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Abstract. Audio classification using breath and cough samples has re-
cently emerged as a low-cost, non-invasive, and accessible COVID-19
screening method. However, no application has been approved for official
use at the time of writing due to the stringent reliability and accuracy re-
quirements of the critical healthcare setting. To support the development
of the Machine Learning classification models, we performed an extensive
comparative investigation and ranking of 15 audio features, including less
well-known ones. The results were verified on two independent COVID-
19 sound datasets. By using the identified top-performing features, we
have increased the COVID-19 classification accuracy by up to 17% on the
Cambridge dataset, and up to 10% on the Coswara dataset, compared
to the original baseline accuracy without our feature ranking.

Keywords: COVID-19 classification · Audio event engineering · Sound
feature ranking.

1 Introduction

A widely accessible, non-invasive, low-cost testing mechanism is the number one
priority to support test-and-trace in most pandemics. The advent of COVID-
19 has abruptly brought respiratory audio classification into the spotlight as a
viable alternative for mass pre-screening, needing only a smartphone to record
a breath or cough sample [3].

Just in the past 12 months, many universities and research institutions have
set up audio data collection systems, generally reliant on voluntary submissions,
resulting in a variety of smartphone applications based on audio pre-processing
and ML classification. However, at the time of writing, none has yet been of-
ficially endorsed for medical usage, largely because of the high accuracy and
reliability expectations for such a critical healthcare task.

This paper aims to give a holistic overview, evaluation, and ranking of 15
audio features in the context of the binary COVID-19 audio classification task,
which, to the best of our knowledge, has not been researched yet.

http://arxiv.org/abs/2104.07128v1
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1.1 The paper’s contributions

This paper makes the following contributions to the binary COVID-19 respira-
tory audio classification task:

i. Audio feature analysis and ranking. We perform an extensive comparative
analysis and ranking of 15 sound features prevalent in speech and non-
speech audio classification. The evaluation is carried out on two independent
datasets, allowing the findings to be generalised.

ii. Highlighting effective features. We identify ML features with strong discrim-
inative performance that go against common rules of thumb regarding audio
feature selection.

iii. Increasing the COVID-19 detection accuracy. A natural culmination of the
previous points. Compared to the baseline results presented in the datasets’
original papers, we increase the classification accuracy by up to 17%, just by
incorporating new training data obtained through our feature ranking.

The findings described in this paper are directly relevant to the COVID-19
sound-based classification task and would benefit future implementations using
the same approach.

The remainder of the paper is organised into four sections. Section 2 provides
a thorough description of the relevant audio features. Section 3 includes informa-
tion about the implementations and then focuses on the extensive experimental
analysis. Section 4 outlines the related work in the COVID-19 classification do-
main. Finally, Section 5 summarises our findings and outlines further work.

2 Audio features overview

Feature engineering is a vital step in any ML application, as a model’s predictive
efficiency relies directly on the discriminating information encoded in the input
vectors. Before delivering a comprehensive comparison of 15 audio features in
the context of binary COVID-19 audio classification, we first provide a detailed
overview and intuition of their function. The selected features cover a variety of
domains, including those in speech and non-speech audio tasks. A summary is
presented in Table 1.

2.1 Time domain

Low-level features extracted directly from the audio signal without requiring a
transformation are grouped in the time domain. While such features are often
not meaningful to humans, they are commonly included in a larger feature set
in audio classification tasks because they are very efficient to calculate. In the
context of lung-sound classification, such features can identify explosive and
discontinuous sounds (e.g. crackling) that often occur due to a buildup of fluid or
secretions in the throat and lungs [21]. The selected features have been previously
extracted for COVID-19 classification [3,22].
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Table 1: Audio feature selection. The following 15 audio features, grouped by
domain, will be considered in the paper.

Domain Feature category Name Intuition

Time
Signal energy RMSE Loudness of the signal.
Waveform ZCR Percussive vs tonal.

Frequency

Spectral S-BW Perceived timbre.
Spectral S-CENT ‘Brightness’ of a sound.
Spectral S-CONT Prevalence of formants1.
Spectral S-FLAT Similarity to white noise.
Spectral S-FLUX Rate of frequency changes.
Spectral S-ROLL ‘Skewness’ of the energy.

Time-frequency

Cepstral MFCC Timbre, tone colour/ quality.
Cepstral MFCC-∆ Velocity of temporal change.
Cepstral MFCC-∆2 Acceleration of temporal change.
Tonal C-ENS Pitch.
Tonal C-CQT Pitch.
Tonal C-STFT Pitch.
Tonal TN Pitch & pitch height.

1Formants can be described as a spectrum’s local maxima. In speech audio, they
correspond to regularly occurring energy concentrations at certain frequencies in
signals produced by the human vocal tract [4].

i. Root mean square energy (RMSE). A description of the signal’s mean
amplitude, calculated by taking the Root Mean Square (RMS) of energy
over N frames, see Equation (1). xn is the average energy per frame n [17].

RMS =
√

∑N

n=1 x
2
n (1)

ii. Zero-crossing rate (ZCR). The rate of the signal’s sign change over time
is given by Equation (2). Here xn is the signal’s amplitude at frame with
index n (N frames overall), and sign(a) returns 1 if a > 0, 0 if a = 0, and
−1 otherwise [17].

