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Physics can be seen as a conceptual approach to scientific problems, a method for discovery, but
teaching this aspect of our discipline can be a challenge. We report on a first-time remote teaching
experience for a computational physics third-year physics laboratory class taught in the first part
of the 2020 COVID-19 pandemic (March-May 2020). To convey a “physics of data” approach to
data analysis and data-driven physical modeling we used interdisciplinary data sources, with an
openended “COVID-19 data challenge” project as the core of the course. COVID-19 epidemio-
logical data provided an ideal setting for motivating the students to deal with complex problems,
where there is no unique or preconceived solution. Our results indicate that such problems yield
qualitatively different improvements compared to close-ended projects, as well as point to critical
aspects in using these problems as a teaching strategy. By breaking the students’ expectations of
unidirectionality, remote teaching provided unexpected opportunities to promote active work and
active learning.

INTRODUCTION

Physics is on one hand a corpus of knowledge and a
set of technical and quantitative tools, but on the other
hand it is also a conceptual approach to scientific prob-
lems, a way of “discovering” that has had a profound
impact on other fields of science [1–3]. When we teach
a physics class, the corpus may be technical and diffi-
cult to convey, but it is straightforward and usually well
defined. For a particular “subject matter”, the set of
facts and techniques is also what the students instinc-
tively expect to learn. Conversely, the flavor for what is
a “physics approach” is comparatively elusive and com-
plex to communicate. It is rooted in how we “do” physics,
how physicists perform their work in research. Once data
is collected (the act of ‘measuring’ and acquiring data is
the other specialty of physicists) physics digs into this in-
formation through “physical models”, simple mathemat-
ical representations of empirical observations that have
the ambition to capture the essence of a process. These
physics models thus aim to be predictive, i.e. able to
forecast the outcome of independent experiments [1], ide-
ally also beyond the range used to inspire and test the
model [4]. This approach is extremely successful within
various branches of physics, and today thanks to detailed
datasets from various other fields it also has a great po-
tential in interdisciplinary and traditionally non-physical
science fields. Teaching how to use the physics approach
productively is difficult, because it is an unstructured and
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complex set of skills, composed of different layers. For
many students the acquisition of these skills is delayed
to the first time they are required to produce original re-
search, such as in their graduation or PhD work, and for
some others these skills are just not acquired.

Certainly what a physicist would call ‘doing physics’
includes many skills that apply well to all sciences, such
as the ability to formulate hypotheses [5], and a set of
problem-solving and guess-stimating skills [6], which in-
clude being able to question and “filter” information,
data, common beliefs, as well as our own results [7]. Some
of these skills intersect with what is sometimes called the
“nature of science” [8], a label that characterizes the re-
search process as well as the scientific knowledge includ-
ing socio-cultural aspects. They also represent what is
at the heart of theoretical science, and one of the most
creative and arguably most significant parts of our work
as scientists in general.

During the COVID-19 crisis in Italy, Two of us (MCL
and MG) were teaching for the first time a computational
physics laboratory class for third-year physics students
(the other authors of this studies contributed as students
or external supervisors, see below). Our aim was to con-
vey a “physics of data” approach to data analysis and
data-driven physical modeling. We were also committed
to using interdisciplinary data sources rather than con-
ventional physics data sets, in order to show the students
the interdisciplinary potential of a physics approach to
data [9]. The course started in March 2020, when a na-
tional lockdown took effect, so that we had to rapidly
convert the material of the course previously conceived
for traditional frontal live teaching to remote teaching,
and we decided to use “hot” data from the ongoing pan-
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demic. What follows is an account of this teaching expe-
rience with two objectives: (1) describe how the “hands
on” philosophy described above was formalized and put
in practice and (2) the role of the remote-teaching set-
tings in this experience. We found that remote teaching,
while being a big challenge, also offered significant and
unexpected opportunities for this course, leading to ef-
fective bi-directional communication with the students.

The recent literature on computational physics educa-
tion research is fairly extensive, due to an original weak
integration of computation into the physics curriculum,
as detailed in ref. [10]. The importance of computation to
contemporary physics research is large, as well its impact
on the future employment of physics students beyond
physics and science [11, 12]. As teachers and researchers
(non-experts of education research), we were interested
in a possible instructive role of open-ended projects (sim-
ilar to those encountered professionally) in this context.
The inclusion of such an open-ended part of the course
is the main point of originality of our approach. The
account that follows does not have the ambition of be-
ing systematic, but rather we intend this study to be
first and foremost a testimony of our experience, which
can be used to replicate our approach effectively, with an
awareness of its potential and its limitations. Previous,
more systematic, efforts to build courses around expert
practice [12] proved to be successful, but were limited to
close-ended projects and exercises. On the other hand,
there is evidence that productive results can stem from
learning environments that problematize topics, put stu-
dents in charge of addressing problems, as well as holding
them accountable [13].

BOX 1: course essential content.

• The scientific toolbox of the course (covered
in approximately 16h of lectures) aims to pro-
vide a bare-bone scientific set of tools for
model-driven data analysis, including basic
tools from modeling, critical scientific think-
ing, essential probability and statistics and
data visualization.

