-ray. For
the healthy and tuberculosis images the masks were already provided in the
Montgomery database and in Stirenko et al. (2018), for the Shenzen dataset.
We created the other segmentation masks (for pneumonia and COVID-19).
The mask creation process will be described with more details in section
2.6.3.

2.2.1. Segmentation dataset subdivisions

We separated the segmentation dataset in 3: training, validation and
testing. We used them to train our U-Net with hold-out validation. The
dataset subdivisions were random, but we performed a patient split: if we
had more than one image from the same patient, all of them were used in
only one subdivision.

For testing we used 150 images, 50 from each class (pneumonia, COVID-
19 and normal, with 10 from Montgomery and 40 from Shenzen). We did
not include tuberculosis images here because this class is not present in our
classification dataset, thus the U-Net performance on it was not as relevant.
But they were included in training and validation because we thought that
more images would generate a better segmentation neural network.
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To create the training and validation datasets we removed the test images,
then randomly selected 80% of the remaining X-rays as training and 20% as
validation. We kept both datasets balanced.

2.3. Classification training dataset

We used this dataset to classify chest X-ray images in one of three classes:
healthy, pneumonia or COVID-19. It consists of frontal X-rays and has 1295
images of healthy subjects, 1295 of pneumonia patients and 396 of COVID-
19 patients. Unlike the segmentation dataset, which had masks, this dataset
has simple classification labels: COVID-19, normal or pneumonia.

The coronavirus images were all COVID-19 frontal X-rays in Cohen et al.
(2020), except for the ones from Hannover Medical School, Hannover, Ger-
many (they will be used in the external testing and validation datasets).
The pneumonia X-rays were NIH ChestX-Ray14 images labeled as pneumo-
nia and with adult patients. Finally, the healthy images were all normal
images from the Montgomery and Shenzen databases (with adult patients),
along 925 normal images from ChestX-Ray14 (randomly selected, among
adults). Pediatric patients were excluded because the COVID-19 database
youngest patient is 20 years old and we thought that adding children to the
other classes could create bias (training the DNN not to associate children
with COVID-19).

2.4. External classification dataset

We used the external classification dataset for validation (holdout) and
testing when training for COVID-19 detection.

We did not get the external COVID-19 images from another coronavirus
database, because, as the current availability of COVID-19 X-rays is still
limited, different datasets can have the same images. Instead, we separated
the COVID-19 image data collection (Cohen et al. (2020)) in two, according
to geographical location. We chose all the images from Hannover Medical
School (Hannover, Germany) for the external dataset because there are 79
images from this locality, a reasonable amount to create a validation and
a test dataset (considering the small number of COVID-19 images), and
because there are only 3 other images from Germany in the entire dataset
(from Essen and Berlin). Therefore, the chance of a patient from Hannover
having X-rays in another hospital from our database is very small.

The images for the normal and pneumonia classes were extracted from
the CheXPert database. 79 images from each class were randomly selected,
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among the adult patients. We included, in the external dataset, all the
normal and pneumonia images labeled by the three radiologists.

We divided the external dataset in two, for test and validation. The test
dataset included 50 images from each class, and the validation dataset, 29.
The division was random, but we did not allow X-rays from a single patient
to be in more than one dataset.

2.5. Image preprocessing

We loaded the X-rays in greyscale, converted them to BGR (3 channels),
applied histogram equalization and normalized the pixel values between 0
and 1. We also resized the images to 224x224.

In the external test and validation datasets, as well as the segmentation
datasets, we made the images square (if they were not already) by adding
black bars in their borders, before resizing. We used the black bars to avoid
changing the X-rays aspect ratio. Furthermore, as we did not use the bars
in the classification training dataset, the DNNs (especially the one without
segmentation) could not learn to identify them.

2.6. Training for segmentation

2.6.1. The U-Net

The U-Net architecture was proposed in Ronneberger et al. (2015), as a
DNN for segmentation in biomedical databases. Therefore, It was designed to
perform well using a small quantity of annotated samples and a large amount
of data augmentation. For example, the authors in Ronneberger et al. (2015)
used the DNN to segment neuronal structures in electron microscopic stacks,
winning the ISBI cell tracking challenge in 2015. As we had a relatively small
amount of lung X-rays with masks, the U-Net seemed like a good option for
lung segmentation.

The architecture was already used for this purpose. In Heo et al. (2019)
the authors used an U-Net to successfully segment lungs in chest X-rays,
generating masks that were used to create a new dataset, with images that
contained only the lungs (and black pixels outside them). Afterwards, they
classified these images as tuberculosis or non-tuberculosis, utilizing CNNs.

An U-Net is a fully convolutional DNN with two symmetric paths, a
contracting path, which captures context in the image, and an expanding
path, which allows precise localization. The paths are connected in multiple
points. More information can be found in Ronneberger et al. (2015).
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Our U-Net implementation is the same as the original (shown in figure
1 of Ronneberger et al. (2015)), it has 5 blocks in each path, each one with
two 2D convolutions and ReLu activation.

