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ABSTRACT 

COVID-19 has caused many deaths worldwide. The automation of the diagnosis of this virus is highly 

desired. Convolutional neural networks (CNNs) have shown outstanding classification performance on 

image datasets. To date, it appears that COVID computer-aided diagnosis systems based on CNNs and 

clinical information have not yet been analysed or explored. We propose a novel method, named the 

CNN-AE, to predict the survival chance of COVID-19 patients using a CNN trained with clinical 

information. Notably, the required resources to prepare CT images are expensive and limited compared to 

those required to collect clinical data, such as blood pressure, liver disease, etc. We evaluated our method 

using a publicly available clinical dataset that we collected. The dataset properties were carefully 

analysed to extract important features and compute the correlations of features. A data augmentation 

procedure based on autoencoders (AEs) was proposed to balance the dataset. The experimental results 

revealed that the average accuracy of the CNN-AE (96.05%) was higher than that of the CNN (92.49%). 

To demonstrate the generality of our augmentation method, we trained some existing mortality risk 

prediction methods on our dataset (with and without data augmentation) and compared their 

performances. We also evaluated our method using another dataset for further generality verification. To 

show that clinical data can be used for COVID-19 survival chance prediction, the CNN-AE was 

compared with multiple pre-trained deep models that were tuned based on CT images. 
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1 Introduction 
Currently, medical centres hold huge amounts of patient data. Medical biomarkers, demographic data and 

image modalities can help and support medical specialists to diagnose infectious diseases [1], 

Alzheimer’s [2], Parkinson [3] and coronary artery disease [4]. However, these data must be processed 

and analysed if they are to become usable information for specialists. Automated solutions based on 

artificial intelligence have the potential to carry out the required process efficiently [5]. 

Recently, a new type of coronavirus (i.e., Coronavirus Disease 2019 [COVID-19]) emerged, which has 

taken many lives worldwide [6-9]. The virus outbreak was observed for the first time in late 2019 [10, 

11]. COVID-19 primarily targets the lungs [12, 13]. Thus, if the virus is not properly diagnosed in the 

early stages of infection, it can severely damage the lungs [14]. The mortality rate of the virus is low; 

however, it must not be overlooked, as the virus is highly contagious. The virus threat becomes more 

serious when the resources of medical centres cannot provide services to the large number of people who 

are infected each day [15]. 

The prediction of the survival chance of infected individuals is as important as the early detection of the 

virus. Under resource scarcity, medical centres can take into account patients’ conditions and use the 

available resources wisely. Previous research on COVID-19 detection has proven that deep neural 

networks are very effective in the early detection of COVID-19 [16]. Thus, it may be that deep networks 

are also useful for survival chance prediction. In this study, we relied on a clinical dataset, which included 

data about gender, age and blood type, to perform a diagnostic analysis of the COVID-19 virus. To the 

best of our knowledge, this appears to be the first paper to propose a survival chance predictor for 

COVID-19 patients using clinical features. To evaluate the effectiveness of our proposed method, we 

compared its performance against a standard convolutional neural network (CNN) trained on image data. 

This study makes a number of contributions as follows: 

 The survival chance prediction of COVID-19 patients based on clinical features 

 Preparing clinical dataset to predict the survival chance of COVID-19 patients for the first time 

 Providing a careful analysis of the dataset characteristics, including an examination of the effects 

of features on the mortality rate and the correlations between each feature pair 

 Making our dataset publicly available 

 Combining Autoencoder (AE) with CNN to increase prediction accuracy 

 Proposing a data augmentation procedure to balance the number of samples of different classes of 

the dataset. Notably, our data augmentation method is generic and applicable to any other dataset. 

The remaining sections of the paper are organised as follows: Section 2 reviews the related literature; 

Section 3 briefly sets out the required background; Section 4 describes our dataset; Section 5 explains the 

proposed methodology; Section 6 presents our experimental results; and Sections 7 and 8 present our 

discussion, conclusion and future works. 

2 Literature Review 
This study sought to predict the survival chance of COVID-19 patients using clinical features. We began 

by reviewing the COVID-19 detection methods that rely on clinical features and image data. We also 

reviewed methods on mortality estimations of infected patients. 

To contain the COVID-19 threat as soon as possible, researchers approached this virus from multiple 

directions. Some focused on the fast and accurate detection of infected patients. For example, Wu et al. 



[17] extracted 11 vital blood indices using the random forest (RF) method to design an assistant 

discrimination tool. Their method had an accuracy of 96.97% and 97.95% for the test set and cross-

validation set, respectively. The assistant tool was well equipped to perform a preliminary investigation of 

suspected patients and suggest quarantine and timely treatment. In another study, Rahman et al. [18] 

reviewed various studies on treatment, complications, seasonality, symptoms, clinical features and the 

epidemiology of COVID-19 infection to assist medical practitioners by providing necessary guidance for 

the pandemic. Using a CNN, they tried to detect infected patients to isolate them from healthy patients. 

Various hybrid approaches have been adopted to improve COVID-19 diagnosis accuracy. Islam et al. [19] 

employed a CNN for feature extraction and long short-term memory for the classification of patients 

based on X-ray images. EMCNet [20] is another hybrid diagnosis approach that uses a CNN for feature 

extraction and carries out binary classification using a number of learning techniques, including RF and 

support vector machine (SVM), on X-ray images. Islam et al. [21] also used a CNN for feature extraction 

but relied on a recurrent neural network (RNN) for classification based on the extracted features. Multiple 

experiments have been conducted using a combination of architectures, such as VGG19 and 

DenseNet121, with an RNN. VGG19+RNN was reported to have the best performance. 

In addition to distinguishing between infected and non-infected patients, it is also important to determine 

whether infected patients have severe conditions. Muhammad et al. [22] relied on data mining to predict 

the recovery condition of infected patients. Their method was able to determine the age group of high-risk 

patients who are less likely to recover and those who are likely to recover quickly. Their method was able 

to provide the minimum and the maximum number of days required for a patient’s recovery. Chen et al. 

[23] studied 148 severe and 214 non-severe COVID-19 patients from Wuhan, China using their 

laboratory test results and symptoms as features to design a RF. The task of the RF was to classify 

COVID-19 patients into severe and non-severe types using the features. Using the laboratory results and 

symptom as input, the accuracy of their model was over 90%. Some of the key features they identified 

were lactate dehydrogenase (LDG), interleukin-6, absolute neutrophil count, D-Dimer, diabetes, gender, 

cardiovascular disease, hypertension and age. 