ZCR = 1
2 ×

∑N

n=2 |sign(xn)− sign(xn−1)| (2)

2.2 Frequency domain

In its original format, digital audio is encoded as a temporal sequence of samples.
Decomposing the signal into its constituent frequencies (e.g. with the Fourier
Transform) reveals information about the frequency content. Because most
frequency-domain features, alternatively spectral features, describe only a small
aspect of the audio signal, they are rarely used individually for audio classifi-
cation tasks. The selected features describe and compare the signal’s intensity,
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which can provide information about the state of the respiratory tract, e.g. iden-
tifying abnormal lung sounds if it is affected by a respiratory disease [21]. A
subset of the following features has previously been used for COVID-19 detec-
tion [3,22].

i. Spectral bandwidth (S-BW). Also referred to as spectral spread, S-BW de-
scribes the signal’s energy concentration around the centroid. Equation (3)
defines bandwidth as the variance around the signal’s expected frequency
E given the energy Pk and corresponding frequency fk in 1 ≤ k ≤ K sub-
bands [19].

S-BW =

√

∑K

k=1(fk − E2 × Pk) (3)

ii. Spectral centroid (S-CENT). The centroid identifies a signal’s mean fre-
quency, i.e. the band with the highest energy concentration. Equation (4)
shows its breakdown into the weighted and unweighted sums of spectral
magnitudes Pk in the k-th of K subbands. fk is the corresponding frequency
range [23].

S-CENT =
∑

K

k=1
Pk×fk∑

K

k=1
Pk

(4)

iii. Spectral contrast (S-CONT). The audio signal’s contrast is evaluated by
comparing the spectral energy peaks Pk and valleys Vk in each frequency
subband k, see Equation (5). N represents the number of frames and x′

k,n

the FFT vector of the k-th subband in frame n with elements in descending
order [7].

S-CONTk = Pk − Vk = (log 1
N

∑N

n=1 x
′

k,n)− (log 1
N

∑N

n=1 x
′

k,N−n+1) (5)

iv. Spectral flatness (S-FLAT). Also called a tonality coefficient, flatness mea-
sures a signal’s similarity to white noise (flat spectrum). It is defined as the
ratio between the geometric and arithmetic means as shown in Equation (6),
where Pk is the signal’s energy at the k-th frequency band s.t. 1 ≤ k ≤ K [10].

S-FLAT =
(
∏

K

k=1
Pk)

1

K

1

K

∑
K

k=1
Pk

(6)

v. Spectral flux (S-FLUX). A measure of a signal’s change in energy between
frames, estimated by Equation (7). En,k represents the k-th normalised DFT
(Discrete Fourier Transform) coefficient in frame n across K coefficients [23].

S-FLUXn =
∑K

k=1 En,k − E2
n−1,k (7)

vi. Spectral rolloff (S-ROLL). A description of the relationship between fre-
quency and energy, rolloff represents the minimum frequency fR s.t. the
energy accumulated below is not less than the specified proportion S of the
total energy. Pk is the spectral energy in one of K frequency subbands [23].

S-ROLL = argmin fR ∈ {1, . . . ,K}
∑fR

k=1 Pk ≥ S
∑K

k=1 Pk (8)
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2.3 Time-frequency domain

This feature category illustrates a signal’s frequency-related information as it
varies over time. We consider two types of time-frequency features: cepstral fea-
tures (encoding timbre or tone colour) and tonal features (describing pitch).

Cepstral features This paper focuses on the Mel-frequency Cepstrum (MFC),
as it is by far the most commonly used cepstral feature variant in audio classi-
fication tasks. MFC mimics the non-linear human perceptions of sound and is
applied ubiquitously in both speech and non-speech classification tasks. While
both spectral and cepstral features can facilitate respiratory classification by
exploring a signal’s frequency content, the latter’s benefit is the inclusion of
temporal and transitional information. MFC features have been previously used
for COVID-19 detection [3,13].

i. Mel-frequency cepstral coefficients (MFCC). MFCC features are derived
from the MFC power spectrum. In Equation (9) the signal is transformed
into the time-frequency domain by a discrete cosine transform. K is the
number of coefficients and s(k) calculates the logarithmic energy of the k-th
coefficient at frame n [20].

MFCCn =
∑K

k=1 s(k) cos
πn(k−0.5)

K
(9)

ii. MFCC-∆. As the first-order derivative of MFCC, also referred to as ve-
locity, the feature represents temporal change [5]. It is often included in
combination with MFCC, as it has a low extraction cost.

iii. MFCC-∆2. Acceleration, MFCC’s second-order derivative, is commonly
included when MFCC is extracted from an audio signal because it is resource-
efficient to calculate and can improve audio classification [5].

Tonal features Tonal features primarily encode an audio signal’s harmon-
ics information in 12 pitch classes2 and are based on the human perception of
periodic pitch [15]. Two feature groups are considered, distinguished by their
underlying representation: Chroma features (chromagram) and Tonnetz (lattice
graph). While the Tonnetz encodes tone quality and height, chromagrams omit
interval information. A common consequence of respiratory diseases is a narrow-
ing of the airways by secretions. The effect is a wheezing sound because the pitch
of in- and expiration is altered [21], which can be heard in COVID-19 lung-sound
recordings.

i. Chroma energy normalised (C-ENS). A chromagram feature abstraction
introduced in [14] by considering short-time statistics over energy distribu-
tions within the chroma bands. Normalisation of the feature vectors makes
it resistant to dynamic variations, such as timbre and articulation [15].

2 Pitch classes of the equal tempered scale, prominent in Western tonal music [15].
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ii. Constant-Q chromagram (C-CQT). Chroma features are extracted from
a time-frequency representation of audio via a filter bank. In this case, the
initial audio transformation is the constant-Q transform (CQT), which has
a good resolution of low frequencies [8].

iii. Short-time Fourier Transform chromagram (C-STFT). The feature ex-
traction process is similar to the description for C-CQT. The difference lies
in the audio signal’s transformation into the time-frequency domain, which
in this case is calculated via the Short-time Fourier Transform (STFT) [8].

iv. Tonnetz (TN). A Tonnetz (German: tone-network) encodes harmonic data
in a lattice graph. The benefit of a graphical representation is that distances
between points are musically meaningful, as pitch is encoded as geometric
areas in the graph [6].