2.6.2. Training with the Montgomery and Shenzen databases

We trained an U-Net with the Shenzen and Montgomery datasets, using
their manually created segmentation masks as targets. We randomly selected
70% of the images for training, 20% for validation (hold-out) and 10% for
testing. We used data augmentation in the training dataset, multiplying the
number of images by 8 (the original images were not removed), with random
rotations (between -40 and 40 degrees), translations (with a maximum of
28 pixels up or down and also 28 left or right) and horizontal flipping (50%
chance).

We note here that we conducted all training procedures and network
implementations described in this paper using PyTorch, a Python library
specialized in neural networks. We also used a NVidia RTX 3080 GPU, with
mixed precision.

Using the segmentation masks as targets, we trained the U-Net with cross-
entropy loss, stochastic gradient descent (SGD) with momentum of 0.99 and
mini-batches of size 8. We began by training the network for 200 epochs with
a learning rate (lr) of 10−4. Afterwards, we changed the rate to 10−5 and
used a reduce on plateau learning rate scheduler, reducing the lr by a factor
of 10 if our validation loss did not decrease in 20 epochs. We trained in this
configuration for 200 epochs more.

We used mean intersection over union (IoU) to measure the U-Net test
performance. IoU is a similarity measurement between two images. To cal-
culate it we change the DNN output mask, transforming any value below 0.5
in 0 and over or equal 0.5 in 1. We then find the intersection of this binary
image and the target mask (the area where both are 1), and divide it by their
union (the area where the target or the output is 1). Thus, the maximum IoU
is 1, when the two images are equal. Calculating the mean IoU for all testing
X-rays we can quantitatively measure the DNN segmentation performance.

After this training process we achieved a mean test IoU of 0.927 in the
Montgomery and Shenzen datasets. We also checked the generated images
to have a qualitative measure of performance, and we found the U-Net sat-
isfactorily segmented the lungs.
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2.6.3. Creating the masks for the segmentation dataset

In our segmentation dataset we only had segmentation masks for the
Shenzen and Montgomery images. Thus, we still needed to create masks for
the COVID-19 and pneumonia images.

We used the U-Net trained before (in the Montgomery and Shenzen
datasets) to help us in this task. We began by using the DNN to generate au-
tomated masks for the pneumonia and COVID-19 images. We transformed
these masks in binary, changing any value over or equal to 0.5 to 1 and below
0.5 to 0.

Then, we manually edited the automated masks, removing imperfections
and comparing them with the X-rays. The ones that were not good enough
were deleted and manually redone. As in the Montgomery and Shenzen
masks, we excluded areas behind the heart and used anatomical landmarks
(like the ribs and the diaphragm) to create our masks.

2.6.4. Training with the segmentation dataset

With the Montgomery and Shenzen masks and the new masks for the
COVID-19 and pneumonia images, we had targets for every X-ray in our
segmentation dataset.

We created a new U-Net, with the same structure as the last one (Ron-
neberger et al. (2015)), to be trained using the segmentation dataset. For this
process we used data augmentation (online) to avoid overfitting. All images
were randomly rotated (between -40 and 40 degrees), translated (maximum
of 28 pixels up or down and 28 left or right) and horizontally flipped (with a
50% chance). This augmentation multiplied the training dataset size by 15
and we did not remove the original images.

We trained the U-Net using cross-entropy loss, stochastic gradient de-
scent (SGD) with momentum of 0.99 and mini-batches of size 5. We used a
learning rate of 10−4 and trained for 400 epochs (when the DNN was already
overfitting).

We ended up with 0.864 mean intersection over union in the test dataset.
We analyzed the generated masks and found that they correctly indicated
the lung areas. Most of the DNN mistakes were generating brighter regions
in the gastric bubble area and in the lung region behind the heart. You
can see examples of the generated masks, created with COVID-19 X-rays, in
figure 1.
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Figure 1: Examples of masks (created by the U-Net) and the corresponding COVID-19
X-rays.
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2.7. Training for classification

We trained two DNNs for classification: a stacked network (which also
performs segmentation) and a DenseNet201. The dense network and the
stacked DNN classifier module have the same structure (a DenseNet201).
For this reason and to better compare the networks, we trained them for
classification in the same manner, described in sections 2.7.2 and 2.7.3.

2.7.1. The stacked DNN creation

To perform lung segmentation and classification we propose an architec-
ture composed of stacked modules. The first one (segmentation module)
is the U-Net, already trained on the segmentation dataset. This network
receives an X-ray and outputs a segmentation mask, where high values in-
dicate lung regions and low values refer to areas without importance. The
segmentation module parameters will always be frozen when training for
classification.