Other researchers have focused on the mortality risk prediction of the patients. Gao et al. [24] proposed a 

mortality risk prediction model for COVID-19 (MRPMC) that applied clinical data to stratify patients by 

mortality risk and predicted mortality 20 days in advance. Their ensemble framework was based on four 

machine-learning techniques; that is, a neural network (NN), a gradient-boosted decision tree [25], a 

SVM and logistic regression. Their model was able to accurately and expeditiously stratify the mortality 

risk of COVID-19 patients. 

Zhu et al. [26] presented a risk stratification score system as a multilayer perceptron (MLP) with six dense 

layers to predict mortality. 78 clinical variables were identified and prediction performance was compared 

with the pneumonia severity index, the confusion, uraemia, respiratory rate, BP, age ≥ 65 years score and 

the COVID‐19 severity score. They derived the top five predictors of mortality; that is, LDH, C‐reactive 

protein, the neutrophil to lymphocyte ratio, the Oxygenation Index and D‐dimer. Their model was proved 

to be effective in resource‐constrained and time‐sensitive environments. 

The power of the XGBoost algorithm has also been leveraged for mortality risk prediction. For example, 

Yan et al. [27] collected blood samples of 485 infected patients from China to detect key predictive 

biomarkers of COVID-19 mortality. They employed a XGBoost classifier that was able to predict the 

mortality of patients with 90% accuracy more than 10 days in advance. In another study, Bertsimas et al. 

[28] developed a data-driven mortality risk calculator for in-hospital patients. Laboratory, clinical and 

demographic variables were accumulated at the time of hospital admission. Again, they applied XGBoost 



to predict the mortality of patients. Adopting a different approach, Abdulaal et al. [29] devised a point-of-

admission mortality risk scoring system using a MLP for COVID-19 patients. The network exploited 

patient specific features, including present symptoms, smoking history, comorbidities and demographics, 

and predicted the mortality risk based on these features. The mortality prediction model demonstrated a 

specificity of 85.94%, a sensitivity of 87.50% and an accuracy of 86.25%. 

As the symptoms of different viruses may be similar to some extent, there has been an attempt to 

distinguish different viruses from one another [30]. To this end, multiple classical machine-learning 

algorithms were trained to classify textual clinical reports into the four classes of Severe acute respiratory 

syndrome (SARS), acute respiratory distress syndrome, COVID-19 and both SARS and COVID-19. 

Feature engineering has also been carried out using report length, bag of words and etc. Multinomial 

Naïve Bayes and logistic regression outperformed other classifiers with a testing accuracy of 96.2%. A 

summary of the reviewed works are presented in Table 1. 

Most existing studies on COVID-19 have relied on computed tomography (CT) and X-ray images to 

achieve their research objectives. Al-Waisy et al. [31] proposed COVID-DeepNet, a hybrid multimodal 

deep-learning system for diagnosing COVID-19 using chest X-ray images. After the pre-processing 

phase, the predictions from two models (a deep-belief network and a convolutional deep-belief network) 

were fused to improve diagnosis accuracy. Another fusion of two models (ResNet34 and a high-

resolution network model) was proposed in [32] to form the COVID-CheXNet method for COVID-19 

diagnosis. Mohammed et al. collected a dataset of X-ray images and made it publicly available. The 

dataset has been used to benchmark various machine-learning methods for COVID-19 diagnosis [33]. 

They reported that the ResNet50 model achieved the best performance. In another benchmarking study 

[34], 12 COVID-19 diagnostic methods were examined based on 10 evaluation criteria. To this end, 

multicriteria decision making (MCDM) and the technique order of preference by similarity to ideal 

solution were employed. The 10 criteria were weighted based on entropy. The SVM classifier was 

reported to have the best performance among the benchmarked methods. 

Slowing down the spread of COVID-19 and supporting infected patients are as important as COVID-19 

detection. Several works have investigated the possibility of using existing technologies to benefit 

infected patients. Rahman et al. [35] proposed a deep-learning architecture to determine whether people 

are wearing a facial mask. The monitoring was realised via closed-circuit television cameras in public 

places. Islam et al. [36] reviewed existing technologies that can facilitate the breathing of infected 

patients. Wearable technologies and how they can be used to provide initial treatment to people have also 

been investigated [37]. Ullah et al. [38] reviewed telehealth services and the possible ways in which they 

can be used to provide patients with necessary treatments while keeping the social distance between 

patients and doctors. 

Some works have adopted a broader approach and reviewed various recently developed deep-learning 

methods with application to COVID-19 diagnosis. For example, Islam et al. [39] reviewed these methods 

based on X-ray and CT images while the overall application of deep learning for diagnosis purposes to 

control the pandemic threat has been discussed in [40]. 

Based on the review presented above, it is apparent that existing works based on clinical data are rather 

scarce. Thus, we sought to conduct another study using clinical data for mortality risk assessment. The 

difference between our method and existing research on mortality risk assessment is twofold. First, we 

developed a new approach for carrying out the assessment. Second, some of the clinical features that we 

considered had never been used previously, which is why we have released our dataset publicly. As will 

be discussed further below, clinical data are more cost effective than CT images, and classifiers trained on 



clinical data achieve a level of performance that is almost equal to that achieved by classifiers trained on 

CT images. To justify this claim, we compared the performance of our method trained on clinical data to 

a standard CNN trained on CT images. 

Table 1. Summary of the reviewed literature 

Ref Method objective 

Gao et al. [24] An Ensemble of NN, grad boosted decision 

tree, SVM, and logistic regression 

mortality risk prediction 

Zhu et al. [26] MLP mortality risk prediction 

Yan et al. [27] XGBoost classifier mortality risk prediction 

Bertsimas et al. [28] XGBoost classifier mortality risk prediction 

Abdulaal et al. [29] MLP mortality risk prediction 

Wu et al. [17] RF COVID-19 detection 

Rahman et al. [18] CNN COVID-19 detection 

Khanday et al. [30] Multinomial Naïve Bayes and Logistic 

regression 

Patients classification into four 

classes {SARS, ARDS, COVID-

19, Both (SARS, COVID-19)} 

Chen et al. [23] RF COVID-19 severity classification 

3 Background 
Our proposed method comprises two modules: the classifier and data augmenter. The classification is 

carried out using a CNN. The data augmentation is realised using 10 AEs. In this section, we briefly 

review the main concepts of CNNs and AEs.  