3 Experimental method and results

The ranking of the above 15 selected audio features will be based on the empirical
results and analysis of two datasets to make the findings more generalisable. The
assumption is that any distinct patterns repeated across independent datasets
are likely inherent to the COVID-19 breath and cough audio recordings, not the
underlying datasets.

3.1 Research questions

Exploring the following questions is the focus of this body of work. They are
centred on the binary COVID-19 audio classification task and have informed
the experimental design and consequent results analysis.

i. What are the most distinguishable ML audio features?
ii. Are the feature rankings comparable across independent datasets?
iii. What is the performance accuracy of the new ML models using the most

dominant features?

To answer the above research questions, this section contains a brief descrip-
tion of the datasets underlying the evaluated features, the data preparation and
pre-processing steps, and an extensive description and analysis of the results. Fi-
nally, we compare our improved results to the baseline ML accuracies presented
in the datasets’ original papers.

3.2 The datasets

Two independent datasets are considered in parallel throughout the paper to
indicate whether identified feature rankings are likely specific to the underlying
dataset or generally applicable: the Cambridge and the Coswara COVID-19
audio datasets. The distribution of sample counts can be found in Table 2.
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Table 2: Sample counts and label stratification of the Cambridge and Coswara
datasets. ‘Shallow’ and ‘deep’ refer to to the ‘shallow’ and ‘deep’ breath (B),
cough (C), and breathcough (BC) recordings available for every participant.

Label Cambridge Coswara-deep Cos.-shallow

B C BC B C BC B C BC

COVID-19 111 111 111 81 81 81 81 81 81
Healthy 194 194 194 1074 1074 1074 1074 1074 1074∑

305 305 305 1155 1155 1155 1155 1155 1155

Introduced in [3], the Cambridge dataset is a collection of voluntary web and
android recordings of coughing and breathing sounds from healthy, COVID-
positive, and asthmatic people. Only the first two categories are considered, as
the latter only has eight samples. The data available for this paper is a curated
set of samples collected during April and May 2020. While the paper describes
various metadata statistics over the entire dataset (e.g. age, gender, location, and
symptom distribution), such information is not included in the curated dataset.
The data comes in 2 to 30-second WAV files with a 48kHz sampling.

The Coswara dataset [22] is collected and freely distributed by the Indian
Institute of Science and receives its voluntary samples through a web application.
The samples considered in this paper were collected between April and December
2020. The available categories and recording types are much more varied, but
to remain consistent with the Cambridge dataset, we filter the data for COVID-
positive and healthy participants that have submitted breathing and coughing
recordings. The ‘shallow’ and ‘deep’ variants are considered as two separate
datasets. Conveniently, the data format is compatible with the same WAV format
at 48kHz and 1 to 30-second long recordings.

3.3 Feature engineering

Because the recording devices and environments were not controlled, consistently
cleaning the audio data is important to reduce non-discriminatory variance and
improve the samples’ comparability to each other. The applied pre-processing
steps include converting the audio to mono, resampling it to 48kHz, trimming the
leading and trailing silences, and normalising the signal’s amplitude to [−1, 1].
The effects can be seen in Figure 1. The Python-toolkit librosa [11] (version
0.8) was used for the signal processing tasks.

The basis of all of our evaluations are the 15 audio features from the time,
frequency, and time-frequency domains identified and described in Section 2. In
general, ML models require input with a consistent format and dimension. Be-
cause the recordings have vastly different lengths (1–30 seconds, see Figure 2)
and the selected audio features are calculated over frames, the question of how
to represent the feature vector at a constant dimension was a challenge. A range
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(a) Raw and pre-processed ‘breath’ audio.
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(b) Raw and pre-processed ‘cough’ audio.

Fig. 1: The effects of cleaning the raw audio recordings. Pre-processing steps
include converting the audio to mono at 48kHz, trimming, and normalising.

of summary statistics over frames is taken to capture all available data with-
out resorting to padding (infeasible due to the up to 29-second difference). This
leads to a feature vector guaranteed to have the same number of dimensions,
regardless of the sample length. The statistics we consider are the (i) mini-
mum, (ii) maximum, (iii) mean, (iv) median, (v) variance, (vi) 1st quartile,
and (vii) 3rd quartile, giving us a wide range of descriptive information about
the features’ distribution over frames. The total count of features analysed and
ranked individually and by category is 812, as detailed in Table 3. no dimension-
ality reduction to maintain interpretability of the features

breath cough
0
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20

30
Cambridge

Raw
Trimmed

breath cough

Coswara-deep
Raw
Trimmed

breath cough

Coswara-shallow
Raw
Trimmed

se
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Fig. 2: Sample lengths before and after pre-processing. By trimming the leading
and trailing silences at 60dB (empirically identified cutoff point) we can remove
non-discriminative data. Sample lengths are reduced by 1–3 seconds on average.

3.4 Results description and analysis

The paper’s main contribution is an extensive and in-depth analysis and ranking
of 15 audio features for the binary COVID-healthy classification task. The goal
is to identify particularly informative features and feature categories by carrying
out the evaluation on two independent datasets in parallel: the Cambridge and
the Coswara (deep and shallow variants) datasets. Due to their independence, we
propose that any recurring patterns in predictive efficiency are likely independent
of the underlying dataset and should therefore be strongly considered for future
ML COVID-19 audio classification applications.
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Table 3: Feature dimensions. A total of 812 features are considered. Seven sum-
mary statistics (min, max, mean, median, var, Q1, and Q3) are taken across
frames to make the feature vector dimensions compatible regardless of the un-
derlying recording’s length (1–30s) and the number of respiratory events (1–10).
The large number of features brings a risk of overfitting, however, for the ma-
jority of category evaluations only a small subset of features is used at a time.