After the segmentation module comes the intermediate module that we
designed. It applies a softmax function to the U-Net output, takes only the
last dimension of the softmax result (which displays the important regions
of the image with high values) and replicates it to create an image with 3
channels. Afterwards, the module performs an element-wise multiplication
of this image and the input X-ray. Thus, we remove the unimportant regions
from the X-ray and keep the lungs. Lastly, the module performs batch nor-
malization on the multiplication output, our objective with this operation is
to improve the DNN generalization.

The intermediate module output enters the second neural network (clas-
sification module), a DenseNet201 (Huang et al. (2016)), which predicts the
chances of COVID-19, pneumonia or normal.

We decided to use a dense neural network as our classification module
because it is a large DNN with good results in image classification (Huang
et al. (2016)) and because its architecture was very successful in lung disease
classification, obtaining F1 scores in pneumonia detection that surpassed
radiologists’, in Rajpurkar et al. (2017). The DenseNet201 was downloaded
already pretrained on ImageNet (Deng et al. (2009)), a very large image
classification dataset, with millions of samples.

Figure 2 shows our network structure and its three modules.
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Figure 2: The structure of our proposed stacked DNN, for segmentation of lungs and
classification.
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2.7.2. Pretraining with the ChestX-ray14 dataset

We trained our DNN using a twice transfer learning approach, which is
similar to the one that we used in a previous COVID-19 detection study
(Bassi and Attux (2021b)). Another work that used twice transfer learning
in a medical classification problem is Cai et al. (2018), which applied the
technique for mammogram classification.

Our approach consists in a transfer learning with three steps: we down-
load ImageNet pretrained DenseNet201s (to be used as a classification DNN
or the classification module of our stacked DNN), train the networks on the
large ChestX-ray14 database, and then on our classification dataset (smaller,
with the COVID-19, pneumonia and normal classes). We expect training on
ChestX-ray14 to improve generalization of the DNNs, as it is a large X-ray
database with a similar task to COVID-19 detection (classification of 14 lung
diseases and healthy patients).

In the ChestX-ray14 dataset, the only augmentation technique that we
applied was horizontal flipping (with 50% chance). Unlike the augmentation
we performed in the other datasets, in this case the new images substituted
the original in the mini-batch (in the other datasets, the augmented images
were added to the mini-batch along the original ones).

We used the test dataset reported by the database authors as our test
dataset and randomly separated the remaining images, with 20% for valida-
tion (hold-out). We did not allow two images from the same patient to be
present in more than one dataset.

As classifying this dataset is a multi-label classification problem, we sub-
stituted the DNNs’ last layer for one with 15 neurons and used PyTorch’s
binary cross-entropy loss with logits. We trained the networks using SGD,
with momentum of 0.9 and mini-batches of size 64. We started by training
only the last layer, with a learning rate of 10−3, for 20 epochs. Then, we
unfroze all layers (except for the segmentation module’s, when training the
stacked DNN) and trained for 80 epochs, with a learning rate of 10−4. In the
end of this process both DNNs were already overfitting.

2.7.3. Training with the classification dataset

In this step, we started with the DNNs (DenseNet201 and stacked DNN)
that we trained in the ChestX-ray14 dataset and we performed the last stage
of twice transfer learning: training on our classification dataset to classify
the COVID-19, pneumonia and normal classes. We substituted the networks’
last layer by one with 3 neurons and we added a dropout of 50% before it
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(in preliminary tests, we observed that regularization improved accuracy on
the external datasets).

We also utilized online data augmentation in the training dataset, to
avoid overfitting and to balance the database. The augmentation process was
similar to the one we used in the U-Net training (i.e., generating new images
with random translation, up to 28 pixels up or down, left or right, rotation,
between -40 and 40 degrees, and flipping, with 50% chance, and not removing
the original figures). In order to obtain almost the same number of images in
the three classes we multiplied the number of normal and pneumonia images
by 3 and of COVID-19 images by 10. We decided to use these numbers
after some preliminary tests. The multiplications did not produce exactly
the same number of images for each class (they created 3885 normal and
pneumonia training images, and 3960 COVID-19 training images). To feed
the DNN balanced mini-batches, a little amount of the images (90 of the 3960
COVID-19 augmented images and 15 of the 3885 pneumonia and normal
images) were left out of training, but in every epoch a new selection of these
images were made. Thus, every X-ray was used during the training process.
At each epoch the neural network received 11610 training images (3870 for
each class). The external validation and test datasets were not augmented.

We used cross-entropy loss, as the optimizer we chose SGD, with momen-
tum of 0.9, and mini-batches of size 30. We trained the DNNs with hold-out
validation, until we could observe a clear overfitting. We started by training
only the networks’ last layer, for 20 epochs, with learning rate of 10−5 and
weight decay of 0.01. We then trained all layers (except for the segmentation
module, when training the stacked DNN), for 240 epochs, with weight decay
of 0.05 and differential learning rates (the learning rate started at 10−5 in
the last layer was divided by 10 for each dense block before it, achieving the
smallest value in the DenseNet first layer) (Howard and Ruder (2018)). Each
epoch in this stage took about 200 s in our NVidia RTX 3080 GPU.