• The computational toolbox of the course (es-
timated in 16h of lectures) includes essen-
tial Python tools to treat, analyze and plot
data (based on the Scipy package, and us-
ing NumPy, Pandas, and Matplotlib libraries),
and typesetting of LaTex documents, useful
for the reports. We also provided command-
line tools to treat, analyze and plot data
(based essentially on Bash scripting, the awk
language, and the gnuplot plotting program)
and an introduction to C++ tools for efficient
data analysis and simulations (including Stan-
dard Template Library data structures).

STRUCTURE AND CONTENT OF THE COURSE

Course layout

The course fits in the 3rd year physics curriculum at
the University of Milan as a computational physics lab-
oratory class. It is scheduled over 66 hours during one
semester, which are normally spent “in the lab” with the
teaching shared across two instructors. The expected
hours of coursework are approximately 30-40. The pur-
pose of the course is to provide (i) basic notions of com-
putational tools (C++, shell and scripting languages,
python, latex) and (ii) skills in “physics of data”, i.e.
model-guided data analysis and data visualization, in the
form of three short projects.

The course was structured in a two parts. The first
part of the course (described in BOX 1) is an essential
technical and scientific toolbox for taking off with the
projects. The second part of the course addresses three
one-week long “data challenge” individual projects (DC1,
DC2, DC3). In these data challenges, students start from
a dataset and work on it to extract and present conclu-
sions. At the end of each data challenge, students submit
a three-page report written in LaTeX, to describe the re-
sults achieved and to include their own graphics and fig-
ures. We decided that DC1 would be fully supervised and
guided, with the students working in close contact with
the tutors. DC2 and DC3 would be more autonomous.
To be able to manage the supervision of the students, we
restricted the attendance to a maximum of 25 students
(originally the restriction was also due to the number of
available workstations in the classroom).

The data challenges followed the pipeline: “Get data
→ Clean up data→ Explore data→Model data→ Inter-
pret data”. And the students were given the prescriptions
to take into account the limits (and possible biases) of the
data, to prefer models with fewer parameters, and to be
strict and question every interpretation. They were also
warned about the relevant cultural problems that emerge
in interdisciplinary applications of physics there, where
it is necessary to acquire some specific knowledge of the
domain, to be humble and trust the experts of the field.

Conversion to remote teaching.

Soon before the course started in early March 2020, it
became clear that it would have to be delivered remotely.
We decided to use a Slack workspace and Zoom meetings.
Lectures were mostly asynchronous, delivered as posts
on the Slack space, which students had to go through on
their own. Lectures were posted on Slack using text and
externally linked material (example code, lecture notes,
external resources). For example, the YouTube chan-
nel “Calling Bullshit in the Age of Big Data” [7] was
used as a complement for several aspects of statistics,
data visualization, Fermi estimates, etc. but we also gave
the students our own lecture notes and handouts on all
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these topics, including exercises and example codes to
plot data, perform fits (see BOX 1 and the Supplemen-
tary Appendix, providing a compendium of the course).

After each set of lectures, we organized a “Questions
and Answers” session (Q&A) on Zoom, where we dis-
cussed the material with the students. Next to the mate-
rial, we also posted guided exercises on the computational
and scientific parts of the course. In each Q&A session,
besides leaving the meeting open to any questions, each
student was interviewed and requested to update the in-
structors on the study work and exercises that he/she
had already done, whether she/he encountered any diffi-
culty, and was asked to state her/his plans for the com-
ing days. These sessions lasted 2-3 hours and took place
once or twice a week dependiong on the course devel-
opment. The interviews took place over a consecutive
three-hour slot and each student had 5-15 minutes where
he/she could present the work done on the asynchronous
material and the coding exercises performed in the past
few days. Starting from the these reports, the instruc-
tor would address the questions and common problems
encountered in the study, and any barriers encountered
in the coding or in the conceptual implementation of the
exercises.

The Slack space was an efficient way to interact bidirec-
tionally with the students throughout the week (Fig. 1).
We structured it in several channels for posting teach-
ing material, planning of the course, receiving material
from the students (e.g. the reports from the data chal-
lenges), and we included a forum where instructors, su-
pervisors and students could post material, tips, pointers
to external materials and data sets, problems and general
questions. The forum turned out to be a very active plat-
form during the course. One-to-one chats were used and
proved efficient for replying to specific questions. Slack
includes an App for cell phones, which we found useful for
real-time communication (and depending on the teacher’s
availability, it can be silenced for prescribed time periods,
whilst avoiding email clutter).

Most students had the right resources to take the
course from home. Five students dropped out when we
announced the switch to remote or during the course. We
contacted them through the Slack and email, but it was
difficult to reconstruct the precise reasons (e.g. pressure
from other courses or lack of equipment). We provided in-
structions to install all necessary code at home, but each
student could also connect remotely to Linux-based uni-
versity machines where all the softwares were available.
All codes, software, compilers supported by the course
(essentially, Python, C++, gnuplot, shell scripting and
LaTex for typesetting) were free, although the students
were left free to adopt any tool and judged solely by the
end results of their work.