Feature Name Count Total (×7)

RMSE Root mean square energy 1 7
ZCR Zero-crossing rate 1 7
S-BW Spectral bandwidth 1 7
S-CENT Spectral centroid 1 7
S-CONT Spectral contrast 7 49
S-FLAT Spectral flatness 1 7
S-FLUX Spectral flux 1 7
S-ROLL Spectral rolloff 1 7
MFCC Mel-frequency cepstral coefficients 20 140
MFCC-∆ Mel-frequency cepstral coefficients ∆ 20 140
MFCC-∆2 Mel-frequency cepstral coefficients ∆2 20 140
C-ENS Chroma energy normalised 12 84
C-CQT Constant-Q chromagram 12 84
C-STFT Short-time Fourier Transform chromagram 12 84
TN Tonnetz 6 42

The 15 audio features summarised in Table 3 are analysed over the following
configurations to provide a detailed picture of their predictive efficiency:

i. The Cambridge, Coswara-deep, and Coswara-shallow datasets.
ii. ‘Breath’ (B), ‘cough’ (C), and ‘breathcough’ (BC) feature vectors. The latter

is a concatenation of the previous two feature vectors, i.e. double the size.
iii. Five ML models, selected for the variety in which they partition the label

space. The models are implemented with the scikit-learn [18] package
version 0.24, and optimised with parameter grid searches: AdaBoost with
Random Forest (nr. estimators, criterion), K-Nearest Neighbours (K,
weights), Logistic Regression (C, penalty, solver), Random Forest (max.
depth, criterion), and Support Vector Machine (C, γ, kernel), referred to
as ADA, KNN, LR, RF, and SVM respectively.

To ensure that the generated results are reliable even on the relatively small
and very imbalanced available datasets, 5-fold Cross-Validation (CV) stratified
by labels is employed. We select three metrics to compare the features’ impact on
the audio classification task at hand: Receiver Operating Characteristic (ROC),
Precision, and Recall. The latter two counteract ROC’s optimism on highly im-
balanced datasets, see Figure 3 for a brief overview.

In the following, we provide a detailed analysis and discussion of the previ-
ously described audio features’ (Section 2) performance on the selected datasets
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Fig. 3: Intuition of the considered metrics. In addition to ROC, Precision-Recall
(PR) curves are a valuable tool when evaluating imbalanced datasets because
they counteract the effect of relative imbalances by omitting true negatives (TN
or specificity). PR no-skill classifiers correspond to the positive sample ratio in
the dataset (i.e. precision at threshold 0.0).

(Section 3.2) for the binary COVID-19 classification task. Finally, we compare
our improved results to the baseline ML accuracies presented in the datasets’
original papers.

Feature categories. An initial overview of the ‘breath’, ‘cough’, and ‘breath-
cough’ full feature vectors’ COVID-19 discriminatory efficiency shows promising
results, as most models outperform their no-skill equivalent. Figure 4 visualises
the mean ROC and Precision-Recall (PR) curves over 5 CV folds on the ‘breath-
cough’ vector for each of the considered models. It clearly establishes SVM and
RF outperforming their counterparts across all datasets and metrics, with a
similar trend observed for the other two data types.

Even though the Cambridge and Coswara datasets have similarly shaped
ROC curves, it becomes immediately apparent that the Cambridge dataset sig-
nificantly outperforms its counterparts when looking at the PR curves. This
illustrates ROC-AUC’s optimism when applied to vastly imbalanced datasets,
justifying our approach of considering multiple metrics throughout our anal-
ysis. An influential factor in Coswara’s lower overall accuracies is the greater
imbalance of COVID-positive samples compared to healthy ones at 13:1 com-
pared to 2:1 in the Cambridge data (see Table 2 for sample counts). Nonetheless,
models trained on the Coswara datasets still perform noticeably better than an
entirely unskilled classifier with AP (Average Precision) scores between 13–38%
compared to the unskilled 7% (equivalent to the positive sample ratio).

The results contained in Table 4 confirm our selection of SVM and RF as
the best-performing models. The table shows the same ‘breathcough’ feature
vector’s predictive efficiency, but this time only considering one feature category
(time domain, spectral, cepstral, tonal) at a time. Apart from two exceptions,
both SVM and RF achieve higher accuracies than the other ML models across
the board.

Considering SVM’s mean ROC-AUC accuracies on the ‘breathcough’ vector
across all datasets, we noted that the 4 feature categories could be broadly ranked
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(b) Mean PR over 5-fold CV (positive: COVID). AP stands for ‘Average Precision’.

Fig. 4: Model results on the ‘breathcough’ feature vector. The graphs show the 5
considered models and an unskilled classifier. For PR-curves, this corresponds
to the ratio of positive labels in the dataset. Even though the ROC-curves look
similar across datasets, the PR-curves reveal that Cambridge performs better
overall. We can also identify SVM and RF as the top-performing models.

in the following order of increasing predictive efficiency (Cambridge, Coswara-
deep, Coswara-shallow): time domain (78.78%, 63.94%, 55.90%), tonal (82.59%,
72.98% 68.81%), spectral (84.84%, 74.46%, 72.32%), and cepstral (87.15%,
75.62%, 70.62%). As evidenced by the results, the spectral and cepstral cat-
egories perform equally well, where spectral slightly outperforms cepstral for
Coswara-shallow by about 2%. More noteworthy is that the same ranking pat-
tern is prevalent for all 5 considered ML models, leading to the conclusion that
the cepstral and spectral feature categories encode particularly informative data
for COVID-19 classification contained in the breathing and coughing signals.