2.8. Layer-wise Relevance Propagation

DNNs are large and complex structures and it can be hard to interpret
why they make decisions and classifications. Although they have a high
capacity to classify images (Huang et al. (2016)), in medical applications we
want to have a better understanding of how it is making its choices.

Layer-wise Relevance Propagation is a technique that makes DNNs more
explainable and understandable by humans. It propagates a value called rel-
evance from the network output layer until its first layer, creating a heatmap.
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This map shows how each input feature (like a pixel in an image) affects the
DNN output (Bach et al. (2015)). This propagation is conservative, a neu-
ron receives a certain amount of relevance from its posterior layer and must
propagate the same quantity to the layer below it (Montavon et al. (2019)).
For example, if a neuron receives 10 relevance and there are three neurons in
the previous layer, it can propagate relevance values of 5, 2 and 3, but not 5,
2 and 4 (as it does not sum 10). Therefore, the amount of explanation in the
heatmap is directly related to what can be explained by the DNN output.
We cite two uses of LRP in medical contexts: in neuroimaging (Thomas et al.
(2019)) and explaining therapy predictions (Yang et al. (2018)). LRP has
more than one rule that can be utilized to propagate relevance, and we can
apply different rules in different DNN layers.

We used LRP to investigate if the DNNs were correctly interpreting symp-
toms of the diseases and to check if areas outside of the lungs were properly
being ignored. We also think that giving these maps to clinicians along the
DNN predictions may help them to evaluate the DNN classification and also
provide insights about the X-rays, improving their own analysis.

We can start the relevance propagation by any output neuron. This deci-
sion defines the meaning of the colors in a heatmap (Montavon et al. (2019)).
For example, if we start LRP by the neuron that classifies the COVID-19
class, red areas in the heatmap will indicate regions that the DNN associ-
ated with COVID-19, and blue areas will indicate regions associated with
the other classes (normal and pneumonia). Normally we start propagation
by the neuron with the highest output, i.e., the predicted class.

When analyzing the stacked DNN, we only applied LRP to the classifi-
cation module, because we only wanted to know which X-ray features were
important to classify the image, not to create the segmentation mask.

To implement LRP we used the Python library iNNvestigate (Alber et al.
(2019)), which already works with the DenseNet201 that we used as our
classification module and as the DNN without segmentation. We chose the
preset A-flat (a selection of propagation rules for the network layers), because
it generated more interpretable results. To apply LRP to the classification
module, we first needed to unstack our DNN. Furthermore, iNNvestigate
is a library created to work with Keras and we created our DNNs using
PyTorch. Thus, we used another library, called py2keras (Malivenko (2018))
to convert our classification module to Keras, before applying LRP. Accuracy
was checked after conversion to make sure nothing went wrong.
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2.9. The Bayesian performance evaluation
Zhang et al. (2015) proposed a Bayesian model to estimate the probability

distribution of F1-Scores in the context of multi-class classification problems
(when we have more than two classes and any sample can only be assigned
to a single class).

The model can be summarized as (Zhang et al. (2015)):
µ ∼ Dir(β)
n ∼ Mult(N,µ)
θj ∼ Dir(αj) for j=1,...,M
cj ∼ Mult(nj,θj) for j=1,...,M
ψ = f(µ,θ1, ...,θM)
Where N is the test dataset size (150 in this study), M the number of

classes (3), Dir() represents the Dirichlet distribution and Mult() the multi-
nomial.
n is a random vector, with size M, nj estimates the number of samples

in class j, if we collected a new test dataset (of size N). µ is also a random
vector with size M and µj indicates the probability of a new sample belonging
to class j. β indicates the hyper-parameters of the µj prior distribution.
Choosing β=[1,1,1] defines an uniform prior, as we and the authors of Zhang
et al. (2015) did.
cj is a random vector of size M and cj,k estimates the number of class

j samples classified as class k. Thus, the cj,k elements provide an expected
confusion matrix, for a new test dataset. θj is a random vector of size M,
θj,k estimates the probability of classifying a sample from class j as class k.
αj a vector with M hyper-parameters, defining the θj prior distribution. As
in Zhang et al. (2015), we chose all elements in these vectors as 1, creating
an uniform prior.
ψ represents a function, calculated (in a deterministic manner) using the

posterior probability distributions of µ and θ. Zhang et al. (2015) provides
functions to estimate many performance measurements: class precision (Pj),
class recall (Rj), macro-averaged F1-Score (maF1) and micro-averaged F1-
Score (miF1). In a multi-class single-label classification problem, miF1 is
identical to the overall accuracy (Sakai (2006)). With a balanced test dataset,
like our test database, it is also identical to the average accuracy. Therefore,
we used the miF1 posterior probability distribution to estimate our accuracy
reliability.