3.1 CNNs 

CNNs are massively used in image-based learning applications. Due to the automatic feature extraction 

mechanism of CNNs, they can discover valuable information from training samples. CNNs are usually 

designed with several convolutional, pooling and fully connected layers [41]. As Figure 1 shows, feature 

extraction is done by convolving the input with convolutional kernels. The pooling layer reduces the 

computational volume of the network without making a noticeable change in the resolution of the feature 

map. In CNNs, the size of the pooling layers usually decreases as the number of layers increases. Two of 

the most popular types of pooling layers are max pooling and average pooling [42]. 

 

Figure 1. A CNN schematic. 



3.2 AEs 

AEs belong to the realm of unsupervised learning, as they do not need labelled data for their training. In 

brief, an AE compresses input data to a lower dimensional latent space and then reconstructs the data by 

decompressing the latent space representation. Similar to principle component analysis (PCA), AEs 

perform dimensionality reduction in the compression phase. However, unlike PCA, which relies on linear 

transformation, AEs carry out nonlinear transformation using deep neural networks [43]. Figure 2 shows 

the architecture of a typical AE. 

 

Figure 2. AE architecture: High-dimension input data are encoded (compressed) to form a latent (hidden) 

space that has a lower dimension than that of the original input. The latent representation is reconstructed 

(decoded) to yield decompressed output. 

3.3 Information Gain 

In this section, we review information gain (IG), as it is used to determine the degree to which each 

feature of our dataset contributes to the patients’ deaths (see Section 4). IG calculates the entropy 

reduction that results from splitting a dataset, 𝐷, based on a given value, 𝑎, of a random variable, 𝐴, such 

that: 

𝐼𝐺(𝐷, 𝐴 =  𝑎) = 𝐻(𝐷) − 𝐻(𝐷|𝐴 =  𝑎), 

where 𝐻(𝐷) and 𝐻(𝐷|𝐴 =  𝑎) are entropy on dataset 𝐷 and conditional entropy on dataset 𝐷, 

respectively, given that 𝐴 =  𝑎. 

Conditional entropy is computed as: 

𝐻(𝐷|𝐴 =  𝑎) = ∑
|𝐷𝐴 = 𝑎|

|𝐷|𝑣∈𝑣𝑎𝑙𝑢𝑒𝑠(𝐴) 𝐻(𝐷𝐴 = 𝑎), (1) 

where 𝐷𝐴 = 𝑎 ⊂ 𝐷 is the set of samples with variable 𝐴 =  𝑎 and |𝐷𝐴=𝑎| and |𝐷| denote the cardinality of 

subset 𝐷𝐴 = 𝑎 and set 𝐷, respectively. In Equation (1), the sum is computed over all possible values of 𝐴. 

4 Description of our clinical dataset 
The dataset we collected in this paper comprised 320 patients (300 cases of recovered patients and 20 

cases of deceased patients). The percentage of female cases was 55%. The mean age of patients in the 

dataset was 49.5 years old, and the standard deviation was 18.5. The patients referred to Tehran Omid 

hospital in Iran from 3 March 2020 to 21 April 2020. Ethical approval for the use of these data was 

obtained from the Tehran Omid hospital. In gathering the data, patients’ history (as collected by doctors), 

questionnaires (as completed by patients), laboratory tests, and vital sign measurements were used. 

Descriptions of the dataset features are presented in Table 2. Our dataset is publicly available in [44]. 

Institutional approval was granted for the use of the patient datasets in research studies for diagnostic and 



therapeutic purposes. Approval was granted on the grounds of existing datasets. Informed consent was 

obtained from all of the patients in this study. All methods were carried out in accordance with relevant 

guidelines and regulations. 

Table 2. Description of the dataset features used for classification. 

Feature Name Range 

Gender {Male, Female} 

Age 11-95 years old 

Blood Type {A-, A+, B-, B+, AB-, AB+, O-, O+} 

BCG Vaccine {Yes, No} 

CBC {Normal, Abnormal} 

Diabetes {Yes, No} 

blood pressure {Yes, No} 

Asthma {Yes, No} 

Heart disease {Yes, No} 

kidney disease {Yes, No} 

Respiratory disease {Yes, No} 

Cancer {Yes, No} 

Corticosteroids {Yes, No} 

Transplant {Yes, No} 

HEM {Yes, No} 

Immunodeficiency {Yes, No} 

Liver disease {Yes, No} 

Rheumatological disease {Yes, No} 

Chest pain {Yes, No} 

Fever {Yes, No} 

Trembling or Shakes {Yes, No} 

Weakness {Yes, No} 

Sweating {Yes, No} 

Sore throat {Yes, No} 

Dyspnea {Yes, No} 

Dry cough {Yes, No} 

Cough with sputum {Yes, No} 

Fatigue, whole body hurts {Yes, No} 

Anosmia {Yes, No} 

Ageusia {Yes, No} 

Anorexia {Yes, No} 

Eczema {Yes, No} 

Conjunctivitis (Pink eye) {Yes, No} 

Blindness and Tunnel vision {Yes, No} 

Vertigo {Yes, No} 

Nausea/Diarrhea {Yes, No} 

Tobacco {Yes, No} 

 

As our dataset had not been released previously, it was vital to assess the degree to which each dataset 

feature contributed to patients’ deaths. Such an analysis provides researchers with valuable insights into 

the characteristics of the collected data. Various feature selection methods are available to determine the 

weight of each feature in the classification of dataset samples. We chose IG [45], which is one of the most 



widely used feature selection methods [46]. In Figure 3, the importance of each feature (i.e., the IG) is 

shown as a bar. Age had a much larger IG (0.149) than other features. Thus, age was not included in 

Figure 3 to make it easier to compare the importance of the other features. According to the bar chart, 

(after age) cancer, heart and kidney diseases were the second, third and fourth most important features 

related to patients’ deaths, respectively. Thus, it was clear that patients with poor health conditions were 

more vulnerable to COVID-19. It should be noted that Figure 3 does not include the features with zero 

IG. 

We also inspected the interplay between the dataset features to determine the potential correlation 

between them. To this end, the grid in Figure 4 is presented. Figure 4 can be thought as a heat map that 

shows the positive/negative correlation between features. Each cell 𝑐(𝑖, 𝑗) in the grid of Figure 4 

represents the correlation of features in the i-th row and j-th column. As the cell colour approaches red, 

the positive correlation between the feature pairs is higher. For example, anosmia (the loss of the ability 

to smell) and ageusia (the loss of the ability to taste with the tongue) had a high positive correlation, 

which means they were usually observed simultaneously. 

 

 

Figure 3. Feature effects on mortality rate based on IG. 



 

Figure 4. Correlation between dataset features. 