Individual features. Now turning our attention to the analysis of individual
features, the initial focus lies on the previously identified best-performing SVM
and RF classifiers before broadening again to include all models, letting us iden-
tify generally applicable patterns of predictive efficiency. The feature accuracies
on which the following descriptions are based are available in Tables 5 to 7 for
the Cambridge, Coswara-deep, and Coswara-shallow datasets respectively.
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Table 4: ‘Breathcough’ 5-fold CV ROC-AUC results. The mean µ and standard
deviation σ are reported for four feature categories (i.e. the feature vectors are a
concatenation of the category components, see Table 1 for details). SVM and RF
perform best overall, and the feature categories can be ranked in the following
increasing order: time domain, tonal, spectral, and cepstral.

Dataset Category ADA KNN LR RF SVM

µ σ µ σ µ σ µ σ µ σ

Cambridge

Time dom. 67.17 0.04 77.96 0.07 76.01 0.07 78.21 0.05 78.78 0.07
Spectral 87.09 0.04 85.34 0.05 84.17 0.06 87.15 0.05 84.84 0.07
Cepstral 83.84 0.05 85.56 0.07 83.27 0.06 87.82 0.07 87.15 0.06
Tonal 84.74 0.09 81.04 0.05 81.44 0.04 81.11 0.07 82.59 0.07

Coswara-deep

Time dom. 55.65 0.07 62.34 0.02 54.21 0.09 64.65 0.05 63.94 0.07
Spectral 65.77 0.07 68.18 0.04 72.03 0.05 71.76 0.06 74.46 0.06
Cepstral 70.83 0.06 71.03 0.03 75.01 0.05 77.55 0.06 75.62 0.08
Tonal 69.29 0.06 66.27 0.02 68.02 0.03 72.32 0.06 72.98 0.03

Coswara-shallow

Time dom. 61.63 0.04 55.05 0.06 56.16 0.09 54.27 0.07 55.90 0.09
Spectral 66.69 0.04 61.02 0.05 69.85 0.05 69.15 0.05 72.32 0.04
Cepstral 63.13 0.09 68.35 0.04 65.83 0.03 71.79 0.06 70.62 0.04
Tonal 58.37 0.08 63.98 0.05 65.21 0.08 67.17 0.08 68.81 0.08

Taking a general look at the results, we see that the majority of the 15 fea-
tures significantly outperforms random guesses for the binary COVID-19 classi-
fication task across datasets and sample types (‘breath’, ‘cough’, ‘breathcough’),
with better accuracy on the Cambridge dataset. The lowest accuracy on average
is achieved by Coswara-shallow, matching our previous findings when considering
both the entire feature vector and individual feature categories. Looking at which
underlying sample type performs best further underlines the similarities between
the Cambridge and Coswara-deep datasets compared to Coswara-shallow. When
considering the former, ‘breathcough’ achieves the highest mean ROC-AUC
scores on average (except for time domain features), whereas Coswara-shallow
is split evenly between ‘breath’ (time domain, spectral) and ‘breathcough’ (cep-
stral, tonal). However, given all considered features in a single feature vector,
the Coswara-shallow dataset still shows its highest accuracy on ‘breathcough’
samples since cepstral and tonal features are very influential overall.

When comparing the results within the feature categories, MFCC (cepstral),
S-CONT (spectral), and C-ENS/ C-STFT (tonal) stand out as the highest-
scoring features in their respective categories across datasets and models. In
contrast, the time domain features are much more varied in which one performs
best. It is worth mentioning that spectral contrast (S-CONT) is the only com-
posite feature (7-D) in the Spectral category, which could be part of the reason it
performs better. However, the heat maps in Figure 5 clearly show that individual
S-CONT features perform better or on par with other top spectral features in a



A
u
d
io

featu
re

ran
kin

g
for

sou
n
d
-b

ased
C

O
V

ID
-19

p
atient

d
etection

13

Table 5: 5-fold CV results on all audio features extracted from the Cambridge dataset. The mean µ and standard deviation σ

ROC-AUC results are reported. The majority of features provide the most accurate results when considering the ‘breathcough’
(‘BC’) vector. We also find that the feature categories can be ranked in the following order of increasing accuracy across both
models: time domain, tonal, spectral, and cepstral.

(a) SVM results.

Category Feature Breath Cough BC

µ σ µ σ µ σ

All All 85.86 0.07 85.80 0.05 87.68 0.06

Time dom.
All 72.77 0.04 74.90 0.08 78.78 0.07
RMSE 72.28 0.05 76.45 0.08 77.88 0.08
ZCR 64.59 0.08 69.73 0.06 71.40 0.06

Spectral

All 85.28 0.06 84.03 0.07 84.84 0.07
S-BW 69.24 0.08 71.57 0.04 75.45 0.08
S-CENT 73.45 0.08 70.06 0.08 78.07 0.07
S-CONT 86.14 0.06 84.03 0.08 85.98 0.08
S-FLAT 74.22 0.07 75.44 0.05 75.87 0.06
S-FLUX 79.70 0.08 77.14 0.06 82.08 0.06
S-ROLL 70.70 0.07 67.22 0.04 71.22 0.06

Cepstral

All 86.25 0.06 83.98 0.06 87.15 0.06
MFCC 86.56 0.04 83.25 0.05 87.68 0.04
MFCC-∆ 84.21 0.04 79.67 0.08 85.54 0.08
MFCC-∆2 84.25 0.09 78.29 0.07 85.24 0.09

Tonal

All 79.69 0.07 78.06 0.07 82.59 0.07
C-CQT 76.29 0.06 71.12 0.09 77.30 0.06
C-ENS 77.56 0.07 72.11 0.07 83.50 0.03
C-STFT 77.57 0.05 72.65 0.03 77.78 0.07
TN 74.28 0.04 70.85 0.04 77.57 0.05

(b) RF results.