A B

C

Figure 1: The Slack space facilitates organization of the
course, posting of lecture material and bi-directional

communication. A. Subdivision of information into channels
for planning of the lectures and Q&A sessions, posting of

lecture material, turning in data challenge reports. Channels
are accessible from a side pane of the PC app and as a menu

for the mobile app. B. Example of a portion of a posted
lecture on Python, with highlighted code. Through the
interface, a lecturer can include attachments in several
formats (code, pdf, images, etc.) and links to external

websites, which the app automatically shows in pretty-print
preview. C. Example of the interactive “forum” channels

where teachers could post external material, and the
students could post questions publicly. Questions can be

addressed in a connected “thread” conversation (right-hand
panel).

The COVID-19 data challenge.

With the pandemic expanding globally, we decided
that the first data challenge would be a COVID-19 data
challenge. Instead, we kept the second data challenge as
a more standard close-ended (interdisciplinary) physics
project on multiplicative diffusion processes, which used
data on software packages [14, 15]. As the course got
under way, we saw that DC1 had (perhaps in hindsight
not surprisingly) taken a lot of time and commitment on
both student and teaching staff. Extensive feedback was
being provided to the students on their projects DC1, so
to provide an outcome for this we switched our original
plan and made the third data challenge, DC3, optional,
and we decided that it would consist of an revision and
integration the work carried out in DC1, based on the
feedback received from the instructors. This enabled stu-
dents to build on the detailed feedback provided by the
instructors on the student reports for DC1. 14 out of 21
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students chose to address DC3. The feedback to students
included a number of positive propositions to expand and
revise aspects of each project.

We planned the first data challenge, DC1, to be a su-
pervised project, so the students were free to ask ques-
tions and seek advice on any level. Since the course
started during the COVID-19 crisis (and during the com-
plete lockdown) in Lombardy and Italy, we thought that
putting their hands on the surge of data that were dis-
cussed every day all over the news and the internet
could be both motivating and challenging. As mentioned
above, in order to supervise the projects more efficiently
during that week, we obtained the help of four (volun-
teers) external “supervisors” for DC1 (FB, FC, PC, JG,
co-authors of this study). These scientists provided some
ideas for the projects and interacted directly with the
students, individually and through the Slack forum. The
supervisors were based in other cities in Italy and in the
UK, but the Slack interface made it easy for them to in-
teract with the students through the forum and individu-
ally, and to help them carry out their individual projects.

The external supervisors had different areas of
expertise, statistical and interdisciplinary physics
(FC,JG,PC), probability and statistics (FB), experimen-
tal physics (PC) and data analysis (FB,FC,PC,JG). Each
supervisor rovided his individual perspective to the differ-
ent problems and contributed defining possible directions
of the Data Challenge assignment, which was produced as
a document with contribution from instructors and exter-
nal supervisors. Students were left free to find their way
to the specific potential supervisors whose background
and vision best suited their goals and perspective. The
resulting partitioning of student between supervisors was
even. Each external supervisor was in touch with 2-4 stu-
dents, and the main instructors were in contact with 5-8
students.

Part of the instructions provided for the DC1 were
tips on where to get the data, but the students were en-
couraged to explore autonomously different data sources.
Part of the technical skills that they acquired from the
first part of the course were on how to “scrape” data us-
ing command line and Python, and how to manipulate
data and assemble an organized data set (for example,
using the Pandas and Numpy packages in Python). As a
basis, the students were encouraged to get the daily data
from:

• the Italian Civil Protection agency. [16]

• The COVID-19 Repository at Johns Hopkins Uni-
versity [17][18]

• Our World in Data [19]

• the EU ECDC web site [20]

• national data from the Italian, French and German
ministries of health.

• the Italian National Institute of Statistics
(ISTAT)[21]

The challenge was divided into a first point (A) that
was common to all students and a second one (B) that the
students could choose. The common point was the em-
pirical prediction of the “infection peak”. The students
were asked to find a suitable and efficient empirical defi-
nition of the peak of the infection. The challenge was to
provide an empirical estimate of the peak using data from
different countries and regions, and propose/validate an
empirical method to predict the peak as accurately as
possible. The assignment also provided some tips on the
limitations of the data, some caveats on the requested
analysis, and different possibilities to tackle the question.

Point (B) of the challenge was to identify and address
a well-defined question within a theme chosen from a set
of the following proposed options, all of which concern
open scientific problems.

• (B1) Fit / analysis using a standard epidemiolog-
ical (SIR or SEIR) model, asking whether unified
parameters could be defined for the spreading of
the SARS-CoV-2 virus before the lockdown[22].

• (B2) Use fits from a SIR/SEIR model to quan-
tify the effect (measured as change in parame-
ters) of social distancing, lockdown and other non-
pharmaceutical interventions [23].