We expanded the Bayesian model to also estimate the specificity for each
class and their arithmetic mean. Therefore, we expressed the metrics as
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functions of µ and θ and calculated them using these parameters posterior
distributions. Zhang et al. (2015) defines functions for tnj and fpj (true
negatives and false positives in the class j contingency table):

tnj =
∑

u6=j

∑
v 6=j Nµuθu,v

fpj =
∑

u6=j Nµuθu,j
Therefore, using the equations above and the definition of specificity,

we can deduce the equations that define the class specificity and the mean
specificity (macro-averaged) as functions of µ and θ:

Specificityj = tnj/(tnj + fpj) = (
∑

u6=j

∑
v 6=j µuθu,v)/(

∑
u6=j

∑M
v=1 µuθu,v)

Mean Specificity= (1/M)(
∑M

j=1 Specificityj)
The Bayesian model takes only the classifier confusion matrix as input,

which it uses to create the likelihoods for cj and n.
We computed the posterior probability distributions with Markov chain

Monte Carlo (MCMC), utilizing the Python library PyMC3 (Salvatier et al.
(2016)). We used the No-U-Turn Sampler (Hoffman and Gelman (2011)),
with 4 chains, 10000 tuning samples and 100000 samples after tuning.

3. Results

Table 1 shows the confusion matrix for our stacked DNN, and table 2 for
the DNN without segmentation (we created both matrices using the external
test database).

Tables 3 and 4 show performance metrics in the external test dataset,
for the DNNs with and without segmentation, respectively. In the second
column (Score) we show performance scores, calculated in the traditional and
deterministic manner, using the confusion matrix. The other columns refer
to statistics of the metrics’ posterior distributions, estimated using Bayesian
inference. They are: mean, standard deviation (std), Monte Carlo error,
and 95% high density interval (HDI). The HDI is defined as an interval with
95% of the distribution probability mass and any point in this interval has a
probability that is higher than any point outside the HDI.

We calculated, with the test dataset, the multi-class area under the ROC
curve (AUC) using macro averaging and the pairwise comparisons approach
from Hand and Till (2004). The stacked DNN achieved 0.917 AUC and
the DenseNet201, 0.906. We do not present interval estimations for multi-
class AUC because defining its confidence interval is not a simple task, and
bootstraping is the suggested method for it (Hand and Till (2004)). We can
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Predicted Class
Normal Pneumonia COVID-19

Real
Class

Normal 38 7 5
Pneumonia 8 32 10
COVID-19 2 0 48

Table 1: Stacked DNN confusion matrix

Predicted Class
Normal Pneumonia COVID-19

Real
Class

Normal 43 0 7
Pneumonia 14 24 12
COVID-19 6 0 44

Table 2: Confusion matrix for the DNN without segmentation

Metric Score Mean std MC error 95% HDI
Mean Accuracy or miF1 0.787 0.761 0.034 0.0 [0.695,0.826]
Macro-averaged F1-Score 0.781 0.754 0.034 0.0 [0.687,0.82]
Macro-averaged Precision 0.791 0.764 0.034 0.0 [0.697,0.829]
Macro-averaged Recall 0.787 0.761 0.032 0.0 [0.698,0.823]
Macro-averaged Specificity 0.893 0.88 0.017 0.0 [0.848,0.912]
Normal Precision 0.792 0.765 0.059 0.0 [0.648,0.877]
Normal Recall 0.76 0.736 0.06 0.0 [0.617,0.85]
Normal F1-Score 0.776 0.748 0.048 0.0 [0.654,0.839]
Normal Specificity 0.9 0.887 0.031 0.0 [0.825,0.943]
Pneumonia Precision 0.821 0.786 0.063 0.0 [0.66,0.902]
Pneumonia Recall 0.64 0.623 0.066 0.0 [0.493,0.75]
Pneumonia F1-Score 0.719 0.692 0.054 0.0 [0.586,0.795]
Pneumonia Specificity 0.93 0.915 0.027 0.0 [0.861,0.964]
COVID-19 Precision 0.762 0.742 0.054 0.0 [0.636,0.844]
COVID-19 Recall 0.96 0.925 0.036 0.0 [0.854,0.985]
COVID-19 F1-Score 0.85 0.822 0.038 0.0 [0.746,0.894]
COVID-19 Specificity 0.85 0.84 0.035 0.0 [0.769,0.906]

