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Abstract

Federated learning (FL) enables collaborative model
training while preserving each participant’s privacy, which
is particularly beneficial to the medical field. FedAvg is
a standard algorithm that uses fixed weights, often origi-
nating from the dataset sizes at each client, to aggregate
the distributed learned models on a server during the FL
process. However, non-identical data distribution across
clients, known as the non-i.i.d problem in FL, could make
this assumption for setting fixed aggregation weights sub-
optimal. In this work, we design a new data-driven ap-
proach, namely Auto-FedAvg, where aggregation weights
are dynamically adjusted, depending on data distributions
across data silos and the current training progress of the
models. We disentangle the parameter set into two parts, lo-
cal model parameters and global aggregation parameters,
and update them iteratively with a communication-efficient
algorithm. We first show the validity of our approach by
outperforming state-of-the-art FL methods for image recog-
nition on a heterogeneous data split of CIFAR-10. Fur-
thermore, we demonstrate our algorithm’s effectiveness on
two multi-institutional medical image analysis tasks, i.e.,
COVID-19 lesion segmentation in chest CT and pancreas
segmentation in abdominal CT.

1. Introduction
Federated Learning (FL) [1, 2, 3] is a machine learn-

ing paradigm where clients collaboratively train a model
without exchanging the underlying raw data. Compared
to traditional centralized training, FL aims to benefit each
participant while mitigating the potential for violating data
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Figure 1: An illustration of FedAvg (top) and Auto-FedAvg
(bottom). In FedAvg, the server collects locally trained
models from each client and obtains a global model by
weighted averaging with fixed aggregation weights. In con-
trast, in Auto-FedAvg, the aggregation weights are learned
on the clients and dynamically adjusted throughout the
training process when communicating with the server.

privacy. FL was initially designed for mobile and edge
devices [1] involving thousands of clients with often in-
terrupted connectivity and only relatively small data each.
However, recent studies involving only a small number of
relatively reliable clients, e.g., medical institutions, have
raised interest in utilizing FL for healthcare applications
[4]. The latter scenario is referred to as “cross-silo” FL in
Kairouz et al. [5] and is the focus of this paper.

Federated averaging (FedAvg) [1] is a simple yet effec-
tive algorithm for federated learning, following a server-
client setup with two repeated stages: (i) the clients train
their models locally on their data, and (ii) the server col-
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lects and aggregates the models to obtain a global model
by weighted averaging. The aggregation weight of FedAvg
is usually determined by the number of data samples on
each client. This design choice assumes that data is uni-
formly distributed on the clients, and a stochastic gradient
descent (SGD) optimizer is enforced. However, this set-
ting can hardly be optimal and even detrimental because the
clients’ underlying data distributions remain unknown and
are most likely non-independent and identically distributed
(non-i.i.d). Domain shifts in the data are expected among
different clients in real-world scenarios.

In this paper, we aim to improve FedAvg by automat-
ically learning how to aggregate different client models
more optimally. Our approach, namely Auto-FedAvg, is
data-driven and differentiable while keeping the privacy-
preserving aspects of FL. Recall that FedAvg involves two
iterative steps. Our approach introduces a third step. Af-
ter the clients finish training their local models, we learn
a set of global aggregation weights in a data driven fash-
ion, which the server later uses in the weighted average for
computing the global model. Learning the global aggrega-
tion weights is beneficial in two aspects: (i) Since the con-
vergence rate is likely to be different across the clients, dy-
namically adjusting aggregation weights can accelerate the
training process. (ii) Better performance and generalizabil-
ity can be achieved because the global model is more robust
when applied to all the client’s test data since we directly
optimize the local loss to update the aggregation weights
by modelling them as a stochastic process utilizing the
Dirichlet distribution. We also designed a communication-
efficient algorithm to achieve this goal without violating the
data privacy constraint of FL.

We first validate the effectiveness of our approach on the
CIFAR-10 dataset, where we outperform the state-of-the-
art method, FedMA [6] by 1.45% using the same heteroge-
neous data partitioning. Moreover, we outperform the Fe-
dAvg algorithm on two medical image segmentation tasks,
i.e., multi-institutional and multi-national COVID-19 lesion
segmentation and pancreas segmentation, showing its real-
world potential.