• (B3) Empirical correlative analysis. In the wake of
point (A), define some purely empirical observables
from the data such as delay outbreak-intervention
time, delay infections / death etc. evaluate these
quantities in various regions (see above, staying as
local as possible) and correlate them with other
possibly interesting covariates such as population
density, public transport / commuting properties,
fine dust pollution, temperature, capacity of hospi-
tals, etc[24, 25].

• (B4) “Bullshit calling” exercise. Find on the web
or in the news a scientific claim made by a scientist
in a pseudoscientific context (e.g. a plot posted on
facebook or twitter, there are various Italian and
international threads) and then challenge, refute or
debunk it using data (and models if necessary).

• (B5) Explore possible explanations for the very
large variations of case/fatality ratios across coun-
tries and regions (e.g. 14% case fatality ratio in
Italy vs 0.6% in Germany. The case fatality ratio
is known to be a very bad estimate of the death
rate because of delays and other factors [26, 27]. A
circulating hypothesis was that a confounding fac-
tor is the age distribution: the Italians are older
and therefore die more likely of the disease. An-
other common hypothesis (which quickly turned
out to be the most reasonable) was that the num-
ber of cases was underestimated. Another possibil-
ity (now ruled out) was that a strain of the virus
has different death rates.
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• (B6) Spatial spreading. Identify simple observables
to quantify spatial spreading from available data.
Check whether containment measures have an ef-
fect on this observable. Test if the opposite has
happened: when the measures are announced, ev-
eryone jumps on the train and spreads the virus
around the country [28].

I. ANALYSIS OF THE COURSE OUTCOME

DC1/3 project classification
Empirical analysis of epidemiological data 20/21

Epidemic model fitting 9/21
Correlation of epidemiological data with covariates 10/21

Case-fatality ratio 3/21
Spatial Spreading 4/21

DC1/3 productive findings
New dataset / Data integration 8/21

Creative use of mathematical models 9/21
Display of technical rigor 14/21

Careful controls / statistical analysis 9/21
DC1/3 problems encountered
Evident technical flaws 4/21

Misplaced/misleading conclusions 5/21

Table I: Classification of DC1/3 projects performed by
the students. Since the projects were open ended, the
students could choose to engage different aspets and

follow routes. The right column reports our
classification of the projects by keywords, productive
findings, and class of problems encountered by the
students. The right column reports the fraction of

projects that fall into each (non-exclusive) category.

Results of the COVID-19 data challenges

From the educational viewpoint, the problem setting
was conceived to encourage the students to put criti-
cal thinking into practice and search for original solu-
tions. Encouragingly, multiple students came up with
approaches to the data that were original and effective.
Perhaps even more importantly, some students able to re-
flect critically on their own work, revising and correcting
their own analyses. For example, one student developed
a technique to predict the infection peak from a logis-
tic fit of the cumulative curve. In the second report for
DC2, she decided to perform a critical analysis of her
own proposition, showing that it did not work well with
data. Other students showed creative behavior on the
level of data assembly and data curation. For example,
one student collected NASA data sets on pollution and
correlated these data with the local COVID-19 case fa-
tality rate. Table I collects our classification and counts
of the kinds of project strategies chosen by the students,

the different kind of productive findings they were able
to achieve, and the main kinds of problems they encoun-
tered.

What follows is a list of some scientifically remarkable
findings by the students, some of which are presented in
more detail in Appendix (Figures A1 and A2).

• The time delay between the first case in a given
Italian province and the first case reported in Italy
correlated negatively with provincial mobility esti-
mated from 2011 census data.

• There was a factor of 1.5-2.5 (varying from city to
city) between total deaths in March in cities in the
Bergamo area and the sum of COVID-19 registered
deaths plus the average deaths in the three previ-
ous years in the same month. Assuming the mea-
sured 1.2% mortality, one student could estimate
that total cases could be up to 50 fold larger than
the number of registered cases.

• Compared to a suitable null model, Italian
provinces with a first-reported new infected are
closer to provinces with already ongoing COVID-
19 outbreaks compared to a null model where new
infections travel without spatial contraints.

• There is a phenomenological (mildly sublinear)
power law relating the number of reported infected
at the peak, and its value on the day a lockdown
was put into effect, valid across regional data from
China, Italy and Spain.

• The date of the infection peak is roughly indepen-
dent from the date of the lockdown measures, using
as reference system for time an origin when the new
cases are 25.

• Bad or biased sampling can be spotted by the time
constancy of the ratio of positive/tested individu-
als.

DC1/3 improvements
Addressing questions with modesty 6/14
Choosing circumscribed questions 4/14

Supported conclusions / appropriate controls 10/14

Table II: Evidence of achievement of different goals in
the revision work from DC1 to DC3. The right column
reports the three main lessons that we aimed to convey
to the students. The right column reports the fraction
of projects where we found evidence that the revisions
showed improvements towards achieving these goals.

