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Abstract

We classify seven months’ worth of Belgian COVID-related Tweets using multilingual BERT and
relate them to their governments’ COVID measures. We classify Tweets by their stated opinion
on Belgian government curfew measures (too strict, ok, too loose). We examine the change in
topics discussed and views expressed over time and in reference to dates of related events such as
implementation of new measures or COVID-19 related announcements in the media.

1. Introduction and Related Work

Sentiment analysis or opinion mining of social media content presents the possibility of following
trends in public discussion. Twitter, with an easy to use API and short, focused messages called
Tweets, is often targeted for such tasks (Medhat et al. 2014, Giachanou and Crestani 2016). During
the COVD-19 pandemic, quantifying which measures are supported by the general population, and
which ones are not, could be useful in shaping the course of a nation’s strategy. Recent work
has focused on monitoring reactions to the COVID pandemic utilizing sentiment analysis (Wang
et al. 2020b, Chen et al. 2020, Brandl and Lassner 2020, Kurten and Beullens 2021, Wang et al.
2020a). However, sentiment does not necessarily map to opinions on more complex opinions about
measures. Wang et al. (2020a) presented initial results in workshop on classifying stances (for or
against) towards Dutch government policies on masks and distancing using a neural network. Others
have incorporated qualitative analysis techniques into similar work flows in an attempt to gain a more
nuanced understanding of social media discussion than sentiment analysis, unsupervised machine
learning or classification models alone (Jimenez-Sotomayor et al. 2020, Xue et al. 2020).

BERT (Devlin et al. 2019) is a Natural Language Processing (NLP) model that uses pre-training
and fine-tuning. This makes it easier than ever to create custom, domain-adapted classifiers that
capture the nuances of discussions and opinions expressed in a given domain. We characterize the
discussion of Belgian COVID measures on Twitter over time using multilingual BERT models that
we finetuned on manually labelled Tweets. By visualizing the change of rate of the sentiment in
curfew-related tweets, we found shifts in the support for curfews over time.

2. Methodology

We used a multilingual BERT model to classify 1.3 million Tweets related to the COVID-19 pan-
demic, based on a manually labeled training set, as described in The Tweets were
collected through the Twitter API starting from October 13, 2020 until April 08, 2021 using a
continuously running scriptﬂ Tweets were collected using (i) multilingual search terms related to

1. This script with search terms and all our code is available at https://github.com/iPieter/bert-corona-tweets.


https://github.com/iPieter/bert-corona-tweets

Table 1: Labeling categories for each tweet.

ToriC MEASURE SUPPORT GOVERNMENT SUPPORT RELEVANCE
masks testing too-strict supportive irrelevant
curfew closing-horeca ok unsupportive

quarantine vaccine too-loose not-applicable
lockdown  other-measure not-applicable

schools

COVID-19, corona and specific related topics, (ii) a language filter on Dutch, French and English,
and (iii) a filter for locations in Belgium.

In we describe how we use this dataset and the collected labels to develop multiple
models. These models were developed synchronously with the labeling task. We started with model
to filter irrelevant Tweets (e.g. news announcements) to save labeling time (Sieve I). We then created
a second model to classify the Tweets into topics, which we use to focus on the curfew topic (Sieve
II) for the more challenging labels: measure and government support. This interplay allowed us to
reduce labeling cost and develop multiple useful models.

2.1 Labeling

Two manually labeled datasets were used for training. The first, consisting of 1695 Tweets was
used for classifying topics. The second set of 2000 labeled Tweets was used to classify support for
curfews. As described in Tweets were labeled by topic (curfew measure), as well as by
two opinion axis: opinion toward specific measures (too strict, acceptable, not strict enough and a
neutral option) and measure of the overall support expressed towards the government’s handling of
the pandemic (supportive, unsupportive).

We developed a code book which defines the labels procedure in detail. This labeling process
was tested and refined through two rounds of labeling on smaller datasets with Belgian and multilin-
gual labelers. Each round was followed by discussion, resolving of disagreement and making minor
adjustments to the code book ﬂ

2.2 Training

We developed multiple models to classify Tweets, which correspond with the labeling rounds.
shows how collected Tweets on the topics are filtered and that we have four models: (i) a
model to filter irrelevant Tweets for Sieve I, (ii) another model to classify topics and two models to
(iii) predict support for a measure and (iv) support for the government. As mentioned before, each
sieve helped reduce the number of Tweets that needed to be classified each round.