Table 3: Performance metrics for the DNN with segmentation. The score values are
traditional point estimates. The other values were obtained with Bayesian inference.
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Metric Score Mean std MC error 95% HDI
Mean Accuracy or miF1 0.74 0.717 0.036 0.0 [0.646,0.786]
Macro-averaged F1-Score 0.729 0.705 0.037 0.0 [0.632,0.776]
Macro-averaged Precision 0.794 0.758 0.032 0.0 [0.696,0.82]
Macro-averaged Recall 0.74 0.717 0.033 0.0 [0.653,0.781]
Macro-averaged Specificity 0.87 0.858 0.017 0.0 [0.825,0.891]
Normal Precision 0.683 0.667 0.058 0.0 [0.553,0.779]
Normal Recall 0.86 0.83 0.051 0.0 [0.728,0.924]
Normal F1-Score 0.761 0.738 0.045 0.0 [0.647,0.824]
Normal Specificity 0.8 0.792 0.039 0.0 [0.714,0.867]
Pneumonia Precision 1.0 0.926 0.05 0.0 [0.829,0.998]
Pneumonia Recall 0.48 0.472 0.068 0.0 [0.34,0.605]
Pneumonia F1-Score 0.649 0.622 0.063 0.0 [0.497,0.743]
Pneumonia Specificity 1.0 0.981 0.013 0.0 [0.955,1.0]
COVID-19 Precision 0.698 0.682 0.057 0.0 [0.569,0.792]
COVID-19 Recall 0.88 0.849 0.049 0.0 [0.752,0.938]
COVID-19 F1-Score 0.779 0.755 0.044 0.0 [0.667,0.839]
COVID-19 Specificity 0.81 0.802 0.039 0.0 [0.726,0.876]

Table 4: Performance metrics for the DNN without segmentation. The score values are
traditional point estimates. The other values were obtained with Bayesian inference.
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Figure 3: Mean accuracy posterior probability density estimation for the DNN with seg-
mentation.

not use bootstraping in this study, as we are using an external test dataset
and we have a small amount of COVID-19 X-rays.

In figures 3 to 6 we show the Bayesian estimations of mean accuracy (equal
to miF1) and macro-averaged F1-Score. In figures 7 to 10 we display the
corresponding trace plots (for only one MCMC chain). These plots exclude
the tuning samples.

Our trained DNNs are available for download at Bassi and Attux (2021a).

4. Discussion

In a previous study, we utilized a dataset that was very similar to our
classification training database, we also trained dense neural networks (with-
out segmentation), but we did not perform validation and testing on an
external dataset (Bassi and Attux (2021b)). There, we could achieve ac-
curacies above 90%, as is common in many COVID-19 detection studies,
which also use internal validation, i.e., they randomly divide a single dataset
in testing, validation and training (Shoeibi et al. (2020)). Furthermore, in
preliminary tests using the stacked DNN we proposed here, but without
external validation, we could also achieve accuracies above 90%. We note
that, in our previous study, and in the preliminary tests, our classification
training database was divided in three datasets (for training, validation and
test) and two images from the same patient were not allowed to be present
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Figure 4: Mean accuracy posterior probability density estimation for the DNN without
segmentation.

Figure 5: Macro-averaged F1-Score probability density estimation for the DNN with seg-
mentation.
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Figure 6: Macro-averaged F1-Score probability density estimation for the DNN without
segmentation.

Figure 7: Mean accuracy trace plot for the DNN with segmentation.
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Figure 8: Mean accuracy trace plot for the DNN without segmentation.

Figure 9: Macro-averaged F1-Score trace plot for the DNN with segmentation.
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Figure 10: Macro-averaged F1-Score trace plot for the DNN without segmentation.

in two different datasets. We also used a patient split in Bassi and Attux
(2021b). We conclude that evaluating DNNs in an external dataset can show
significantly smaller accuracies, indicating that bias can artificially improve
DNN performance metrics when working with mixed datasets and internal
validation.

Furthermore, when we compare the results of our stacked DNN and the
DenseNet201, we observe that segmentation has an effect on the model gen-
eralization capability, increasing mean accuracy score on the external test
dataset by 4.7%, and the Bayesian estimation mean by 4.4%.

The normal class specificity shows the percentage of unhealthy patients
that were not classified as healthy. The score value of 90%, in table 3,
indicates that a relatively low number of the patients with a disease were
miss-classified as healthy by our model.

We note that the 95% HDIs are relatively large, e.g., for mean accuracy
with the stacked DNN the interval length is 0.131. This can also be observed
in figures 3 to 6. We suppose that the strongest reason for the large intervals
is the small size of the test dataset, as using more test samples would increase
the performance metrics confidence.

4.1. LRP and comparison with radiologists’ analysis (using the Brixia score)

To compare our stacked DNN analysis with radiologists’, we will use
the Brixia score. This scoring system, presented in Borghesi and Maroldi
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Figure 11: Illustration of the lung zones for the Brixia score and how the score is presented
(based in Borghesi and Maroldi (2020)).