Our contributions are summarized as follows:

• We propose to directly learn the model aggregation
weights in FL from data with gradient descent using
a Dirichlet distribution, which is adaptive to the under-
lying data and learning progress.

• We design a new communication algorithm to fulfill
the proposed goal with limited extra communication
cost in cross-silo FL and without violating the data pri-
vacy constraints of FL.

• We outperform state-of-the-art approaches on a hetero-
geneous data split of CIFAR-10. Furthermore, we ex-

tensively analyze the proposed algorithm on two multi-
institutional medical imaging studies with real-world
datasets.

2. Related Work

Federated Learning. Here, we introduce some common
algorithms for FL. Federated Averaging (FedAvg) [1] is a
standard algorithm, where parameters of local models are
averaged with fixed weights to obtain a global model. The
aggregation weight of each client is usually set to be pro-
portional to the size of client’s dataset. FedMA [6] refined
the aggregation process by matching and averaging hidden
elements with similar feature signatures. The idea of in-
tegrating knowledge distillation into FL has also been ex-
plored [7, 8].

Recently, the issue of FL on non-i.i.d data draws emerg-
ing attentions. Several works have been proposed to address
data heterogeneity in FL settings [9, 10, 11, 12, 13], among
which one direction is to optimize the process of model ag-
gregation that we also consider in this paper. For example,
Wang et al. [14] proposed a normalized averaging method
that eliminates objective inconsistency while preserving fast
convergence for heterogeneous data clients. Chen et al. [13]
analyzed median-based FL algorithms. Agnostic Federated
Learning [15] proposed to optimize a centralized model for
any target distribution formed by a mixture of the client dis-
tributions. FedBE [16] learns a Bayesian ensemble from the
distribution of the models. These works explore statistics
or underlying distribution of the models to adjust aggrega-
tion strategies. In contrast, we propose to directly learn the
aggregation weights by gradient-based optimization on the
clients’ data. Other recent works also discuss the possibility
for model personalization [17, 18, 19]. Most recent works
demonstrate good theoretical analysis but are only evalu-
ated on manually created toy examples. It is not clear if
the approaches would generalize well to real-world medical
imaging datasets such as those studied in this work.

Multi-institutional Medical Image Analysis. Due to its
privacy-preserving attributes, FL is particularly attractive
for the medical domain. Rieke et al. [4] discussed the po-
tential of FL in digital health. Meanwhile, multiple real-
world investigations of FL have been applied to medical
image analysis, which is itself a well-explored field with
deep learning [20, 21, 22]. Examples of FL in medical
imaging include multi-institutional brain tumor segmenta-
tion [23, 24], breast density classification [25] and fMRI
analysis [26]. In addition to FL settings, Chang et al. [27]
synthesized medical images with a GAN [28] without shar-
ing data between institutions. On top of privacy concerns,
Liu et al. [29], Dou et al. [30] and Xia et al. [31] emphasized
the challenge of domain shift for multi-institutional medical
data and developed algorithms to solve domain adaptation



and generalization problems in prostate segmentation, brain
tissue segmentation and liver segmentation from multi-site
medical images, respectively. However, these non-i.i.d.
challenges have not been resolved in FL for medical imag-
ing [4].

Automated Machine Learning. This paper introduces an
automated approach to find the best aggregation weights for
federated learning. Our approach is inspired by recent ad-
vances of automated machine learning (AutoML), includ-
ing hyper-parameter search [32, 33, 34], neural architecture
search (NAS) with reinforcement learning [35, 36], evolu-
tion algorithm [37, 38] and differentiable approaches [39,
40]. A recent approach [41] improves NAS by modeling the
architecture mixing weight using a Dirichlet distribution, a
mathematical formulation that we also utilize in this work.
In the broad sense of AutoML, our approach can also be
categorized as a differentiable hyper-parameter search algo-
rithm in the continuous search space of FedAvg aggregation
weights.