Beyond the scientific results above, which were only a
part of the goals (see below), we believe that the COVID-
19 data challenge conveyed important specific lessons to
the students. First, to address questions with modesty.
Physics provides modeling and data analysis skills, but
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no knowledge of epidemiology or other disciplines. First
of all, one must be aware that one is not an expert in
trying to figure out simple things from the data. Sec-
ond, choosing circumscribed questions, makes it feasible
to reach a goal. Third, an important result can be posi-
tive or negative, but in both cases the conclusions must
be argued carefully, and supported with the appropriate
controls. To support the hypothesis that these lessons
were (at least sparsely) appreciated by the students, we
went back to the comparison of the outcomes of DC3
(the revision) compared to DC1 (the original project re-
port), and we counted the examples where the revisions
appeared to incorporate these lessons. The results, sum-
marized in Table II suggest that (as perhaps one might
expect), the third lesson is the easiest to learn, and the
second is the hardest (it is a problem that most profes-
sional scientists struggle with).
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Figure 2: The three-challenge layout allowed comprehensive
evaluations and offered the students the possibility to

increase their marks significantly. A. DC1 grades (x axis)
and DC2 grades (y axis) obtained by all students (circles
correspond to those who also completed DC3, squares are

the others). B. The net increase in grade between DC1 and
DC3 (y axis) versus the grade obtained in DC1. Dashed

lines are the bisectors y = x, as a guide to the eye.

Grading and evaluation of student improvement

Ours was a laboratory course, focused on the prac-
tical aspects, and whose cornerstone are the data chal-
lenges. It was not trivial to develop suitable criteria for
the evaluation. We wanted the final grade to reflect the
quality of the “practical” work done rather than the ac-
quisition of notions (which can easily be evaluated by an
oral exam). Hence, we decided that the grade should
be based on assessing the reports of the three data chal-
lenges. The reports were graded based on four criteria:
(i) Logical structure and communication; (ii) Data visu-
alization; (iii) Technical aspects of the analysis; (iv) Sci-
entific aspects of the analysis and support of the claims.
The benchmarks for a passing grade under these criteria
were, respectively, (i) a clear logical structure divided in
sections, paragraphs, clear result statements and correct
reference to figures, (ii) readability of plots and effective
choice of visual aids, (iii) sound technical choices and

controls and absence of clear technical mistakes (iv) sci-
entifically sound analyses and adequate support of the
conclusions.

t-tests DC1 → DC3 DC1 → DC2

COM p=0.001 p=0.8
VIZ p=0.0003 p=0.03

TECH p=0.002 p=1
SCI p=0.2 p=0.8

Overall p=0.0004 p=0.14

Table III: Paired-sample t-tests for the changes in the
mean grade of students across different data challenges
(significant results for increased average grades are in

green). The significant changes from DC1 to DC3
suggest that students improved their communication

(COM), data visualization (VIZ) and technical (TECH)
performance in the revision of the COVID-19

open-ended challenge. The increase in the scientific
quality (SCI) category was not significant. Conversely,
the changes between open-ended DC1 and close-ended
DC2 are largely not significant, likely because of the

different nature (and attitude in the evaluation) of the
project.

Additionally to the grade, we provided extensive feed-
back for DC1, from two instructor, in a form similar to
a manuscript “referee report” for each student, which in-
cluded discussion of the weak and strong points of his/her
work and suggestions to correct and/or improve specific
technical, scientific and presentation aspects. The final
grade was proposed based on the results of all the data
challenges carried out by each student. For those stu-
dents who did three data challenges, the final grade was
the sum of the three grades. For those who did two data
challenges, we based it on the sum multiplied by 1.5. We
decided that enrolling in the voluntary DC3 could not
lower the grade obtained with the first two data chal-
lenges, at worst it would leave it unchanged. For those
who were not satisfied by the final grade, we made it pos-
sible to request an oral exam. The oral exam could cause
both reduction and increase of the grade based on the
students’ reports. No student opted for the oral exam.

Fig. 2 summarizes the grading across the three data
challenges. Grades received in DC1 and DC2 were cor-
related only very mildly (Pearson r=0.39, Fig. 2A). This
suggests that the two dissimilar challenges allowed us to
evaluate complementary skills and therefore reach a more
comprehensive evaluation of each student. On the other
hand, all of the 14 students who addressed DC3 received
a grade at least equal to that of DC1, with 5 students
increasing by more than 1 grade (Fig. 2B). Moreover,
the increase in grade was negatively correlated with the
grade obtained in DC1 (Pearson r=-0.63). This suggests
that lower performing students may have managed to
capitalize on the feedback they received. While lower
initial grades leave more room for improvement, which
may explain the correlation, the relative increase in grade
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(normalized by the gap to the top grade, which is the
maximum possible increment) still showed weak nega-
tive correlation with the grade obtained in DC1 (Pearson
r=-0.27), supporting the hypothesis (although a larger
sample would be needed to establish this point with con-
fidence).