Category Feature Breath Cough BC

µ σ µ σ µ σ

All All 86.35 0.07 86.89 0.07 87.78 0.06

Time dom.
All 66.07 0.02 74.12 0.09 78.21 0.05
RMSE 61.86 0.05 72.08 0.09 75.19 0.06
ZCR 53.77 0.04 66.80 0.06 66.41 0.05

Spectral

All 85.07 0.07 86.23 0.07 87.15 0.05
S-BW 70.69 0.07 69.48 0.05 76.39 0.04
S-CENT 71.40 0.08 70.06 0.05 74.10 0.07
S-CONT 85.61 0.06 85.04 0.07 85.74 0.08
S-FLAT 76.28 0.08 81.29 0.05 81.14 0.06
S-FLUX 79.83 0.07 76.90 0.07 82.34 0.06
S-ROLL 69.82 0.03 67.49 0.04 71.99 0.05

Cepstral

All 86.55 0.05 83.70 0.07 87.82 0.07
MFCC 84.27 0.05 83.27 0.05 85.26 0.05
MFCC-∆ 86.79 0.06 79.62 0.11 86.80 0.08
MFCC-∆2 86.55 0.06 78.02 0.08 88.31 0.07

Tonal

All 78.78 0.07 76.75 0.05 81.11 0.07
C-CQT 74.34 0.06 68.78 0.06 76.11 0.06
C-ENS 79.05 0.06 71.08 0.06 81.57 0.05
C-STFT 77.58 0.08 69.57 0.05 77.67 0.07
TN 75.34 0.06 63.54 0.06 76.35 0.04
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Table 6: 5-fold CV results on all audio features extracted from the Coswara-deep dataset. The mean µ and standard deviation σ

ROC-AUC results are reported. Like with the Cambridge dataset, most features show the highest accuracy on the ‘breathcough’
(‘BC’) vector. Promisingly, these results show the exact same feature ranking (increasing efficiency): time domain, tonal,
spectral, and cepstral.

(a) SVM results.

Category Feature Breath Cough BC

µ σ µ σ µ σ

All All 76.79 0.04 70.85 0.06 77.15 0.05

Time dom.
All 61.80 0.04 58.58 0.06 63.94 0.07
RMSE 55.89 0.10 61.14 0.07 61.81 0.07
ZCR 64.68 0.03 59.45 0.13 64.60 0.04

Spectral

All 76.34 0.05 66.74 0.05 74.46 0.06
S-BW 61.63 0.07 63.51 0.05 65.46 0.04
S-CENT 68.53 0.06 59.91 0.06 71.95 0.05
S-CONT 74.89 0.05 63.42 0.08 73.57 0.09
S-FLAT 61.77 0.08 59.86 0.06 61.14 0.03
S-FLUX 63.79 0.06 62.76 0.07 67.20 0.04
S-ROLL 65.35 0.05 63.16 0.05 67.58 0.08

Cepstral

All 74.57 0.03 70.15 0.09 75.62 0.08
MFCC 74.24 0.03 70.74 0.01 75.38 0.05
MFCC-∆ 64.85 0.07 68.90 0.05 68.99 0.04
MFCC-∆2 66.65 0.08 67.72 0.06 70.72 0.07

Tonal

All 71.74 0.05 64.06 0.06 72.98 0.03
C-CQT 67.87 0.04 62.78 0.07 61.50 0.05
C-ENS 70.03 0.07 65.14 0.03 65.96 0.05
C-STFT 67.01 0.05 61.80 0.08 68.19 0.10
TN 60.90 0.04 62.84 0.02 61.33 0.03

(b) RF results.

Category Feature Breath Cough BC

µ σ µ σ µ σ

All All 78.02 0.04 70.97 0.06 79.31 0.05

Time dom.
All 58.98 0.07 58.92 0.04 64.65 0.05
RMSE 50.33 0.06 56.25 0.04 59.25 0.06
ZCR 57.81 0.09 51.63 0.02 61.39 0.03

Spectral

All 74.53 0.03 65.95 0.07 71.76 0.06
S-BW 59.58 0.04 62.54 0.10 66.23 0.07
S-CENT 63.35 0.06 58.70 0.07 64.90 0.10
S-CONT 71.54 0.03 58.91 0.09 69.94 0.07
S-FLAT 64.19 0.04 66.23 0.04 66.12 0.06
S-FLUX 60.07 0.04 53.91 0.05 61.47 0.04
S-ROLL 60.57 0.08 59.72 0.09 66.64 0.07

Cepstral

All 77.76 0.06 72.88 0.04 77.55 0.06
MFCC 72.99 0.03 67.26 0.03 75.86 0.02
MFCC-∆ 69.07 0.06 70.82 0.07 73.40 0.07
MFCC-∆2 67.57 0.07 69.21 0.09 72.83 0.07

Tonal

All 71.06 0.06 65.46 0.07 72.32 0.06
C-CQT 65.55 0.05 55.87 0.10 63.16 0.06
C-ENS 67.51 0.06 57.66 0.08 63.34 0.05
C-STFT 65.60 0.07 59.25 0.09 69.33 0.08
TN 63.74 0.06 60.66 0.05 65.00 0.05



A
u
d
io

featu
re

ran
kin

g
for

sou
n
d
-b

ased
C

O
V

ID
-19

p
atient

d
etection

15

Table 7: 5-fold CV results on all audio features extracted from the Coswara-shallow dataset. The mean µ and standard deviation
σ ROC-AUC results are reported. While the other two datasets follow very similar patterns, this one is the most different. For
example, there is no one sample type that the majority of features perform best on. Nonetheless, the overall category ranking
stays the same: time domain, tonal, spectral, and cepstral.

(a) SVM results.