3. Auto-FedAvg
In this section, we first describe the general notations of

federated learning and revisit FedAvg [1] in Sec 3.1. We
then introduce our optimization objective in Sec 3.2, where
we will also introduce how we parameterize the aggrega-
tion weights to follow certain constraints, as well as variants
of the aggregation strategies, i.e., network-wise and layer-
wise. Finally, in Sec 3.3, we describe our full algorithm in
detail and analyze the communication cost of the proposed
Auto-FedAvg approach.

3.1. Revisiting FedAvg

Suppose K clients collaboratively train a global model
with parameter w in a standard FL setting. In particular, the
aim is to minimize:

min
w

K∑
k=1

αkLk(w), (1)

where Lk(w) is the local loss function of client k, αk ≥
0 and

∑
k αk = 1. Suppose there are nk data samples on

client k, then we usually set αk = nk

n , where n =
∑
k nk

is the total number of data samples used in the FL setting.
To relieve the communication burden, FedAvg [1] allows

the clients to update their local models for a certain period
of time with the stochastic gradient descent (SGD) opti-
mizer. We denote the local loss function given a data sam-
ple x and the current model weight w as l(w, x). The server
then collects C models (C ≤ K), aggregates them with
weighted averaging to update the global model, and sends
the new global model back to the clients for re-initialization
of next round of FL training. The aggregation weights
α ∈ RK are set to be proportional to the number of data

samples on each client (αk = nk

n ) as mentioned before. We
pick C = K for simplicity and the update of the global
model w in each communication round as w ←

∑
k
nk

n wk
where wk is the current model of client k.

The aggregation weights chosen by vanilla FedAvg is
based on the assumption that data follows a uniform distri-
bution across clients and are computed based on the number
of SGD steps performed on each client. However, since the
data distribution at each client is unknown and could possi-
bly be non-i.i.d or involve domain shifts, this assumption is
not guaranteed and can result in sub-optimal or even detri-
mental effects.

3.2. Optimization Objectives

To counteract the limitations of FedAvg, we propose
our differentiable approach to directly learn the aggregation
weights α from data at the clients. Denote by L the loss
function. We propose a constrained objective function in:

min
α

K∑
k=1

Lk(

K∑
k=1

αkwk)

s. t.
K∑
k=1

αk = 1 and αk > 0, (2)

where wk = arg min
w
Lk(w) is the local model updated on

the training set of client k. The motivation of the proposed
objective is that we directly learn the aggregation weight by
gradient descent from data in a differentiable way, while
keeping the local models fixed after completing their lo-
cal training. Since there is no data sharing between clients,
we will introduce a communication algorithm to achieve the
learning objective later in Sec 3.3. We first discuss the vari-
ants of the constraints of Eq. 2 as follows.

Constraints of the aggregation weights. Here, we pro-
vide two assumptions for the optimization constraints in
Eq. 2. To achieve these constraints, we introduce a new
set of variable βββ = [β1, .., βK ], which is a vector with the
same dimension as ααα = [α1, .., αK ]. We define a function
γ to transform βββ to ααα:

ααα = γ(βββ) (3)

Softmax function. One obvious choice to satisfy the con-
straint of ααα is to apply a softmax function to βββ

αk =
exp (βk)∑K
i=1 exp (βi)

(4)

Thus, the loss function becomes l(
∑K
k=1 αkwk, x) =

L(βββ, x), which only depends on β and x, since we keep the
model weights wk fixed in the aggregation weight learning
process (Eq. 2). In practice, we can compute the gradient of



each βk and directly update them based on a client’s local
data with gradient descent.

Dirichlet distribution. A better choice is to treat the ag-
gregation weight ααα as random variables, modeled by the
Dirichlet distribution parameterized by the concentration βββ:
ααα ∼ Dir(βββ). This formulation induces stochasticity that
naturally encourages exploration in the search space during
the sampling process in training. The probability density
function is formed as:

Dir(ααα|βββ) =
1

B(βββ)

K∏
k=1

αβk−1
k , (5)

where B(βββ) =
∏K

k=1 Γ(βk)

Γ(
∑K

k=1 βk)
and Γ(z) =

∫∞
0
xz−1e−xdx

is the gamma function. The Dirichlet distribution is the
conjugate prior of a multinomial distribution with a sim-
plex. Each sample will already satisfy our constraint of the
aggregation weights in Eq. 2. Thus we find the Dirichlet
distribution to be a natural formulation to model the aggre-
gation weights during FL while utilizing its properties for
gradient-based optimization [41, 42]. It is also worth men-
tioning that the uniform distribution is a special case of the
Dirichlet distribution when α1 = α2 = ... = αK = 1.