It is interesting to use the outcomes of the grading
to evaluate the overall impact of the course on the stu-
dents. The average grades systematically improved from
one data challenge to the next, suggesting that the stu-
dents gradually acquired skills to reach the course goals.
Specifically, the average grades (in tenths) for individual
were 7.27 ± 0.9 for DC1, 7.68 ± 1.07 for DC2, and 8.12
± 0.72 for DC3. To gain more insight on these changes,
we performed t-tests for the increase of the mean grades
(Table III). We treated the grades as paired samples, re-
garding the performance of a student in different data
challenges as different tests of the same criteria in the
same subject. Interestingly, under this test the overall
increase of the mean scores as very significant for the
changes between DC1 and DC3 (revisions of an open-
ended challenge), but are largely not significant . Even
more interestingly, students appear to improve their per-
formance from DC1 to DC3 specifically

In support of these results, we also note that the Pear-
son correlation between the grades of DC1 and DC2 is
0.1-0.2 (depending on the evaluator), while the one from
DC1 to DC3 is around 0.5 (regardless of the evaluator).

A. Student evaluation

At the University of Milan, student feedback is pro-
vided through anonymous questionnaires based on a set
of closed-answers questions, plus space for open com-
ments. Generally the questionnaires are filled by a small
fraction of students, but this was not the case for our
course. We carefully read the answers to the open ques-
tions. From these comments it is clear that the course
has aroused “high variance” reactions, both positive and
negative. Multiple students felt they were thrown into
deep waters in a “sink or swim” approach, which dis-
appointed them. Others were enthusiastic about some
aspects of the course, such as being given an opportunity
to develop their independence, or praising the detailed
and constructive feedback that we provided for their re-
ports, or some specific lectures, such as the lecture on
data visualization (defined by one student as a “gem”).
5/20 students later on decided to carry out their Under-
graduate thesis projects under the supervision of one of
the teachers. The large amount of feedback provided by
the students is positive in itself, in the sense that it testi-
fies that the course has aroused interest and commitment
on the part of the students, albeit with a great variability
of starting points in terms of independence and scientific
maturity, which definitely needs to be addressed in the
next editions of this course.

In order to provide more insight into why some stu-

dents end up engaging productively and enjoying the re-
alistic scientific setting science in the course, while others
tend to “sink”, we performed two analyses.

First, we looked at the closed-anwers questionnaires for
evidence of motivation or frustration that could lead to
an antagonistic attitude. We found that 7/21 students
thought that the preliminary knowledge was insufficient,
and 12/21 students were not happy about the material
and the mode of the exam (i.e., having to produce a re-
port for each data challenge). Additionally, 9 students
commented that the charge on the students should be
slightly reduced. Conversely, 19/21 students declared
that they were interested in the topics (13/21 very in-
terested), 14/21 students felt that the main instructor
motivates their interest toward the topic, but only 3/21
declared that they felt strongly about this.

As a second attempt to gather more evidence, we
looked at the anecdotal evidence from the open ques-
tions filled by the students. TO organize this material,
we tried to extract what we found to be key comments,
and relate these comments to a “sink phenotype”, or a
“swim phenotype”.

SINK PHENOTYPE: “I believe that syncronous re-
mote teaching, for example without frontal lectures where
code was explained in detail, slowed me down a lot in
learning the tools necessary for the DCs”; “I believe that
the frontal lessons are necessary, even if via webcam or
multimedia board”; “For DC1, the provided material was
insufficient to address the question: to carry out the anal-
ysis, it is necessary to know the SIR model, which was not
explained to us except by posting links, and it is also nec-
essary to know how to integrate a differential equation,
but this has not been explained.”; “The required computer
skills were taken for granted, so much so that in DC the
low familiarity I had with computational tools slowed me
down a lot. I would have preferred to spend more time
on the preparation part to become familiar with the var-
ious tools rather than having to do it while writing the
reports”; “A negative aspect, which I would recommend
to review, is that often the answers were not exhaustive
or clear, in fact they were often questions themselves.”;
“The course needs more focus on statistics, models, null
models, and hypothesis testing”; “We students ended up
doing a self-taught course; for this, I would not have en-
rolled in university”; “We developed the subjects in an
extraordinarily autonomous way. We had to do all by
ourselves”; “The course has been radically changed from
last year, and I only became aware of it when it started”;
“The partial assessments of DCs were USELESS for the
purpose of having an indication of the final grade”.

SWIM PHENOTYPE: “The teaching material was ex-
cellent, the grading was clear and above all I appreciated
the mixture of positive and negative remarks in the re-
ports of the DCs”; “The discovery of the Command Line
has opened up a new world for me and, even if it is as
powerful as it is illegible at times, I will certainly delve
into this and other tools that have received only an in-
troduction in this course”; “The lesson on DataViz is a
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gem. I have used very little of the C++, material, some
examples of implementation on simulations would help a
lot to make it feel an integral part of the course”; “I have
learned to write a scientific paper decently, I can work
(very roughly) with a dataset and I have learned many
techniques of data visualization”; “The course is valid for
the acquisition of scientific and computer skills for the
production of a scientific paper”; “The many computer
methods of data analysis covered at the beginning of the
course are interesting, my plotting skills have improved a
lot, even if MatPlotLib becomes a nightmare as soon as
you try to make a custom graph”; “Really useful course:
-Teaches to use programming as a tool to face and solve
concrete problems -Teaches to reflect on the data and on
the results obtained -Teaches the basic principles of scien-
tific communication”; “Very useful step for the university
journey of a student who follows this curriculum. Quick
exam, useful for the possibility of studying other exams
quickly”; “The topics covered were interesting and made
me discover and deepen topics that, not being strictly re-
lated to physics, I would not have dealt with in my studies,
but I still found them to be important and useful in a sci-
entific context, for example “bullshit calling” and meth-
ods for effective data visualization”; “However, I realize
that it is the main challenge of the course to provide an-
swers supported by logic and statistics without ever having
used these tools in this way, since the laboratory 1 and 2
courses are bland and the projects are fully guided”.