(2020), was created to grade the severity of COVID-19 cases. To score a
chest X-ray, the radiologist divides the lungs in 6 parts (A, B, C, D, E and
F), using two horizontal lines. The upper line is drawn at the inferior wall
of the aortic line, and the other line at the level of the right pulmonary
vein. If it is difficult to identify anatomical landmarks, the authors suggest
dividing the lungs in three equal zones. For each zone, the radiologist at-
tributes a partial score, from 0 to 3. 0 means no abnormalities, 1 means
interstitial infiltrates, 2 interstitial and alveolar infiltrates, with interstitial
predominance, and 3 interstitial and alveolar infiltrates, with alveolar pre-
dominance. The overall Brixia score (from 0 to 18) is the sum of the partial
scores (A+B+C+D+E+F), which are also presented, between square brack-
ets, from A to F ([ABCDEF]). The system authors discovered that the score
of patients who died was significantly higher than from discharged patients
(Borghesi and Maroldi (2020)). Figure 11 illustrates the lines, zones and
score presentation.

We propose comparing X-rays scored by radiologists, using the Brixia
score, with heatmaps, created by LRP. The maps shows how much relevance
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in classification each part of the X-rays has. Therefore, if we start the prop-
agation by the neuron that classifies COVID-19, areas that have larger and
darker red regions indicate where the DNN found more COVID-19 symp-
toms. Checking this areas’ partial Brixia scores may indicate if the DNNs
look for the same signs of COVID-19 as radiologists do. Furthermore, more
severe cases of COVID-19 mas show stronger symptoms and could increase
the COVID-19 probability predicted by the DNN. Therefore, we may also be
able check if there is a correlation between images with high Brixia scores
and the higher predicted probabilities.

Besides presenting the scoring system, Borghesi and Maroldi (2020) also
shows examples of COVID-19 X-rays, already scored by radiologists. These
images are also part of our training dataset. In figure 12 we analyze, with
our stacked DNN, three of them (the ones that had nothing written over the
lungs). The figure presents the X-rays, the generated segmentation masks,
the LRP heatmaps, the network outputs and the Brixia scores (given by
radiologists), with the partial scores in brackets. We note that relevance
propagation began at the neuron that classifies COVID-19, therefore, red
areas indicate regions that the DNN associated with COVID-19, while blue
areas were associated with the pneumonia or the normal class.

All X-rays in figure 12 were taken from a 72-years-old man with COVID-
19. The one in the first row is from the day of admission, one day after the
onset of fever (Borghesi and Maroldi (2020)). We observe that the X-ray
shows little signs of COVID-19, as the Brixia score is very low, at one. This
should make classification more challenging, and, indeed, our DNN could
not correctly classify this image, predicting the normal class, but with only
60.3% probability. The patient had a rapid disease progression, the second
and third rows show X-rays at days 4 and 5 post-hospitalization, respectively
(Borghesi and Maroldi (2020)). Our DNN correctly classified both X-rays,
with COVID-19 probabilities of 65.9% and 73.5%.

Unlike the Brixia score, our network is not designed to analyze disease
severity. But we observe that X-rays showing more severe and apparent
symptoms (thus, with higher Brixia scores) also increase the DNN confidence
for the COVID-19 class. In figure 12 we see that the higher the Brixia score,
the higher the COVID-19 predicted probability. This indicates a similarity
between the symptoms that the radiologists look for and the ones that our
DNN analyses.

An analysis of the partial scores and the heatmaps of the two correctly
classified X-rays in figure 12 also corroborates with the conclusion above.
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Figure 12: Stacked DNN analysis. From left to right: COVID-19 X-ray, mask generated by
the segmentation module, relevance map and network predicted probabilities along Brixia
scores (attributed by radiologists). The X-rays are training dataset images, available in
high resolution in Borghesi and Maroldi (2020).
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Figure 13: Stacked DNN analysis. From left to right: COVID-19 X-ray, mask generated
by the segmentation module and relevance map. The X-ray is an image from our external
test dataset, correctly classified as COVID-19.

In both heatmaps, we observe more relevance in the right lung, and it also
has higher Brixia scores. The middle heatmap shows that, in the right lung,
the DNN found more COVID-19 signs in regions B and C, which also have
higher partial Brixia scores; in the left lung, we see more relevance in the
E region, the one with the higher partial score. In the lower heatmap, in
the right lung, there is again more relevance in regions B and C, which also
present higher Brixia scores. The F region of the lower heatmap in figure 12
has 3 Brixia score, but is blue in our heatmap. The reason for this is that the
region was mostly associated, by our DNN, with the pneumonia class (this
region is very red if we start LRP by the neuron that classifies pneumonia).