5 Proposed Methodology 
This study investigated the survival chance prediction of COVID-19 patients who referred to the Omid 

hospital in Tehran. The classification was based on features obtained from patients’ information. In the 

dataset collected, the number of recovered patients was 300 and the number of deceased patients was 20. 

The number of recovered patients was clearly much higher than that of the deceased patients. To ensure 

accurate classification, it was necessary to balance the recovered to the deceased ratio of the dataset 

samples. To do this, the number of instances of the lower class was increased, such that the number of 

data in both classes was approximately equal. To increase the number of data of deceased patients, an AE 

model was used. To carry out the data augmentation, the 20 samples of the deceased class were fed to the 

AE to undergo the compression and decompression routines. The output of this process comprised 20 

reconstructed samples that were similar (but not identical) to the original ones. Thus, we augmented the 

original 20 samples with 20 reconstructed samples. Training the AE 10 times using different training and 

validation sets yielded 10 AEs with a similar architecture but different parameters. Each of the 10 AEs 

generated 20 reconstructed deceased samples, yielding reconstructed samples of 200 overall, which were 

added to the original deceased samples. To provide an insight into the function of the AEs, sample vectors 

before and after reconstruction are presented in Table 3. For the majority of ‘1’ elements of input vector 

𝑐, the AE outputted values near 1 as the elements of reconstructed vector 𝑐̂. Similarly, most of the 

reconstructed elements corresponding to original ‘0’ elements had values near ‘0’, which shows that the 

reconstruction process was sound. 

Table 3. An example of reconstruction performed by an AE: Vector 𝑐 is the original sample and vector 𝑐̂ is its 

reconstructed counterpart. 

𝑐[1: 10] 1 0 0 1 0 0 0 0 0 0 

𝑐̂[1: 10] 0.9940 0.1291 0.0001 0.4697 0.1581 0.0240 0.0525 0.0068 0.0061 0.0202 



𝑐[11: 20] 0 0 0 1 0 0 0 0 1 1 

𝑐̂[11: 20] 0 0 0.0003 0.4004 0.0004 0.0596 0.0040 0.0027 0.9516 0.4450 

𝑐[21: 30] 0 0 0 1 1 0 1 0 0 0 

𝑐̂[21: 30] 0.1305 0.0018 0.0042 0.9565 0.5750 0.0029 0.9281 0.0111 0.0140 0.0966 

𝑐[31: 39] 0 0 0 0 0 0 0 0 1 - 

𝑐̂[31: 39] 0.0087 0.0004 0 0.0110 0.0024 0 0.0017 0.0015 0.9814 - 

 

The details of the augmentation process are explained in more detail in Subsection 5.1. It should be noted 

that our augmentation procedure is generic and can be applied to any other dataset. 

5.1 Implementation details of CNN-AE 

The proposed CNN-AE method comprises multiple steps (see Figure 5 for a summary). The pseudo-code 

of the method is also available in Algorithm 1. The detailed explanation of the pseudo-code is presented 

below: 

1. 10 AEs {𝐴𝐸1, … , 𝐴𝐸10} were designed with identical configuration but different initial 

parameters for data augmentation (line 1).  

2. Each of the 10 AEs was trained on 300 samples representing the recovered patients. Our objective 

was to have 10 models with different parameters at the end of the training. To this end, we 

divided the 300 samples into 10 groups of 30 samples {𝑔𝑗, 𝑗 =  1, 2, … , 10} where 𝑔𝑗 is the j-th 

group of samples. To train the i-th model, 𝑔𝑖 was set aside for validation and the nine remaining 

groups {𝑔𝑗 , 𝑗 ∈ {1, 2, … , 10} − {𝑖}} (270 samples) were used for training. It should be noted that 

each model was initialised with different parameters, trained on partially different training 

samples and validated on a totally different validation set. Thus, the proposed training procedure 

yielded 10 different AEs (lines 2–4). 

3. The 20 deceased samples were fed to each of the 10 trained AEs. The samples underwent the 

compression and decompression routine of the AEs. As the decompression procedure was lossy, 

the 20 reconstructed samples (after decompression) were not identical to the original samples. 

Additionally, the 10 trained AEs exhibited different behaviours on the same input data, as their 

parameters were different from each other. Thus, feeding the same 20 samples to the 10 AEs 

yielded 200 new samples that belonged to the deceased class (lines 5–8). The explained 

procedure sought to augment the data to remedy the lack of sufficient samples for the deceased 

class. 

4. The 200 reconstructed samples were attached to 320 original samples to yield a dataset of 

520 samples (line 9). 

5. A CNN model was designed to classify 520 samples as recovered or deceased (line 10). 

6. The CNN model was trained using all 520 samples. A 10-fold cross-validation was applied 

during the training (lines 11–20). Thus, the training sample size was 468 (samples of 9 folds), and 

the test sample size was 52 (samples of 1-fold). 

7. The trained CNN was used to classify the test data (line 21). 



 

Figure 5. The steps for implementing the proposed method. 

Algorithm 1. CNN-AE pseudo-code  

Input: dataset 𝐷 = {𝐷𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ∪ 𝐷𝑑𝑒𝑐𝑒𝑎𝑠𝑒𝑑}, training epochs N, batch size B, number of folds K 

 // Auto-encoders initialization 

1: Create 10 autoencoders with initial random parameters: {𝐴𝐸1, … , 𝐴𝐸10} 

  

 // Autoencoders training 

2: Partition samples in 𝐷𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 to 10 subsets: {𝑔1, … , 𝑔10} 

3: For i=1:10 

4:        Train 𝐴𝐸𝑖 on 𝐷𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 − 𝑔𝑖 and perform validation on 𝑔𝑖 

  

 // Augmented data generation 

5: 𝐴 = [] 

6: For i=1:10 

7:        𝑎𝑖 = 𝐴𝐸𝑖(𝐷𝑑𝑒𝑐𝑒𝑎𝑠𝑒𝑑) 



8:        A= 𝐴 ∪ 𝑎𝑖 

9: 𝐷𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝐷 ∪ 𝐴 

10: Create CNN 𝐶 with initial random parameters 

 

11: 

// K-Fold cross validation 

Partition 𝐷𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 to 90% training set 𝐷𝑡𝑟𝑎𝑖𝑛 and 10% test set 𝐷𝑡𝑒𝑠𝑡 