In our opinion, these comments fully report on the frus-
tration (of some students) stemming from feeling aban-
doned, and also on the recognition (from some students)
of some of the key aspects of the course. A parallel con-
sideration is that open-ended challenges open the oppor-
tunity for students and teacher to join sides against com-
mon problems, but this process does not happen auto-
matically for all students. We think that an important
factor underlying the almost bimodal reactions is linked
to the independence that we asked students to achieve:
one of the training objectives is precisely to make the stu-
dent autonomous in learning new tools for analyzing and
exploring data. Before the conversion to remote teaching,
the philosophy behind the course was already to promote
active learning through data-analysis projects. However,
some students, due to lack of information, or simply due
to the fact that the course has radically changed com-
pared to previous years, expected a more standard course
(as witnessed by some of the comments). This impact
should automatically soften over time.

“Inquiry-based learning” [29–31] is an approach to
teaching that starts from the assumption that a pri-
mary route for a student to learn something is to ask
him/herself questions and then actively look for answers
on his/her own (by contrast classic teaching may give
answers to questions that many would never ask). For
this approach, there are various schools. Typically one
tries to engage the students on a problem by arousing cu-
riosity and stimulating questions. A “gradual release of
responsibility” strategy [32] fits our project, as it aims at

the gradual empowerment of students for their activities,
by showing examples, and gradually “ramping up” the
scale of difficulty and independence (which is the most
delicate step).

DISCUSSION

Unfortunately with the COVID-19 crisis there is likely
to be a big turn away from the experiments in teaching
physics in the coming years, although some initiatives
are trying to address practical teaching suitable for social
distancing and remote learning [33]. It seems urgent and
useful to set up and systematically improve teaching ma-
terials and experiences such as the one we experimented
on here. Such a setting would lead students to work on
real data, analyze curves and distributions, perform fits,
ask questions and look for answers in the data. It would
be a recovery of an important part of what a student
normally learns in laboratory work.

Beyond the contingency of a completely remote learn-
ing, the course offered us an occasion to reflect on general
problems related to the formalization and the implemen-
tation of a hands-on approach in a course aimed at teach-
ing through the supervision of active student projects.
A full evaluation of the course outcome would require a
larger sample, as well as further efforts towards defining
different cohorts of students and appropriate “controls”
(for example a quantitative comparison to an equivalent
course with close-ended projects only). Despite these
limitations, our analyses are in support the idea that in-
cluding open-ended challenges may open the possibility
to address and promote student skills that are otherwise
hard to access.

Our experience can be replicated in other contexts, not
only to physics students, but also in other quantitative
curricula such as mathematics, engineering or computer
science. A crucial aspect is how many students such a
course structure can support. With two instructors we
found that 25 students is a realistic sustainable upper
bound. However, during DC1, the presence of the ex-
ternal supervisors was essential. These are 10-15 days of
the course where at least 2-3 extra teachers are involved
to support the students’ questions and provide feedback.
This need should not be underestimated when planning
a similar course, but we believe it would not be too hard
to implement it e.g. through PhD students or postdocs
(also providing a valid supervision experience for early-
career scientists). Not to underestimate, the supervision
activity is probably easier to implement remotely than
in a classroom setting. In such a setting, the extra su-
pervisors can provide feedback through a chat interface
in the time slots and time-frame they want, and the fo-
rum structure leaves a question open to be addressed for
any supervisor (or even other students). It also leaves
answered questions available to any students, who may
spot a relevant issue even in cases when they are not able
to crystallize it in a well-defined question.
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CONCLUSIONS

In brief, we judge that the practical implementation
of the philosophy behind the course was successful, but
a crucial aspect is to soften as much as possible the ini-
tial barrier for a student to become active on the “data
challenge” projects. Our results support the idea that
teaching through open-ended scientific challenges leads to
qualitatively different results than close-ended projects,
and can improve communication and technical skills, as
well as stimulating creativity at different levels. However,
at the same time the same results also point to some crit-
ical aspects of this way of teaching. Keeping the focus on
our main objectives, we intervened in several ways in the
2021 edition of the course: a) clarifying from the begin-
ning which skills (soft and hard) we expect the students
to develop, and how they are evaluated in the exam; b)
expanding the description of specific tools, so that stu-
dents can be immediately operational; c) providing lec-
tures including “frontal” explanations, combined to the
posted study material and the individual Q&A tutoring
sessions on Zoom, in order to reduce the amount of mate-
rial to be processed individually; d) reducing the overall
load, passing from three to two data challenges, and ex-
tending the time dedicated to each, so that students can
work under a lower time pressure. To some extent, the
ongoing health crisis helped driving student interest in
the course activities. This fact was still valid in 2021. In
the future, to achieve the same level of engagement from
students, the choice of future topics for open-ended data
challenges could be crucial.