Category Feature Breath Cough BC

µ σ µ σ µ σ

All All 72.62 0.06 68.92 0.05 76.29 0.06

Time dom.
All 61.45 0.08 53.03 0.06 55.90 0.09
RMSE 59.92 0.05 53.74 0.03 59.84 0.05
ZCR 59.77 0.03 53.21 0.08 55.67 0.05

Spectral

All 69.29 0.04 65.84 0.04 72.32 0.04
S-BW 63.10 0.04 59.81 0.03 61.05 0.05
S-CENT 63.40 0.03 58.86 0.07 62.04 0.04
S-CONT 70.20 0.05 64.20 0.05 71.85 0.05
S-FLAT 59.42 0.07 57.07 0.04 60.76 0.09
S-FLUX 58.94 0.06 62.23 0.04 60.85 0.04
S-ROLL 64.48 0.05 60.84 0.06 63.73 0.04

Cepstral

All 67.80 0.05 66.80 0.05 70.62 0.04
MFCC 71.27 0.04 66.88 0.09 71.17 0.06
MFCC-∆ 63.93 0.10 67.15 0.06 65.77 0.04
MFCC-∆2 61.34 0.04 63.44 0.04 65.44 0.06

Tonal

All 66.78 0.10 63.07 0.03 68.81 0.08
C-CQT 65.93 0.06 59.98 0.08 64.97 0.06
C-ENS 59.79 0.06 63.99 0.04 65.16 0.04
C-STFT 65.82 0.03 63.37 0.03 68.59 0.08
TN 59.85 0.03 60.40 0.03 60.64 0.06

(b) RF results.

Category Feature Breath Cough BC

µ σ µ σ µ σ

All All 70.54 0.07 71.88 0.04 76.76 0.04

Time dom.
All 61.24 0.07 59.38 0.04 54.27 0.07
RMSE 51.72 0.07 50.26 0.07 49.25 0.06
ZCR 58.66 0.05 55.16 0.07 61.14 0.05

Spectral

All 68.46 0.05 64.57 0.03 69.15 0.05
S-BW 58.46 0.07 46.51 0.05 57.78 0.03
S-CENT 59.04 0.07 57.48 0.07 58.54 0.06
S-CONT 67.40 0.05 62.84 0.06 68.80 0.04
S-FLAT 55.92 0.02 52.57 0.03 52.68 0.05
S-FLUX 44.77 0.04 58.70 0.06 56.65 0.04
S-ROLL 68.04 0.07 57.36 0.05 64.79 0.06

Cepstral

All 68.21 0.06 71.60 0.05 71.79 0.06
MFCC 68.47 0.03 68.23 0.07 71.92 0.03
MFCC-∆ 61.91 0.04 66.87 0.05 66.83 0.04
MFCC-∆2 60.53 0.05 69.07 0.05 65.95 0.05

Tonal

All 65.39 0.08 61.80 0.02 67.17 0.08
C-CQT 62.54 0.07 57.99 0.05 61.08 0.04
C-ENS 62.49 0.05 61.97 0.07 64.37 0.01
C-STFT 64.27 0.06 58.54 0.03 69.62 0.07
TN 56.01 0.07 56.64 0.05 54.12 0.04
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majority of cases across datasets, sample types, and models, leading to the con-
clusion that S-CONT’s overall positive COVID classification accuracy is in fact
based on high-scoring sub-features, rather than just its increased dimensionality.
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(e) SVM.

Fig. 5: Normalised ROC-AUC scores of top spectral features for breath (‘B’),
cough (‘C’), and breathcough (‘BC’). The graphs show that S-CONT’s high per-
formance is achieved because individual features consistently outperform other
spectral features, not just because it is the only composite spectral feature (7-D).

Lastly, we note a surprising trend regarding MFCC and its derivative fea-
tures. A prevalent rule of thumb concerning the number of MFCC features that
should be included for audio classification tasks is 12 or 13 [3,7,20,22]. How-
ever, Figure 6 shows that higher-order features actually provide remarkable dis-
criminative information for the identification of COVID-19 respiratory sounds
either on par with (Coswara-deep) or significantly outperforming (Cambridge)
the first 13 features. This phenomenon is most noticeable in the ‘breathcough’
and ‘breath’ features and MFCC’s derivatives. The intuition for MFCCs is that
the lower-order features provide information about the signal’s energy distribu-
tion between high and low frequencies, and the higher-order features contain
information about finer details such as pitch and tone quality [12]. From this,
we can extrapolate that timbral information is very relevant to COVID audio
classification.

Discussion. We have found, described, and analysed in the extensive compar-
ison and ranking of 15 audio features in the previous section that there are
distinct efficiency patterns that reoccur on multiple independent datasets.

Starting with the encompassing audio feature categories, there is a distinct
order of predictive efficiency that is consistent across different datasets, mod-
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Fig. 6: Normalised mean ROC-AUC heat map for MFCC and its derivative fea-
tures. Surprisingly and contrary to a common audio feature selection rule of
thumb [3,7,20,22], higher-order MFFC features (13+) provide significant dis-
criminatory efficiency for COVID-19 classification higher than or on par with
lower-order features. This shows that pitch and timbral information is especially
relevant to COVID respiratory classification. ‘BC’, ‘B’, and ‘C’ stand for the
‘breathcough’, ‘breath’, and ‘cough’ sample variants.

els, and sample types (increasing): time domain, tonal, spectral, and cepstral.
This does not quite follow the intuitive expectation that more complex features
provide more discriminative information (e.g. tonal vs spectral features). On the
other hand, it can be justified when considering that tonal features describe pitch
and so are more suited to tasks with melodic content. The ranking also underlines
the significance of frequency-based features by elevating the spectral and cepstral
categories. Features in these categories encode an audio signal’s frequency con-
tent and describe timbral aspects and tone quality or colour. In addition to the
feature rankings, we have also shown that the common audio feature selection
rule of thumb of using only the first 13 MFCC features [3,7,20,22] is not applica-
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ble in this case. Indeed, the higher-order (describing timbre) features’ predictive
efficiency provides significantly more discriminatory information, especially for
the ‘breathcough’ and ‘breath’ feature vectors.