12: Partition 𝐷𝑡𝑟𝑎𝑖𝑛 to K subsets {𝐹1, … , 𝐹𝐾} 

13: For k=1:K 

14:        𝐷𝑡𝑟𝑎𝑖𝑛 = 𝐷𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 − 𝐹𝐾 

15:        𝐷𝑣𝑎𝑙𝑖𝑑 = 𝐹𝐾 

16:        For e=1:N 

17:               𝑏𝑎𝑡𝑐ℎ𝑡 = sample_batch(𝐷𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑, 𝐵) 

18:              CNN.train(𝑏𝑎𝑡𝑐ℎ𝑡) 

19:               𝑏𝑎𝑡𝑐ℎ𝑣 = sample_batch(𝐷𝑣𝑎𝑙𝑖𝑑, 𝐵) 

20:               CNN.validate(𝑏𝑎𝑡𝑐ℎ𝑣) 

21: CNN.test(𝐷𝑡𝑒𝑠𝑡) 

22: Return CNN 

 

To implement the proposed method, we used Python language and the Keras library, which has a 

TensorFlow backend. In this study, the dataset contained 320 samples of infected cases. Of these 320 

cases, the number of recovered cases was 300, and the number of deceased cases was 20. Additionally, 

we also generated 200 reconstructed deceased cases to balance the recovered to the deceased ratio of our 

dataset. After the reconstruction phase, our dataset contained 520 cases. We used a 10-fold cross-

validation. Additionally, 80% of 9 of the folds were used for training, and the remaining 20% was used 

for validation. The implementation details of CNN and AE are illustrated in Figures 6 and 7, respectively. 

 

Figure 6. Implementation details of CNN. ‘CL’ and ‘Dense’ represent convolutional and fully connected 

layers, respectively. Circles with the letter ‘B’ represent batch normalisation layers, and circles with the 

letter ‘D’ represent dropout layers with a probability 0.5. 

 



Figure 7. The implemented AE: The 39-dimensional input vector was compressed to a 32-dimensional vector. 

During reconstruction, the 32-dimensional vector was decompressed to a 39-dimensional vector. 

6 Experiments 
In this section, the experimental results are presented. The implementation details of CNN and AEs are 

explained in Section 6.1. We report on the performance of the proposed method (CNN-AE) and compare 

it to a CNN in Section 6.2. 

6.1 Experimental details 

Our experiments consisted of two scenarios. In the first scenario, our CNN-AE method was compared to a 

standard CNN method that was trained on clinical data. The architecture of the CNN is presented in  

Table 4. To ensure a fair comparison, we used the same CNN architecture in our method. The 

implementation details of the AEs used in the CNN-AE are presented in Table 5. 

Table 4. Implementation details of the CNN trained on clinical data. 

Hyper-parameters Values 

Input dimension 39 × 1 (39 medical features) 

Number of convolutional layers 3 

Number of fully connected layers 3 

Number of filters for each convolutional layer 256 

Size of convolutional kernels 3 × 3 

Strides size 1 

Activation function for hidden layers ReLU 

Activation function of the last layer Sigmoid 

Adam hyper-parameters 𝛽1 = 0.9, 𝛽2 = 0.999 

Learning rate 0.001 

Loss function Binary Cross Entropy (BCE) 

Number of neurons of fully connected layers 64, 32, 2 

Dropout probability 0.5 

Number of epochs 100 

 

Table 5. AE implementation details. 

Hyper-parameters values 
Input dimension 39 × 1 (39 medical features) 

Number of neurons of the first layer 39 × 1 

Number of neurons of the second layer 32 × 1 

Number of neurons of the third layer 39 × 1 

First and second layers activation function ReLU 

Third layer activation function Sigmoid 

Adam hyper-parameters 𝛽1 = 0.9, 𝛽2 = 0.999 

Learning rate 0.001 

Loss function Binary Cross Entropy (BCE) 

Number of epochs 100 

 



In the second phase of our experiments, we compared the CNN-AE trained on clinical data to a standard 

CNN trained on image data. The CNN architecture is presented in Figure 8. After multiple trials, we 

obtained the best set of the CNN hyperparameters (see Table 6). 

Table 6. Implementation details of the CNN trained on image data. 

Hyper-parameters Values 

Number of convolutional kernels of first layer 64 

Number of convolutional kernels of second layer 128 

Number of convolutional kernels of third layer 256 

Size of convolutional kernels 3 × 3 

Strides size 2 

Input dimension 100 × 100 

Output dimension 2 

Number of convolutional layers 3 

Number of fully connected layers 2 

Activation function for convolutional and fully connected layers ReLU 

Activation function of last layer Sigmoid 

Adam hyper-parameters 𝛽1 = 0.9, 𝛽2 = 0.999 

Learning rate 0.001 

Loss function Binary Cross Entropy (BCE) 

Number of neurons of the fourth layer (fully connected) 256 

Number of neurons of fifth layer (fully connected) 128 

Dropout probability 0.5 

Number of epochs 30 

Batch size 128 

 

 

Figure 8. Implementation details of the CNN trained on CT images. ‘CL’ and ‘Dense’ represent convolutional and 

fully connected layers, respectively. Circles with the letter ‘D’ represent dropout layers with a probability 0.5. 

6.2 Experimental results 

We sought to answer two important questions about the proposed method. First, we compared our method 

performance with a standard CNN trained on clinical data. This experiment examined the effects of the 

proposed data augmentation technique using multiple AEs. We also trained a standard CNN for the same 

purpose (to predict patients’ survival chance) but used CT images. This experiment sought to determine 

how well CT images can represent patients’ survival chance using a CNN as the predictor. 



6.2.1 Examining the data augmentation approach 

As mentioned in Section 5.1, we used 10 AEs to augment the available dataset. Data augmentation is 

critical to successful training when the number of samples from different classes is unbalanced. Data 

imbalance can defeat any powerful classifier even a state-of-the-art CNN, which is why we employed the 

data augmentation technique. 

To investigate the effectiveness of our data augmentation procedure, we trained a CNN on the original 

dataset and our CNN-AE on an augmented dataset. The original dataset comprised only 20 samples with 

the deceased label, but had 300 samples with the recovered label. Comparing the 300 to 20 reveals severe 

data imbalance from which the CNN suffered during training (see Table 7). However, using an 

augmented dataset with 300 recovered samples and 220 deceased samples facilitated the CNN training 

and improved accuracy (see Table 7). Additionally, the area under the curve (AUC) measure of the CNN-

AE was almost twice that of the CNN. The specificity measure of CNN was almost zero, which was due 

to the fact that the CNN was unable to distinguish between deceased and recovered samples due to the 

insufficient number of deceased samples in the original dataset. As Table 7 shows, the CNN-AE training 

took more time; however, this was due to the time it took to train the 10 AEs required for data 

augmentation. 