Classifying relevant Tweets. For the first sieve, we focus on relevant versus irrelevant Tweets
as discussed in Only 53% of the labeled Tweets were relevant. To automatically filter
these Tweets, we trained and evaluated multilingual BERT (mBERT) and XLM-RoBERTa models.
Each training was run 8 times with random hyperparameters and the best-performing model—using
accuracy as a selection metric—was evaluated on a held-out test set, following Dodge et al. (2019).

mBERT performed slightly better than XLM-RoBERTa, with an AUC score of 0.85 and 0.84
respectively. The mBERT model also had a higher true positive rate of 0.3 when selecting a threshold
with a false positive rate of zero, as the goal of the first sieve is to remove clearly irrelevant Tweets.
From a computational standpoint, the base mBERT model also has the benefit that it is significantly
cheaper and faster to train due to a smaller model size.

2. Code book available at https://github.com/iPieter/bert-corona-tweets!
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Figure 1: Schematic illustration of our contribution with domain-specific classifiers.
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Classifying topics. We trained mBERT on 600 labeled Tweets to classify topics, we validated
8 models on a validation set with 64 Tweets and finally tested the best-performing model, using
accuracy, on 100 Tweets. The best-performing model had an overall accuracy of 0.73 (macro-
averaged accuracy of 0.95). Some classes perform very well, like curfew (AUC = 0.90), lockdown
(AUC = 0.85) and vaccine (AUC = 0.90). Yet, some classes are ill-represented in the dataset and
perform significantly worse, more specifically quarantine (AUC = 0.50) and testing (N = 1).

The topic model performs quite well overall and given our interest in the curfew topic specifically,
this model is quite suitable. We also make the model available on the HuggingFace repositoryﬁ for
practitioners to use.

Classifying support for curfews. For the last classification model, we trained mBERT for
multiclass classification on 151§f| Tweets with support labels, of which 100 were used as held-out
test set and 75 as validation split. We tested 5 hyperparameter assignments. The overall accuracy is
0.71. However, there is a significant class imbalance and despite oversampling, the performance varies
from no better than random (AUC = 0.5 for too-1loose) to good (AUC = 0.74 for not-applicable,
AUC = 0.69 for ok and AUC = 0.73 for too-strict).

Given these results, we primarily focus on the too-strict label for the curfew topic in the rest
of this work. We also make this model available through the HuggingFace repositoryﬂ

3. Results and discussion

Here we focus on the topic of curfew for reporting of more detailed results. The timeline of the rate
of classified Tweets with the topic of curfew, along with classified rate of support (or non-support)
for curfews, is shown in Also included, for reference, is the rate of confirmed COVID cases
in Belgium (Sciensano 2021).

November 2, 2020, Belgium entered a country-wide lockdown which included a national midnight
curfew, while some regional curfews had been put in place in the days prior. We find media an-
nouncements of these upcoming curfews as well as announcements regarding the extension of these
curfews (VRT NWS 2021, Johnston 2021) were accompanied by temporary increases curfew related
Tweets. In October, as the rate of curfew Tweets dropped, there was no change in the opinions
expressed about the curfew (with the majority remaining 'no opinion’ until February). By contrast,
during the 2021 increases in curfew Tweets we see a large change in opinions (particularly an increase
in ‘too strict’). Further research is required to determine whether the changes in rate of negative

3. Available at https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-topics|
4. This were originally 2000 Tweets of which the clearly irrelevant ones were filtered with Sieve I before labeling.
5. Available at https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support.
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Figure 2: Timeline of the relative number of Tweets on the curfew topic (middle) and the fraction
of those Tweets that find the curfew too strict, too loose, or a suitable measure (bottom), with the
number of daily cases in Belgium to give context on the pandemic situation (top).

opinion observed correspond to changes in public opinion or some other effect such as increased
attention to particular announcements by individuals with consistent anti-curfew opinions.

We also see that opinions on measure strictness are just one element of the discussions around
COVID measures, suggesting the use of Twitter for other forms of communication, such as infor-
mation sharing and humour as well as conveying complex points of views and personal stories (e.g.
about the impact of the curfew). The ability of the BERT models to classify tweets based on our
highly specific scale of strictness suggests that such models may be effective for categorizing based
on other complex and nuanced labels when trained with carefully labeled data.

4. Conclusion and future work

We are able to observe the discussion of COVID measures on Twitter over time examine the shifting
in both the topics of focus and the view points. We found that the majority of Twitter discussion
of these measures is not centered on expression of specific levels of support and thus identify the
need to characterize the nature of the non-opinionated Tweets as well as to understand the poorer
performance of our model on opinions other than ‘no opinion’ and ‘too strict’. We also acknowledge
the limitations of treating Twitter data as representative of the viewpoints of the general population.
While we do work with multiple languages, further work can be done to determine differential
performance between languages, dialects and informal and slang texts.
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