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Abstract
Many subjective experiments have been performed to develop

objective speech intelligibility measures, but the novel coron-

avirus outbreak has made it very difficult to conduct experi-

ments in a laboratory. One solution is to perform remote test-

ing using crowdsourcing; however, because we cannot control

the listening conditions, it is unclear whether the results are en-

tirely reliable. In this study, we compared speech intelligibil-

ity scores obtained in remote and laboratory experiments. The

results showed that the mean and standard deviation (SD) of

the remote experiments’ speech reception threshold (SRT) were

higher than those of the laboratory experiments. However, the

variance in the SRTs across the speech-enhancement conditions

revealed similarities, implying that remote testing results may

be as useful as laboratory experiments to develop an objective

measure. We also show that the practice session scores corre-

late with the SRT values. This is a priori information before

performing the main tests and would be useful for data screen-

ing to reduce the variability of the SRT distribution.

Index Terms: speech intelligibility, remote testing, crowd-

sourcing, speech reception threshold, speech enhancement

1. Introduction
Subjective speech intelligibility experiments provide funda-

mental information to develop objective intelligibility measures

(e.g.,[1, 2]). They have been usually performed in a sound-proof

room with well-controlled equipment in a laboratory. However,

the novel coronavirus (COVID-19) outbreak has made it very

difficult to conduct such formal experiments. One solution is

to perform remote testing with sound presentation and response

collection using web pages. Although the participants can per-

form the experimental tasks at any location, it is almost impos-

sible to control the acoustics and listening conditions, includ-

ing their hearing levels. Hence, control is usually relinquished.

Consequently, it is unclear whether the results are entirely reli-

able. This situation is a serious problem for any psychoacoustic

experiments, and some good practices to overcome the issue

were reported in [3].

However, from another point of view, remote testing using

crowdsourcing is advantageous in collecting massive amounts

of data from various participants when the control problem is

not very serious. For example, it would be possible to analyze

data categorized by listeners’ characteristics if the volume of

data is sufficiently large. There have been many reports on us-

ing remote testing in speech quality assessments [4, 5, 6, 7, 8].

In practice, remote testing has become popular in the quality

assessment of text-to-speech synthesis algorithms. Particularly,

it seems to be virtually a de facto standard in Interspeech com-

petitions. To improve reliability, methods for data screening

were reported in order to reduce variability and eliminate false

answers [5]. Notably, there are relatively few studies about re-

mote testing on speech intelligibility assessment [9, 10, 11, 12].

It has not been common to perform remote testing with crowd-

sourcing because audio control problems and listeners’ hearing

levels remain crucial issues.

In this paper, we compared speech intelligibility results

obtained from remote and laboratory experiments to verify

whether remote testing is usable to develop objective intelli-

gibility measures and to identify important factors toward im-

proving the reliability of remote testing results.

2. Experiments: laboratory and remote
We performed web-based remote testing of speech intelligi-

bility. For precise comparison, the speech sounds for remote

testing were basically the same as those used in laboratory ex-

periments carried out to develop a new objective intelligibility

model, GEDI [2]. We briefly describe the speech materials that

were common to the two experiments (see [2] for details) and

explain the differences between them.

2.1. Speech materials

The speech sounds used for the subjective listening experiments

were Japanese 4-mora words, spoken by a male speaker (la-

bel ID: mis), from a database of familiarity-controlled word

lists, FW07 [13]. Note that one mora in Japanese roughly

corresponds to a vowel or a consonant-vowel (CV) syllable

and is written as a single hiragana character, except for some

minor examples[14]. The database comprises several word-

familiarity ranks corresponding to the degree of lexical infor-

mation. Speech sounds were obtained from the sound set with

which the participants were the least familiar to prevent listeners

from complementing their answers with guesses. The dataset

contains 400 words per single familiarity, and the average dura-

tion of a 4-mora word is approximately 700 ms.

Babble noise was added to the clean speech to obtain noisy

speech sounds, referred to as “unprocessed.” The SNR condi-

tions ranged from −6 to +6 dB in 3-dB steps, and the duration

was adjusted to the original speech sound. Two speech enhance-

ment algorithms were applied to the unprocessed sounds. The

first was a simple spectral-subtraction (SS) algorithm [15]. With

an over-subtraction factor of 1.0, it is referred to as “SS(1.0).”

http://arxiv.org/abs/2104.10001v1


The second one was a Wiener filter (WF) based algorithm that is

commonly used in various systems because of its effectiveness

with low computational costs. In particular, the WF based on

a pre-trained speech model (PSM) [16] was used in [2]. With

Wiener gain parameter values of 0 and 0.2, the WF using the

PSM is referred to as “WF
(0.0)
PSM” and “WF

(0.2)
PSM,” respectively.