Table 7. Comparison of the CNN and the CNN-AE using different evaluation metrics based on a 10-fold cross-

validation. 
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CNN 

1 93.75 94 100 0 97 50 0.2157 27.04 

2 93.75 94 100 0 97 50 0.2104 20.48 

3 93.75 94 100 0 97 50 0.2733 21.34 

4 90.63 97 94 0 95 46.77 0.6140 21.49 

5 96.88 97 100 66.67 98 83.33 0.0916 21.70 

6 90.63 97 94 0 95 46.77 0.2164 22.00 

7 93.75 94 100 0 97 50 0.1642 21.51 

8 93.75 94 100 0 97 50 0.1816 21.83 

9 81.25 96 81 80 88 80.74 0.7327 21.97 

10 96.77 97 100 0 98 50 0.1214 22.75 

95% confidence interval over 10 

folds 
 

92.49± 

2.75 

95.40± 

0.88 

96.90± 

3.73 

14.67± 

19.00 

95.90± 

1.82 

55.76± 

8.54 

0.282± 

0.13 

22.21± 

0.37 

CNN-AE 

1 98.08 97 100 94.74 99 97.37 0.0925 33.01 

2 94.23 94 97 90.91 95 93.79 0.2600 31.50 

3 100 100 100 100 100 100 0.0096 31.35 

4 96.15 96 96 95.83 96 96.13 0.2600 31.60 

5 93.27 91 97 85 94 90.94 0.4017 31.90 

6 92.31 94 94 90.48 94 92.01 0.3678 31.99 

7 98.08 97 100 95.45 98 97.73 0.0858 32.30 

8 96.15 94 100 90.91 97 95.45 0.2027 32.90 

9 94.23 92 96 92.59 94 94.3 0.1572 33.13 

10 98.04 97 100 95.45 98 97.73 0.0614 33.83 

95% confidence interval over 10 

folds 
 

96.05± 

1.48 

95.2± 

1.63 

98± 

1.33 

93.14± 

2.52 

96.5± 

1.27 

95.55± 

1.70 

0.19± 

0.07 

32.35± 

0.49 



 

In Table 7, the CNN-AE method had an average accuracy of 96.05% and thus outperformed the CNN 

method, which had an average accuracy of 92.49%. Additionally, due to the augmented data, our method 

was able to reduce the training/validation loss faster than CNN (as is evident in Figure 9). Similarly, the 

CNN-AE reached higher accuracy faster than the CNN (see the plots in Figure 10). During training, our 

method exhibited great variation in the validation plots compared to those of the CNN. This is because the 

CNN quickly overfitted to the small number of deceased samples but the CNN-AE had to deal with more 

versatile augmented samples. Thus, the training of the CNN-AE was more difficult, but it achieved better 

overall performance. 

 

Figure 9. Loss plots of the CNN and CNN-AE methods during the training of our dataset. 

 

Figure 10. Accuracy plots of the CNN and CNN-AE methods during training of our dataset. 

6.2.2 Comparisons with existing deep models trained on image data 

In this section, we evaluated the performance of various existing deep models that were trained on a 

dataset of CT images. The CT images were taken from the same patients for whom the clinical dataset 



was collected. Thus, the results of this section reveal how well deep models trained on CT images 

perform compared to a CNN trained on clinical data. It should be noted that most of the experiments in 

the COVID-19 literature revolve around classifying infected and non-infected people using CT images. 

This section sheds some light on how well deep models can predict the survival chance of already 

infected patients based on CT images. 

The dataset comprised 2822 CT images of recovered patients and 2269 CT images of deceased patients. 

The CT image dataset size was much greater than the clinical dataset size, as the CT dataset contained 

multiple images for each patient. As the number of samples of the two classes in the dataset was almost 

balanced, we did not apply our data augmentation technique to the CT dataset. Additionally, having 

multiple images for each patient served as a form of data augmentation. This was not the case for the 

clinical dataset for which each patient had only one value per feature. 

In Table 8, the performance metrics for the evaluated deep models are presented as 95% confidence 

intervals (CIs) that have been computed over a 10-fold cross-validation. The results in Table 8 show that 

UNet had the best performance among the evaluated methods, followed by Inception Net V3 and 

DenseNet121, respectively. Overall, Table 8 suggests that some of the famous deep models with pre-

trained parameters can be tuned via training to predict the survival chance of COVID-19 patients based on 

CT images. A performance comparison of the deep models (see Table 8) and the CNN-AE (see Table 7) 

revealed that a CNN trained on clinical data performed on par with various pre-trained deep models 

which have been tuned via training on CT data. As stated above, the CT image dataset size was almost 10 

times that of the clinical dataset size. However, the CNN trained on clinical data performed almost as well 

as the deep models trained on CT data. Thus, clinical data could be a good replacement for CT training 

data if the preparation of the CT images would be difficult or expensive. 

Table 8. Results of existing deep models trained on CT images. 

Method Accuracy 

(%) 
PPV (%) Recall (%) 

Specificity 

(%) 

F1-score 

(%) 
AUC (%) Loss 

CNN 98.88±1.09 98.90±1.07 98.90±0.91 98.10±1.22 98.90±0.87 98.89±0.92 0.01±0.01 

DenseNet121 

[47] 
99.10±0.10 99.00±1.55 99.60±0.60 98.95±0.36 99.20±0.82 99.05±1.10 0.06±0.07 

EfficientNet-

B1[48] 
55.67±1.81 56.70±3.32 95.40±9.02 50.36±2.45 70.00±2.34 51.16±2.08 9.34±5.85 

InceptionNet V3 

[49] 
99.16±1.26 99.80±0.39 98.90±1.95 99.65±0.22 99.40±0.98 99.27±1.02 0.32±0.61 

MobileNet [50] 75.33±1.62 80.70±2.30 73.10±1.66 79.56±1.48 76.60±1.83 75.58±1.75 0.51±0.02 

ResNet50 [51] 81.63±1.05 80.50±1.38 88.00±1.01 78.36±1.74 84.20±1.05 80.84±1.06 0.46±0.01 

VGG19 [52] 98.02±0.36 99.00±0.30 97.30±0.72 98.79±0.81 98.40±0.43 98.08±0.35 0.07±0.01 

Xception [53] 83.34±0.81 93.80±1.20 74.90±0.85 88.64±0.92 83.10±0.94 84.36±0.86 0.36±0.01 

UNet [54] 99.25±0.21 99.80±0.26 99.70±0.30 98.97±0.19 99.70±0.30 99.66±0.20 0.02±0.01 

 

6.3 Comparison with other methods trained on clinical data 

In this section, we compare the performance of our CNN-AE with some of the existing works on 

mortality prediction [23, 26, 27]. To this end, we implemented the methods of Chen et al. [23], Zhu et al. 