In the training phase, given a data sample x, we sample
ααα from the Dirichlet distribution with concentration βββ, ap-
proximate the gradient of βββ given the loss function L(βββ, x)
using implicit reparameterization [43] and update the con-
centration βββ. During inference, we compute the mode of
the distribution, which represents the values with maximum
probability.

αk =
βk − 1∑K
i=1 βi −K

(6)

Aggregation strategies. In the process of model aggre-
gation, our approach introduces more flexibility in terms of
the design of the aggregation weights than FedAvg, because
we are able to learn the parameterized aggregation weights
in a differentiable way from data. Here, we describe two
natural variants.

Network-wise aggregation weights. In this scenario, each
aggregation weight αk inααα is a scalar. The aggregation pro-
cess is the same as described previously: w ←

∑
k αkwk.

Layer-wise aggregation weights. Our approach allows an
easy extension to network-wise aggregation, namely layer-
wise aggregation. Suppose the deep network model we are
training has P layers. We denote wk,p as the p-th layer pa-
rameter of the model of client k. Then αk = [αk,1, .., αk,P ]
is a P -dimensional vector. Thus we are able to obtain the
p-th layer weight wp by wp ←

∑K
k=1 αk,pwk,p.

As for the constraints discussed previously, βk =
[βk,1, .., βk,P ] is now a P -dimensional vector as well. Then,

Algorithm 1 Auto-FedAvg. We denote the total number
of rounds as T , the interval to learn aggregation weights
as t0, local training iterations for client k as Mk, and the
aggregation weight learning iterations as S.
Server executes:

Define αααt = [αt1, .., α
t
K ], βββt = [βt1, .., β

t
K ].

Initialize w0 and βββ0. ααα0 = γ(βββ0)
for t← 1, ..., T do

for k ← 1, ...,K in parallel do
wtk ← LocalTrain(k,wt−1)

if t mod t0 = 0 then
βββt ← LearnAggWeight(wt1, .., w

t
K ,βββ

t−1)
αααt ← γ(βββt)

else
αααt ← αααt−1

wt ←
∑K
k=1 α

t
kw

t
k

return wT

LocalTrain(k,w):
for t← 1, ..,Mk do

Sample batch x from client k’s training data
Compute loss l(w;x)
Compute gradient of w and update w

return w

LearnAggWeight(w1, .., wK ,βββ
0):

for k ← 1, ...,K do
Server send w1, .., wk−1, wk+1, .., wK to client k

for s← 1, .., S do
for k ← 1, ...,K in parallel do

Sever send βββs−1 to client k
Sample batch x from client k’s local data
Compute loss L(βββs−1;x)
Compute/estimate gradient and update βββs−1 as βββs,k

Send βββs,k back to the server
βββs ← 1

K

∑K
k=1 βββ

s,k

return βββS

αk,p =
exp (βk,p)∑K

k=1 exp (βk,p)
is the equation when using softmax,

andαααp ∼ Dir(βββp) when applying the Dirichlet distribution.

3.3. Algorithm

Optimizing the objective function in Eq. 2 is not trivial
under the FL setting, since (i) we can only rely on the lo-
cal data on each client which is inaccessible to the server,
and (ii) we would like to maintain a relatively low commu-
nication cost. We describe the algorithm of Auto-FedAvg
in Algorithm 1. In each communication round t, the server
first sends out the global model to all the clients. When
the clients finish updating the local models in parallel, the
server gathers them and aggregates the models with a set
of learnable weights αααt = [αt1, .., α

t
K ] by weighted averag-



ing to obtain an updated global model wt. αααt is parameter-
ized by βββt using function γ and the actual instantiation of γ
in Eq. 3 is determined by whether we use softmax (Eq. 4)
or the Dirichlet distribution (Eq. 6) as the method to pa-
rameterize α. The learning process of βββt is described in
LearnAggWeight of Algorithm 1.