All noise addition and speech enhancement processes were per-

formed at a sampling rate of 16 kHz, and the final sounds deliv-

ered to the listeners were re-sampled to 48 kHz.

2.2. Laboratory experiments

In the laboratory experiments[2], the sounds were presented di-

otically via a DA converter (OPPO, HA-1) over headphones

(OPPO, PM-1) at a sampling frequency of 48 kHz and a quan-

tization level of 24 bits. Sound presentation was controlled us-

ing MATLAB in Mac OS X. The sound pressure level (SPL)

of the stimulus sounds was 63 dB in LAeq. These laboratory

experiments are referred to as having a moderate SPL. Listen-

ers were seated in a sound-attenuated room with a background

noise level of approximately 26 dB in LAeq.

Fourteen young NH listeners (eight males and six females,

aged between 19 and 24 years) participated in the experiments.

The participants had a hearing level of less than 20 dB between

125 and 8,000 Hz, and their native language was Japanese. They

participated in the experiments only after providing informed

consent. The participants were instructed to write down the

words they heard using hiragana during a 4-second silent pe-

riod until the presentation of the next word. The total num-

ber of presented stimuli was 400 words, comprising a combina-

tion of four speech-enhancement conditions {“Unprocessed”,

“SS(1.0)”, “WF
(0.0)
PSM”, and “WF

(0.2)
PSM” } and five SNR condi-

tions with 20 words per condition. The total duration of the

listening test was about 1 hour. To keep the listeners’ attention

within a reasonable range, we restricted the maximum number

of words to 400 in order to cover all SNR conditions and en-

hancement algorithms. Each subject listened to a different word

set, which was assigned randomly to avoid bias caused by word

difficulty.

We also performed complementary low SPL laboratory ex-

periments, 43 dB in LAeq (i.e., a -20 dB reduction from the

above experiment), to estimate the effect of the SPL on speech

intelligibility [17]. Another 14 NH listeners participated in the

experiments. The speech materials and procedures were essen-

tially the same, except the SNR conditions ranged from 0 to

+12 dB in 3-dB steps, since we assumed a decrease in intelli-

gibility due to the low SPL.

2.3. Remote experiments

The remote experiments were performed using web pages that

had been newly developed for speech intelligibility tests[18].

To reduce the experiment duration to within 1 hour, we

divided the speech-enhancement conditions into two parts:

{“Unprocessed”, “SS(1.0)”} and {“WF
(0.0)
PSM”, “WF

(0.2)
PSM”}.

Each set consisted of 200 non-overlapping words, i.e., 10 words

x 20 sessions. All participants listened to the same word set,

since dynamic assignment was unavailable on the web pages.

The participants were instructed to write down the words

they heard using hiragana during a 4-second silent period until

the presentation of the next word. The answers were filled in

on the provided answer sheets (PDF), which had been printed

in advance. After listening to ten words (i.e., one session), the

participants were required to type the hand-written words into

the answer columns on the web page.

The experimental tasks were outsourced to a crowdsourc-

ing service provided by Lancers Co. Ltd. in Japan [19], where,

it is claimed that 100,000 workers are registered, with their per-

sonal information, including skills. We recruited 30 partici-

pants per experiment without specifying any conditions regard-

ing age, gender, hearing level, and educational background. The

only requirements were to use a personal computer and wired

headphones or wired earphones, to avoid Bluetooth devices and

loudspeakers. As a result, there was a large variety of partic-

ipants aged from their mid-20s to 60 years old. The first ex-

periment was finished within 2 days. The second experiment

opened a few days after. Any worker can participate in the

experimental task on a first-come-first-served basis. Since we

wanted the same workers to participate in both experiments, we

added some advertising phrases about the second experiment at

the end of the first one. Sixteen workers participated in both, to

a total of 44 participants.

Initially, on the web pages, the participants were required to

read information about the experiments before giving informed

consent by clicking the agreement button twice in order to be

transferred to the experimental task web page. Google Chrome

was specified as a usable browser because it plays wav files with

48-kHz and 16-bit properly in both Windows and Mac. The

participants set their devices at an easily listenable level.

To familiarize with the experimental tasks, the participants

took a training session in which they performed a very easy task

using the same procedure as in the test sessions. The speech

sounds were drawn from words in the highest familiarity rank

with an SNR above 0 dB. After the analysis, it was found that

this practice session may play an important role in data screen-

ing, as described in section 3.5.

3. Results
The participants’ responses in the remote experiments in sec-

tion 2.3 were compared with the results of the laboratory exper-

iments [2, 17] in section 2.2.