Taking a step back from the individual features, we note that the most pre-
vailing pattern across all of the previous descriptions is that the concatenated
‘breathcough’ feature vector outperforms the individual ‘breath’ and ‘cough’
vectors in most cases.

Given our insights, it is interesting to compare our ML results to the base-
lines presented when the datasets were published, summarised in Table 8. The
evaluated models are of similar type and complexity; The major difference is our
introduction of new training features. We can see that, in fact, our improved fea-
ture vectors significantly outperform both the Cambridge and Coswara baseline
accuracies by over 10%, validating our feature selection.

Table 8: Comparison to baseline results in the Cambridge and Coswara/ DiCOVA
challenge papers. Both papers present multiple results with different configura-
tions. We select the most comparable in terms of feature pre-processing (i.e.
no dimensionality reduction or DL embedding) and classification model (simple
ML). All results are the average over 5-fold CV.

Origin Dataset Sample Model ROC-AUC Precision Recall

µ σ µ σ µ σ

This paper Cambridge BC SVM 87.68 0.06 87.61 0.07 81.39 0.07
[3] Cambridge BC LR 71.00 0.08 69.00 0.09 66.00 0.14

This paper Cos-deep BC SVM 77.15 0.05 76.7 0.05 53.09 0.03
[13] Cos-Unknown C RF 67.59 — — — — —

4 Related work

While it seems that we are constantly surrounded by speech recognition in our
day-to-day lives, when is the last time a digital assistant said ‘bless you’ after
hearing and recognising a sneeze? The ubiquity of speech recognition is at least
partially driven by commercial value. In contrast, non-speech sound classifica-
tion, especially body sound (e.g. sneeze, cough, breathing) classification, has only
recently gained traction over the past few years. The sudden emergence of the
COVID-19 respiratory disease and the continual lack of testing availability have
given the subfield a significant boost.

COVID-19 is not the first application of respiratory classification. It has long
been common knowledge that respiratory diseases and disorders affect breathing
and coughing by physically altering the respiratory environment. Because many
disease-related abnormalities can affect only subtle changes in auditory cues, the
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inherently subjective manual auscultation3 process can be error-prone even when
performed by a trained medical professional [2]. However, a literature review of
existing implementations shows that ML can reliably pick up on those subtle
signals for a variety of diseases.

While the following is by no means a comprehensive list of existing implemen-
tations, it provides an overview of the current state of research. Smartwatches
and small wearable devices have made audio monitoring for healthcare purposes
feasible. Nguyen et al. apply a dynamic activated respiratory event detection
mechanism to non-intrusively detect coughing and sneezing events [16]. When it
comes to the diagnosis of respiratory events, Amrulloh et al. present classifiers
trained on audio features such as MFCC to distinguish between asthma and
pneumonia for pediatric patients, which are commonly misdiagnosed without
proper diagnostic tools in third-world countries, leading to unnecessary antibi-
otic prescriptions [1]. Lastly, a method of non-binary classification is presented
in [2]. Interestingly the audio classification task is transformed into image clas-
sification by using a spectrogram as input and achieves comparable results.

Over the past year, there has been an explosion of COVID-related datasets
and promising pre-screening implementations, utilising a wide range of sample
types. One of the first was [3], which collected and classified breath, cough, and
breathcough samples to identify their suitability for COVID-19 classification
with a small selection of common audio features. [22] considers further record-
ing types, including vowel intonation and sequence counting. Laguarta et al.
propose a different approach, instead applying classification to four biomarkers
(muscular degradation, changes in vocal cords, changes in sentiment/ mood, and
changes in the lungs/ respiratory tract) that have previously been used to iden-
tify the progress of Alzheimer’s disease. Intriguingly, this approach has a very
high success rate at identifying asymptomatic COVID-carriers [9].

While there are many promising applications available already, the novelty
of COVID audio classification means there are still many aspects that need to
be explored, partially because only limited and highly imbalanced datasets are
publicly available at the time of writing. Many improvements still have to be
made before it is reliable enough to use as a pre-screening and diagnosis tool.

5 Conclusion and further work

Our extensive comparative analysis of 15 audio features from different domains
has provided significant insights into ML feature selection in the context of
COVID-19 respiratory sound classification and addressed the research questions
laid out in Section 3.1. As the analysis found recurring patterns of predictive ef-
ficiency across two completely independent datasets, we have identified a feature
ranking and salient feature characteristics that are likely inherent to COVID-19
respiratory signals rather than the underlying datasets. These findings could be
beneficial for future sound-based COVID-19 classification applications.

3 The diagnostic process of listening to internal body sounds, often with a stethoscope.
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Throughout our analysis, we have introduced new training features that were
not considered in the baseline evaluations presented in the datasets’ papers.
Consequently, we have improved the classification results by almost 17% and
10% on the Cambridge and Coswara datasets, without significant discrepancies
or differences in the evaluated ML models.

Although this paper has provided a starting point for the holistic evalua-
tion of respiratory audio features, there are still other opportunities to further
analyse other relevant aspects. For example, a comprehensive strategy to reg-
ularise different sample lengths and preserve temporal information could bene-
fit COVID-19 classification. Additionally, advanced models s.a. Deep Learning
should be used as a basis for further feature ranking analysis, as the more com-
plex architecture could reveal thus far hidden relevance of the evaluated audio
features.

Although sound-based COVID-19 detection is the primary purpose of this re-
search, many other respiratory diseases and disorders could also benefit from the
development and improvement of automatic audio detection systems for diagno-
sis, treatment, and management purposes. Therefore, the approach described in
this paper could be generalised for the detection of other respiratory diseases.
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