In LearnAggWeight, each client receives a copy of
all the model weights w1, .., wK and keeps them fixed dur-
ing this process. In each local iteration s, each client
samples a mini-batch x from their own local data, and
computes the current ααα from βββs−1 depending on the soft-
max or Dirichlet assumption we apply to the aggregation
weights, before forwarding x into the local model with
weight

∑K
k=1 αkwk. Then the client will compute the loss

function L(βββs−1, x) and update βββs,k based on the compu-
tation (softmax) or estimation (Dirichlet distribution) of the
gradient [43], as mentioned in Sec 3.2. The server will
gather βββs,k from every client k in every iteration s and av-
erage them to obtain a new global βββs.
Communication efficiency analysis. The communica-
tion of βββ is very efficient because βββ is merely a set of K
scalars or K low dimensional vectors (of size P ) in either
“network-wise aggregation weight” or “layer-wise aggre-
gation weight” strategy, which is negligible compared to
communicating the full network parameters as in a standard
FedAvg round. The major extra communication burden of
aggregation weight learning is introduced when the server
sends all local models to each client in the very first step. As
a result, we only do the aggregation weight learning process
every t0 rounds to further relieve the additional communi-
cation burden compared to FedAvg. The extra communica-
tion cost ratio (extra cost divided by FedAvg communica-
tion cost) is K−1

2t0
. A detailed derivation of which can be

found in the supplementary material. This is more accept-
able in cross-silo federated learning setting, which typically
contains only a small number of clients with relatively reli-
able internet connectivity [5]. For example, in our COVID-
19 lesion segmentation experiments, K = 3 and t0 = 10,
results in an extra 10% communication cost compared to
FedAvg.

4. Experiments
4.1. CIFAR-10

We first validate our approach on the CIFAR-10 dataset.
To compare our approach with the state-of-the-art FL meth-
ods such as FedProx [44] and FedMA [6] on the benchmark
dataset, we use the same heterogeneous data partition of
FedMA [6] on the CIFAR-10 dataset that simulates an envi-
ronment where the number of data points and class propor-
tions are unbalanced using their publicly available code1.
In this way, we can directly compare with the results in the

1https://github.com/IBM/FedMA

Table 1: CIFAR-10 classification with heterogeneous parti-
tion. Baseline numbers are from [6] on the same data split.

Method final accuracy(%)

FedAvg 86.29
FedProx [44] 85.32
Ensemble 75.29
FedMA [6] 87.53
FedMA [6] (our impl.) 87.47

Auto-FedAvg-L-Softmax* 88.64
Auto-FedAvg-L-Dirichlet* 88.37
Auto-FedAvg-N-Softmax* 88.60
Auto-FedAvg-N-Drichlet* 88.98

∗ With the interval of aggregation weight learning t0 = 10.

paper, which are shown in Table 1. We train the baseline
and our experiments for 99 rounds with 16 clients before
we test on the test set, where the same network architecture
of VGG-9 is adopted. The re-implementation of FedMA
achieves 87.47% accuracy, which is very close to the re-
ported performance 87.53% [6], indicating the correctness
of our experimental setup. For our Auto-FedAvg algorithm,
we experiment with different design choices described in
Sec 3.2, i.e. layer-wise (“L”) or network-wise (“N”) ag-
gregation strategy and softmax (“Softmax”) or Dirichlet as-
sumption (“Dirichlet”) over the constraints of the aggre-
gation weights. Based on the metric of final accuracy, all
our experimental variants outperform the baselines and our
“Auto-FedAvg-N-Dirichlet” achieved the best final accu-
racy of 88.98%, outperforming the published FedMA result
by 1.45%.