3.1. Data cleansing

The remote experiment data consisted of lists of 4-mora words

typed in by the participants. We also collected scanned versions

of the hand-written answer sheets to confirm that the answers

had been entered correctly and to discourage the workers from

cheating by giving irresponsible answers. All data were stored

on the local website.

Data cleansing was performed in two steps. The first step

involves checking whether the 4-mora words the participants

typed-in were entered correctly. This was done using a pro-

gram, and any errors were corrected in accordance with the ten-

dency of other participants’ answers. The endeavor was not

very time consuming. The second step is to compare the typed-

in and hand-written words for whole answers. Any errors were

also corrected, except when the answers were not interpretive.

Few corrections were necessary. We also counted the number of

hand-written corrections, which were probably made at the end

of the session, since the participants were only allowed 4 sec-

onds to write down the words during each listening period. As

a result, we found that one participant had corrected their hand-

written answers more than 80 times. We assumed that they did

not understand the experimental instructions. We therefore ex-

cluded their results in both experiments from the analysis. Con-

sequently, data for 29 participants were analyzed for each exper-

iment. The second step took 20 to 30 minutes per participant.

Although this was feasible for 30 participants, it would be dif-

ficult to accomplish given the large volume of data. However,

we found that the following results were fairly unchanged, even

without the second step.
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Figure 1: Crowdsourcing remote experi-

ment. Mean and SD of word correct (%).

SS10: “SS(1.0)”, WF00: “WF
(0.0)
PSM”,

WF02: “WF
(0.2)
PSM”.
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Figure 2: Laboratory experiment (moder-

ate SPL, 63 dB LAeq)[2]. Mean and SD

of word correct (%)
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Figure 3: Laboratory experiment (low

SPL, 43 dB LAeq)[17]. Mean and SD of

word correct (%)

Figure 4: Histogram of SRT in dB for four speech-enhancement

conditions. Blue: Remote experiment, Red: Moderate SPL lab-

oratory experiment.

3.2. Psychometric function of speech intelligibility

The psychometric functions of word correct rates were calcu-

lated for each speech-enhancement condition as a function of

the SNR. Figure 1 shows the results of the remote experiments

with 29 participants. The error bar represents the standard devi-

ation (SD) across the participants. Figure 2 shows the results of

the moderate SPL laboratory experiments with 14 participants.

The faint gray lines behind the colored lines show the results of

the other experiments. The lines were lower and the SDs were

higher in Fig. 1 than in Fig. 2.

Figure 3 shows the results of the low SPL laboratory exper-

iments with 14 participants. The lines between 0 dB and 6 dB

were roughly overlapping, at least within the range of the SD,

with those in Fig. 2. As a result, even though the SPL differ-

ence was 20 dB, the effect of the SPL on speech intelligibility

was not very large. It can be assumed that the listening levels in

the remote experiments did not exert a significant effect on the

participants’ performance.

3.3. Speech reception threshold

Cumulative Gaussian psychometric functions were estimated

from the data of the individual participants and the speech-

enhancement conditions using a fitting procedure[20]. The

speech reception threshold (SRT) is the SNR value where the

psychometric function reaches a 50 % word correct rate.

Figure 4 shows histograms of the SRT values obtained in

Figure 5: SRT in dB. Blue: Remote experiment, Red: Moderate

SPL laboratory experiment.*: p < 0.05, **: p < 0.01.

the remote experiments in Fig. 1 (blue) and in the laboratory

experiments in Fig. 2 (red) for each speech-enhancement con-

dition. The peaks of the histograms were roughly the same, but

the SRT distributions were extended to more than 5 dB in the

remote experiments. This is consistent with the higher SDs in

Fig. 1. The larger variability may correspond to the diversity

of the participants, whereas the participants in the laboratory

experiments were restricted to young university students.

Figure 5 shows the mean and SD values of the SRTs depen-

dent on the speech-enhancement conditions for the two exper-

iments. Two-way analysis of variance (ANOVA) showed that

there were significant main effects in the speech-enhancement

conditions and the two experiments, but the interaction was not

significant. Multiple comparison analysis showed that there

were significant differences (p < 0.05) between “Unprocessed”

and “SS(1.0),” but not between “SS(1.0)” and WF
(0.2)
PSM in the

remote experiments. In contrast, there were significant differ-

ences for both cases in the laboratory experiments. This is the

main difference between the two experiments. There are two

significantly different conditions (p < 0.01) across the two ex-

periments, although the meaning of this is not easily interpreted.

The important issue is that there were no significant differences

between the other combinations.