From the point of view of Faculty in the physics cur-
riculum, the constraints enforced by the pandemic led us
to innovate on both the teaching methodology and the

subject matter, in ways that we had not previously ex-
plored. While admittedly far from perfect, we believe
that our experience is something to build on. While
the course corpus and toolbox can be improved, they are
nothing special per se. It is the “hands on” part of the
course that provided a valuable access for the students to
elements of knowledge, practice and “nature of science”
that are typically not accessible in standard courses,
and are often developed through laboratory practical
experiences. For many, learning “the physics way” of
addressing problem was a real hitpoint of the course.
Two aspects where specifically very interesting. First,
COVID-19 data was an ideal setting to learn how to deal
with poorly defined “messy” problems, where there is no
unique or preconceived solution [9]. The students had to
come to terms with the exercise of isolating well-defined
sub-problems, and to find compromises of different kinds
in order to analyze the data and draw conclusions, which
is what invariably happens outside of a classroom, in a
research or a workplace setting. To this end, the inter-
active Q&A sessions on Zoom where each student could
report their findings and questions were particularly ef-
fective. Second, remote teaching provided unexpected
opportunities to stimulate an active role of students, via
oral and written communication. The possibility to keep
a constant communication feedback collectively and indi-
vidually via the Slack space was certainly an unexpected
benefit for us. Additionally, and perhaps more impor-
tantly, remote teaching breaks the student expectations
of unidirectionality. Looking at a frontal lecture on line
may become extremely boring, and exploring alternatives
is a necessity, but also an opportunity to promote active
work and active learning from the students.
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Appendix: Examples of students results.
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Figure A1: Examples of students’ results on COVID-19 epidemiological data combined with mortality data. Panel A
compares the total deaths reported in four cities in the Bergamo area in March 2020 (blue bars) with the sum of the

COVID-19 deaths reported in the same month (orange bars) and the average of the total reported deaths in the same month
of the previous five years (green bars). In all cases the sum of average mortality and reported COVID deaths (green plus
orange) was well below the total mortality, pointing to widespread unreported cases. Panel B reports an estimate of the

actual total number of cases in Lombardy (orange stars) from the number of reported cases (blue circles) based on the excess
mortality. The estimate assumed a common overall fatality rate for the virus of 1.2 % and an average delay of 18 days

between infection and death [34]. Based on these estimates, the actual number of cases in that area could have been between
one and two orders of magnitude higher than estimated from swabs. 2015-2019 mortality data was downloaded from the

Italian National Institute of Statistics (ISTAT). Mortality data from the cities in the Bergamo area were obtained from the
newspaper l’Eco di Bergamo (each city had shared these data directly with this newspaper [35]). Data were obtained from the

Italian Civil Protection Repository.
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Figure A2: Examples of students’ results on COVID-19 epidemiological data. A. The infection peak, defined empirically as
the maximum in the observed new cases after a lockdown, depends on the level of the infection at lockdown. The scatter plot

reports the day of the infection peak (y axis, defined as the maximum in the number of current cases vs the time from
lockdown, measured in days from lockdown) reached by a region compared to the delay between the implementation of

lockdown and the day the number of new cases reached 25 (x axis). Italian regions (red circles) are compared to Chinese
regions (blue pentagons). The plot shows that different regions took a similar time to reach the infection peak after lockdown,

but the delay was longer in Italy than in China, possibly because of underreporting or less strict confinement measures. B.
Different infection models lead to different predictions. The plot shows two fits of SIR disease spreading models performed by
two students, using two different model variants on data from the Veneto region (triangles). One model (green solid line) was
the standard SIR, while another model (light blue solid line) also included immigration/emigration. This variant of the SIR

model adds parameters that describe immigration (Λ) and emigration (µ) and both variants were used to estimate the
effective transmission rate (β), the hospitalization rate (γ) and the basic reproduction number (R0 = β/γ). The model

divides the total population (N) into three categories: susceptible (S), infected (I), and removed (R), with N = S + I +R,
and following the ODEs dS/dt = Λ − µS − βSI/N ; dI/dt = βSI/N − (γ + µ)I; dR/dt = γI = µR. The standard SIR model
has Λ = µ = 0. Introducing the model variant lead to a different prediction of the end of the epidemic wave. The actual data,
which came after the Data Challenge, displayed a behavior in between the two model predictions. The end of the wave took

place about 110 days after lockdown (cyan circles), so that the model with migration parameters resulted to be more
accurate. The model fits kept into account the fact that the the average number of contacts per unit time changed after

lockdown (blue triangles), compared to before (red triangles) considering a delay of 9 days for developing the disease. Data
from the the Italian Civil Protection and the JHU CSSE COVID-19 Data Repositories.
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