4.2. Multi-national COVID-19 lesion segmentation

4.2.1 Experimental results

The study with first real-world data of our federated learn-
ing algorithm is COVID-19 diagnosis, which has caused a
world-wide pandemic in the year of 2020 and 2021. Ma-
chine learning based algorithms have been developed to
quickly diagnose the disease and study the imaging charac-
teristics [45, 46, 47]. In this study, we focus on the critical
task of COVID-19 lesion segmentation on multi-national
COVID-19 datasets.
Dataset description. This study contains CT scans of
SARS-CoV-2 infected patients collected from three in-
ternational medical centers, including (i) 671 scans from
[anonymized hospitals] in China (denoted as Dataset I), (ii)
88 scans from [anonymized hospitals] in Japan (denoted as
Dataset II), and (iii) 186 scans from [anonymized hospitals]
in Italy (denoted as Dataset III). Two expert radiologists an-
notated these CT scans assigning a foreground (COVID-
19 lesion) and background label for each voxel. For each
dataset, we randomly split the annotated cases into train-
ing/validation/testing, resulting in splits of 447/112/112 for
Dataset I, 30/29/29 for Dataset II, and 124/31/31 for Dataset
III. We visualize examples in Fig 2 and show the intrinsic

https://github.com/IBM/FedMA


Table 2: Multi-national COVID-19 lesion segmentation. “Global test avg” is the major metric to measure the generalizability
of the FL global model. n specifies the total dataset size at the client.

Method I (n=671) II (n=88) III (n=186) global test avg local avg local gen

Local only - I 59.82 61.82 51.80 57.81
Local only - II 41.92 59.95 50.18 50.68 61.87 48.79
Local only - III 34.50 52.54 65.85 50.96

FedAvg 59.93 63.79 60.52 61.41 ±0.19 62.47 58.80
FedAvg - even 56.73 64.31 64.98 62.01 ±0.30 62.24 59.28
FedProx 60.33 64.98 60.45 61.92 ±0.53 61.99 58.33

Auto-FedAvg-L-Softmax 59.03 64.96† 61.66† 61.89 ±0.54 63.17 58.96
Auto-FedAvg-L-Dirichlet 58.59 64.95† 64.96† 62.83 ±0.14 63.08 59.51
Auto-FedAvg-N-Softmax 59.58 64.50† 63.35† 62.48 ±0.24 63.42 59.62
Auto-FedAvg-N-Dirichlet 60.37 65.28† 64.76† 63.47† ±0.22 64.04 60.79
Auto-FedAvg-N-Dirichlet* 60.42 64.86† 64.07† 63.11† ±0.33 63.74 60.23

∗ With the interval of aggregation weight learning t0 = 10.
† Significance of the global model over FedAvg.

image label FedAvg Auto-FedAvg

Figure 2: Examples of COVID-19 lesion segmentation of
patients from China (top) and Italy (bottom). From left to
right: original CT scan, human label (in green), FedAvg
segmentation results, and our segmentation results. Our
Auto-FedAvg mitigates the issue of under-segmentation
(top) and reduces false-positive prediction (bottom) in these
two examples, respectively.

domain shift between datasets (e.g., caused by resolution
and contrast).

Implementation details. We simulate a federated learning
scenario, in which each dataset represents one FL client,
and ensure no data is transferred among the clients. In all
FL experiments, we fix the number of total communication
rounds T to 300 and validate on the local validation sets
in each round to select the best local models (with highest
validation score on each single client) and the global model
(with highest average validation accuracy over three vali-
dation sets). In our experiments, we initialize the concen-
tration β of the Dirichlet distribution as (6.0, 6.0, 6.0). In
the local training process of each client, we adopt the Adam
optimizer [48] with a learning rate of 0.0001, (β1, β2) as
(0.5, 0.99), and no decay. Each training round performs
300 iterations with a batch size of 4. These hyperparame-
ters are tuned to achieve the best local performances. Dice
loss [21] is used as the training objective, which is a widely-
applied loss function in medical image segmentation and

aimed to handle the problem of foreground-background im-
balance. The architecture of the segmentation network is
3D U-Net [20, 22]. In the training process, we resam-
ple each CT volume to a fixed voxel spacing of (0.8mm,
0.8mm, 5mm) and randomly crop region of interests (ROIs)
of 256× 256× 32. In the testing phase, we adopt a sliding
window scheme with a stride of (64, 64, 8) and resample to
the original voxel spacing for final evaluation.