LRP analysis also showed that our segmentation module and intermedi-
ate module work as intended, maintaining almost all relevance in the lung
regions (as can be seen in figures 12 and 13). Figure 13 also analyzes the
stacked DNN. It shows a COVID-19 input X-ray, the generated mask and
LRP heatmap. But, unlike in figure 12, this radiography is from the external
test dataset. We observe that the segmentation mask is not perfect, but
the areas outside the lungs are not very bright and are mostly ignored by
the DNN, as the heatmap shows. Again, this X-ray was correctly classified
(89.6% probability of COVID-19) and the red areas in the heatmap were
associated, by the neural network, with the COVID-19 class.

We can further understand the differences between the two DNNs (with
and without segmentation) when we analyze them using Layer-wise Rele-
vance Propagation. Therefore, we show, in figure 14, a LRP analysis for
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Figure 14: DenseNet201 analysis. From left to right: COVID-19 X-ray and relevance
map. The X-ray is an image from our external test dataset, correctly classified by the
DNN without segmentation.

the same X-ray in figure 13, but created using the DenseNet201 (without
segmentation) instead of the stacked DNN. We note that this DNN correctly
classifies the image, but it assigned a much lower COVID-19 probability, of
46.2%. Red areas in the map were associated with the COVID-19 class, while
blue areas were associated with the other classes.

We observe, in figure 14, that there is relevance outside of the lungs. Its
existence may explain why the stacked DNN has better generalization (4.7%
higher accuracy on the external test dataset) than the network without seg-
mentation. The relevance outside of the important areas might indicate
dataset biases learned by the DNN. However, some COVID-19 signs, indi-
cated in the heatmap in figure 13 can still be seen on figure 14 (mostly on
the left lung).

5. Conclusion

First, we observe that our mean accuracy score, on the external test
dataset, using the stacked DNN was 78.7% and, without segmentation, 74%.
These values are significantly lower than the accuracies calculated using in-
ternal validation (i.e., randomly separating a database in test, validation and
training datasets). Our previous study (which used a database similar to our
current classification training dataset and utilized internal validation), Bassi
and Attux (2021b), and many other works that detected COVID-19 using
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DNNs without external validation (Shoeibi et al. (2020)) showed accuracies
above 90%. This performance discrepancy may indicate that utilizing mixed
datasets creates bias, which artificially improves internal validation accura-
cies and performance metrics, as the study in Maguolo and Nanni (2020)
suggests.

The utilization of segmentation, performed by our stacked DNN architec-
ture, improved generalization, increasing mean accuracy score on the exter-
nal test dataset by 4.7% (or 4.4%, when considering the Bayesian estimations
means). Other techniques that may have helped mitigating mixed dataset
bias in this study were: histogram equalization (in the input X-rays), batch
normalization (in our intermediate module), removing pediatric patients from
the datasets (because the youngest patient in the COVID-19 class is 20 years
old), utilizing an external validation dataset, regularization (dropout and
weight decay), twice transfer learning and data augmentation.

Bayesian estimation of the DNNs’ performance metrics allowed us to
quantify the reliability of the metrics. We observed relatively large 95% high
density intervals, caused by the small size of the test dataset (150 images).
This emphasizes both the importance of making interval estimations in the
context of COVID-19 detection, and how beneficial would larger COVID-19
X-ray databases be.

Layer-wise Relevance Propagation allowed us to generate heatmaps and
analyze how our DNNs performed their classification. The stacked DNN
heatmaps indicated that the networks successfully ignored areas outside the
lungs, because these regions’ relevance was very small (showing almost no
color in the maps). Comparing X-rays scored by radiologists using the Brixia
score to our stacked DNN outputs and heatmaps showed that, normally,
regions with higher partial scores also had higher COVID-19 LRP relevance.
Also, X-rays with higher overall scores were associated with higher COVID-19
predicted probabilities. This may indicate that radiologists and our stacked
DNN look for the same signs of COVID-19 in a radiography. Unfortunately,
our DNN could not correctly classify an X-ray where radiologists also found
few symptoms of COVID-19 (the upper X-ray in figure 12, with a small
overall Brixia score, of only 1).

Performing LRP in the DenseNet201 without segmentation indicated
that, although lung areas were relevant and taken into account, the DNN
also paid attention to regions outside of the lungs. This again suggests that
segmentation can reduce dataset bias.

Although we conclude that mixed dataset bias is significant, our DNNs’
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performance on an external dataset and LRP analysis indicates that it can
be partially avoided. On the external test dataset our stacked network had
0.916 AUC and, using the Bayesian model, we estimated a macro-averaged
F1-Score with mean of 0.754 and 95% high density interval of [0.687,0.82].

This study shows the need for a large, open and high quality COVID-19
X-ray database, with all classes collected from the same sources, to better
avoid dataset bias, improve generalization and increase performance metrics
reliability. Our DNNs’ performance in the external dataset suggests that,
even with small and mixed datasets, DNNs can be successfully trained to
detect COVID-19, if appropriate measures to avoid bias are taken. Further-
more, even though we utilized external validation, clinical tests are needed to
further ensure that the performances we observed in this study are replicable
in a real-world scenario.
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