The variations in the SRTs across the speech-enhancement

conditions were similar between the two experiments. When

developing and verifying a new objective speech intelligibility

model, as in the case of GEDI [2], “Unprocessed” was used as

the reference condition to fix the parameter values, and the other

speech-enhancement conditions were used to evaluate predic-

tion performance. In this context, the results of the remote
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Figure 6: Relationship between the practice session scores and

the mean SRT (dB) with data (circles) and regression lines

(dashed lines). Upper panel: First remote experiment; Lower

panel: Second remote experiment

experiments could be usable, as well as the laboratory exper-

iments.

3.4. Prediction of SRT

To survey the factors influencing individual participants’ SRT

values, we performed stepwise regression analysis using gen-

eralized linear models. The target variable was the mean SRT

of two speech-enhancement conditions, i.e., “Unprocessed” and

“SS(1.0)” in the first remote experiment and “SS(1.0)” and

WF
(0.2)
PSM in the second remote experiment. We collected nine

explanatory variables pertaining to participants’ characteristics

from the data registered on the crowdsourcing site and the ex-

perimental procedure: (1) age, (2) gender, (3) listening device

(headphones or earphones), (4) reliability estimated from con-

sistency of ID registration, (5) number of corrections of hand-

written words, (6) number of inconsistencies between hand-

written and typed-in words, (7) number of corrections due to

a different mora count, (8) word correct score in the practice

session (where 10 is a perfect score), and (9) duration of exper-

iments.

The stepwise procedure, with a simple linear regression

model, yielded simple equations as a function of the practice

session scores. The equations for the first and second remote

experiments were:

SRT(dB) = 8.88− 0.63 × score (p = 0.015), (1)

SRT(dB) = 8.03− 0.55 × score (p = 0.023). (2)

The linear models were significantly different from the constant

models, and the coefficients were very similar. The other factors

were ruled out. The result implies that the practice session score

is the only factor influencing the SRT values.

Figure 6 shows the SRT values and the regression lines.

There was a clear tendency of negative correlation. The pre-

diction errors were about 1.4 dB and 1.6 dB, which are not very

small but are comparable with the SDs shown in Fig. 5.

3.5. Data screening

The practice session score is a priori information derived be-

fore performing the main tests. This is particularly important to

judge whether the main tests are worth executing to obtain use-

ful information. The score could be useful for data screening. If

the practice session score is low, it may be that the participants

did not fully understand the experimental procedure or they had

difficulty filling in the words during the 4-second intervals of

silence. There may be other reasons.

Figure 7: Effect of data screening on the SRTs. Remote and

laboratory experiments shown in Fig. 5 (blue and red); Data

elimination by the practice session score less than 8 (yellow)

and less than 9 (purple), and by cumulative Gaussian distribu-

tion greater than 95% (green).

We evaluated the effect of data reduction using the practice

session scores. Firstly, the data of those participants who scored

less than 8 were eliminated. Consequently, participant numbers

were reduced to 24 and 26 in the first and second remote exper-

iments, respectively. The result is shown in the yellow bars of

Fig. 7. The mean and SD values of the SRTs reduced slightly

compared to those in the original data with 29 participants (blue

bars). Secondly, the data of those participants who scored less

than 9 were eliminated. This reduced participant numbers to 17

and 22 in the first and second experiments, respectively. Again,

the mean and SD of the SRTs dropped further but did not reach

the level of the laboratory experiments (red bars).

It is also possible to reduce the data after inspecting the re-

sponse distribution. This seems to be common practice in sound

quality assessment [5]. Initially, a Gaussian function was fitted

to the SRT values shown in Fig. 4, since a t-distribution with

a degree of freedom of 28 is sufficiently close to the Gaussian.

The samples above 95% of the cumulative Gaussian distribution

were then eliminated. The results are shown by the green bars

in Fig. 7. The mean and SD values of the SRTs reduced slightly

but, again, did not reach the level of the laboratory experiments

(red).

Consequently, it was difficult to select the remote data to

be close to the laboratory data, probably because the two pop-

ulations were different. However, it is worth noting that the

a priori information about the practice session score works as

well as the posteriori information about the distribution of the

results.

4. Summary
In this study, we compared speech intelligibility results obtained

in remote and laboratory experiments. Although the mean and

SD of the SRT of the remote experiment were higher than those

of the laboratory experiments, the variation in the SRTs across

the speech-enhancement conditions was very similar between

them. This implies that results of remote experiments may be

usable to develop objective intelligibility measures, in addition

to those of laboratory experiments. We also found that the a

priori information about the practice session scores was useful

for data screening to reduce the variance of the SRT.
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