[26] and Yan et al. [27]. As mentioned above in the literature review, Chen et al. relied on the RF to 

assess the severity of COVID-19 patients. For mortality risk prediction, Zhu et al. [26] and Yan et al. [27] 

used MLP and XGBoost, respectively. These methods were specifically designed to achieve COVID-19-

related objectives. For a broader perspective, we also experimented with Naïve Bayes, which is a generic 



method that can be used regardless of the classification objective. The conducted experiments revealed 

that our data augmentation approach was generic and beneficial to any classification method. 

6.3.1 Methods’ performance 

In this section, we present the experimental results for the classification methods mentioned above. We 

also investigate the effects of using the proposed data augmentation technique during training. The 

performance statistics are presented as 95% CIs in Table 9. The CIs are computed based on 10-fold cross-

validation. First, each method was trained on the original dataset (without augmentation). The training 

was repeated using the augmented dataset. The proposed data augmentation using AEs was used for this 

purpose. All of the rows in Table 9 that are related to training on the augmented dataset are marked with 

‘+AE’ postfix in the ‘Methods’ column. The last row of Table 9 is identical to the last row of Table 7, 

which has been reproduced here for ease of reference. An inspection of the results in Table 9 reveals that 

the proposed CNN-AE method outperformed the other methods in terms of accuracy, recall and AUC. 

Yan et al. [27]+AE, Chen et al. [23]+AE and Zhu et al. [26]+AE claimed second, third and fourth places, 

respectively. Thus, all methods have clearly benefitted from the augmentation performed on the training 

dataset. Among the evaluated methods, Naïve Bayes had the worst performance; however, it also 

benefitted from the augmented dataset.  

Table 9. Performance metrics for various classification algorithms with and without AE-based data augmentation. 

Methods 
Rank Accuracy 

(%) 
PPV (%) Recall (%) 

Specificity 

(%) 

F1-score 

(%) 
AUC (%) 

Chen et al. [23] 7 90.25±3.30 93.60±2.67 96.30±2.50 86.96±2.90 94.70±1.83 49.82±3.15 

Chen et al. 

[23]+AE 

3 
95.38±1.40 94.50±1.58 98.00±1.49 92.86±1.65 

96.10±0.94 94.61±2.11 

Zhu et al. [26] 6 91.85±1.86 94.50±2.25 97.50±1.21 89.05±1.89 95.90±1.03 58.67±10.40 

Zhu et al. 

[26]+AE 

4 92.97±2.14 97.60±1.10 90.80±4.39 95.06±3.26 93.90±2.01 93.81±1.73 

Yan et al. [27] 5 92.50±2.45 94.40±2.32 98.00±1.80 88.67±2.04 95.90±1.29 59.17±9.92 

Yan et al. 

[27]+AE 

2 95.38±1.28 94.50±2.03 97.90±2.33 91.68±1.85 96.00±1.20 95.23±1.19 

Naïve Bayes 9 61.73±6.93 14.30±0.68 88.00±5.65 42.65±5.95 23.90±2.39 74.39±5.68 

Naïve Bayes+AE 8 74.92±5.49 63.80±0.89 96.40±3.47 60.74±4.45 76.50±4.29 78.46±4.92 

CNN-AE 1 96.05±1.48 95.20±1.63 98.00±1.33 93.13±2.52 96.50±1.27 95.54±1.70 

 

6.4 Feature selection analysis 

In this section, we examine whether feature selection improves the classification performance of the 

clinical dataset. We relied on meta-heuristic population-based algorithms to carry out feature selection. 

The meta-heuristic methods that have been used in the experiments are Artificial Bee Colony (ABC) [55], 

Ant Colony Optimisation (ACO) [56], Butterfly Optimisation Algorithm (BOA) [57], Elephant Herding 

Optimisation (EHO) [58], Genetic Algorithm (GA) [59] and Particle Swarm Optimisation (PSO) [60]. 

Details of the implementation of these methods are available in MEALPY [61], which is a Python module 

consisting of meta-heuristic algorithms. In all of the experiments detailed in this section, the meta-

heuristic methods were run for 500 epochs with a population size of 100. 

The results of running each of the meta-heuristic methods listed above was a set of selected features (see 

Table 10) that specified a subset of the clinical dataset. The dataset extracted subset was used to train a 

CNN for survival chance prediction. The training was performed with and without data augmentation. 

The results of the training are presented in Table 11. In each row of the table, the meta-heuristic method 

used for feature selection and the classifier is specified. Usage of data augmentation is denoted by ‘–AE’. 



Table 10. Selected features by various meta-heuristic methods: () selected feature, () discarded feature. 

Feature Name ABC ACO BOA EHO GA PSO 

CBC       

Blood Type       

Age       

Diabetes       

Blood pressure       

Asthma       

Heart disease       

kidney disease       

Respiratory 

disease 

      

Cancer       

Corticosteroids       

BCG Vaccine       

Transplant       

HEM       

Immunodeficiency       

Liver disease       

Rheumatological 

disease 

      

Chest pain       

Fever       

Trembling or 

Shakes 

      

Weakness       

Sweating       

Sore throat       

Dyspnea       

Dry cough       

Cough with 

sputum 

      

Fatigue, whole 

body hurts 

      

Anosmia       

Ageusia       

Anorexia       

Eczema       

Conjunctivitis 

(Pink eye) 

      

Blindness and 

Tunnel vision 

      

Vertigo       

Nausea/Diarrhea       

Tobacco       

Gender       

 



As Table 11 shows, regardless of the feature selection method, the CNN-AE trained on the selected 

features did not outperform the CNN-AE trained on the full dataset (see the last row of Table 7). This is 

because the CNN already included an automatic feature selection mechanism and could rule out 

unnecessary features during learning. Discarding some of the features via feature selection only deprived 

the CNN of the opportunity to choose the features that best fit its objective. 

Among the evaluated feature selection methods in Table 11, BOA showed the best performance, followed 

by the ACO and ABC, respectively. In relation to Table 11, it should be noted that data augmentation 

after the application of all of the feature selection methods yielded better results. Thus, the proposed data 

augmentation approach is generic. 

Table 11. CNN and CNN-AE performance trained on features selected by meta-heuristic methods. 

Methods Rank 
Accuracy 

(%) 
PPV (%) Recall (%) 

Specificity 

(%) 
F1-score (%) AUC (%) Loss 

ABC+CNN 8 92.32±1.96 94.70±1.06 97.40±2.23 89.65±1.56 96.00±1.20 53.29±5.79 0.25±0.03 

ABC+CNN-AE 3 94.61±1.97 95.80±2.51 95.30±2.37 92.92±2.06 95.30±1.60 94.80±1.95 0.24±0.12 

ACO+CNN 7 93.10±1.72 95.60±1.44 97.30±1.92 90.57±1.87 96.40±0.98  62.50±11.63 0.26±0.10 

ACO+CNN-AE 2 94.71±1.75 94.80±1.67 96.30±2.50 91.95±1.85 95.40±1.66 94.66±1.83 0.22±0.12 

BOA+CNN 12 91.37±3.08 94.10±2.52 97.00±2.48 87.08±2.97 95.20±1.65 53.50±7.11 0.28±0.08 

BOA+CNN-AE 1 94.99±1.68 93.70±2.38 97.20±2.46 90.82±2.06 95.30±1.89 94.64±1.81 0.24±0.09 

EHO+CNN 10 91.86±2.91 94.10±2.42 98.00±1.49 85.69±2.07 95.90±1.59 53.15±5.63 0.23±0.07 

EHO+CNN-AE 5 93.95±1.90 94.50±2.45 95.00±3.98 91.57±2.74 94.30±1.80 93.91±1.82 0.26±0.10 

GA+CNN 9 92.18±2.08 94.80±1.65 97.80±1.57 88.32±1.76 96.10±0.94   57.50±10.13 0.29±0.07 

GA+CNN-AE 4 94.24±1.08 94.40±2.17 96.20±1.46 93.06±1.68 95.30±0.83 94.47±1.26 0.26±0.09 

PSO+CNN 11 91.85±2.18 95.00±2.71 96.40±2.11 88.17±1.79 95.50±1.25   61.51±11.18 0.28±0.06 

PSO+CNN-AE 6 93.86±2.24 94.20±2.87 95.20±3.12 90.39±2.47 94.50±1.94 93.10±2.97 0.22±0.09 

7 Discussion 
This paper focused on survival chance prediction for COVID-19 patients. We performed experiments 

using both a clinical dataset and a CT image dataset. The size of the CT image dataset was almost 10 

times that of the clinical dataset. However, the CNN trained on clinical data performed almost as well as 

the CNN trained on CT data, which supports the use of clinical data as an alternative for CT images. 

Another aspect that might encourage the use of clinical training samples relates to data collection costs. 

Preparing CT data may require high-end facilities; however, such facilities may increase data collection 

costs. Additionally, the facilities required to prepare CT data may not be available in deprived areas. 

Conversely, the tools required to measure clinical data, such as blood pressure, fever and C-reactive 

protein, are generally accessible. 

The proposed method can detect the severity of patients’ conditions based on clinical data and enable 

preventive actions to be taken to minimise the mortality rate. As discussed in Section 2, very few methods 

have studied mortality rate prediction using clinical data. Additionally, existing methods have used 

features that differ from the ones we used in our experiments. Thus, the proposed method sheds some 

light on unexplored aspects of the COVID-19 virus. To implement the proposed system in practice, it 

must be evaluated by medical experts from medical centres in different regions. After being verified, the 

system could be used to help experts analyse the severity condition of COVID-19 patients. Thus, patients 

with critical conditions could be given higher treatment priority than non-critical patients. Prioritising the 

patients’ treatment is of the utmost importance when the medical resources available are limited. 



In addition to the proposed method, our dataset can be considered the second contribution of this paper, as 

it is a good resource for further medical research. The analysis of the importance of the dataset features 

and their correlations are shown in Figures 3 and 4. Using our dataset, experts can study the relationships 

between patients’ medical conditions (e.g., blood pressure and diabetes) and the likelihood of dying from 

COVID-19. This will enable medical experts to exercise more caution during the treatment of patients 

who are more likely to die due to their medical conditions. As the IG values in Figure 3 suggest, there is a 

strong relationship between the mortality rate of COVID-19 patients and the presence of other critical 

diseases, such as cancer, kidney and heart diseases. Conversely, mild symptoms and/or diseases, such as 

dyspnoea, conjunctivitis and asthma, are less likely to contribute to the mortality rate. 

Like any other classification approach, the proposed method has some limitations. Due to the use of 

multiple AEs in the data augmentation phase, the training time of our method was longer than that of a 

standard CNN. Further, standard CNNs receive a single image sample as input and perform feature 

extraction automatically. Conversely, we manually collected multiple clinical features for each patient, 

and such a process is more difficult to manage. Some of the features in our dataset were gathered directly 

by asking patients; thus, it is possible that patients provided incorrect information. 

8 Conclusions and future works 
In this paper, we investigated the possibility of training a CNN on clinical data to predict the survival 

chance of COVID-19 patients. To this end, a new dataset consisting of clinical features, such as gender, 

age, blood pressure and the presence of various diseases, was gathered. The first contribution of this paper 

relates to our decision to release the collected dataset for public use. We also analysed the dataset features 

using IG and correlation. Our analysis could aid potential researchers and practitioners with their work on 

the COVID-19 virus. 

To reduce the data imbalance of our dataset, we proposed a novel data augmentation method based on 

AEs. Our data augmentation approach is generic and applicable to other datasets. Based on the proposed 

data augmentation approach, a novel survival chance prediction method named CNN-AE was presented, 

which represents the second contribution of this paper. Using augmented data for training, the 95% CI for 

the accuracy, recall and specificity of the CNN-AE were 96.05 ± 1.48%, 98.00 ± 1.33% and 93.13 ± 

2.52%, respectively. However, a CNN trained on a dataset without augmentation yielded an accuracy of 

92.49± 2.75%, a recall of 95.4 ±  0.88% and a specificity of 96.9 ± 3.73%. Thus, it is clear that the 

CNN-AE benefitted the data augmentation and outperformed the CNN. 

We repeated the CNN training on CT images obtained from the same patients for whom the clinical data 

had been collected. Comparisons of the performances of the methods trained on clinical data and the 

methods trained on CT data revealed that clinical data can be used as an alternative to CT images. 

In the future, more data needs to be collected to further assess our proposed approach. The use of other 

data augmentation methods also needs to be investigated and the results compared with our data 

augmentation method. 
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