Evaluation metrics. We measure the performance of the
segmentation models by Dice similarity coefficient (DSC),
a standard evaluation metric used for medical image seg-
mentation. For all the FL experiments, we test the perfor-
mance of the best global model, selected by highest av-
erage validation accuracy of all three clients, on the test
data of each client, corresponding to the first three columns
(I/II/III) of Table 2. We compute the average of the three
test accuracies to measure the average performance of the
model on three datasets, corresponding to the forth column
“global test avg”. This metric represents a measure for the
generalizability of the global model, and serves as the ma-
jor metric for performance evaluation. Moreover, we test
the best local models on all clients, selected by the highest
local validation score, resulting in a 3x3 matrix of scores.
The on-diagonal scores represent the local performances of
each model, which is averaged as “local avg” in column
five. The off-diagonal scores represent the generalization
performance of each model, which is averaged as “local
gen” in column six. We run three repeats of each configura-
tion of the FL experiments and report the standard deviation
on “global test avg” to measure the stability of our results.

Results. We display the quantitative results in Table 2 and
two examples for qualitative analysis in Fig 2. We first
train the models locally without communication to obtain
the baselines of the local models, shown in the first three
rows in the table. Unsurprisingly, all three local mod-
els have relatively low generalization performance when
tested on other clients, indicating domain shifts across the
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Figure 3: Analysis of the learning process during “Auto-FedAvg-N-Dichlet”.

three datasets. For the FedAvg baseline, we experiment
with two different sets of aggregation weights, i.e., nor-
malized dataset size and uniform weights, denoted by “Fe-
dAvg” and “FedAvg-even”, respectively. We also imple-
ment FedProx [44] with the empirically best µ = 0.001.
For our Auto-FedAvg algorithm, we experiment with dif-
ferent design choices described in Sec 3.2, i.e. layer-wise
(“L”) or network-wise (“N”) aggregation strategy and soft-
max (“Softmax”) or Dirichlet assumption (“Dirichlet”) over
the constraints of the aggregation weights. We find that
“Auto-FedAvg-N-Dirichlet” gives the best results, outper-
forming “FedAvg” by 2.06% on general global model per-
formance (column ”global test avg”), by 1.57% on aver-
age local model performance (column “local avg”), and by
1.99% on local model generalization (column “local gen”).
We furthermore performed a Wilcoxon signed rank test on
the test set (first four columns), where the significant im-
provements (p � 0.05) over FedAvg are marked with su-
perscript †.

Generally speaking, the Dirichlet distribution performs
better at modeling the aggregation weights than softmax.
Interestingly, the performance of the layer-wise aggrega-
tion strategy is worse than the network-wise aggregation
strategy. The gradient of network-wise aggregation weights
can be viewed as a summation of all gradients of layer-
wise aggregation weights. In this sense, we suspect that
network-wise aggregation acts as a regularization of layer-
wise weights. We also conduct diagnosis experiments and
provided them in supplementary materials, where we dis-
play the patterns of the learned layer-wise weights and sug-
gest a layer-wise smoothing loss can improve the results of
the layer-wise aggregation strategy. The improvement of
the layer-wise smoothing loss for the layer-wise aggregation
strategy further serves as evidence that the network-wise ag-
gregation may act as regularization over the layer-wise one.

4.2.2 Analysis studies
Learning process. Here, we aim to analyze the learning
process of Auto-FedAvg. The learning curve of the ag-
gregation weights α, validation accuracy growth, and the
visualization of the Dirichlet distribution are displayed in
Fig. 3. The sub-figures correspond to our best performing

model “Auto-FedAvg-N-Dichlet” in Table 2. As shown in
Fig. 3a, in the first 30 rounds, α2 and α3 rise moderately,
indicating the global model could benefit from increasing
the weight of the models from client II and client III in the
early stage. This matches our expectation that client II and
client III converge faster than client I because client II and
client III own significantly less data than client I. Giving
them more weight in the aggregation process accelerates
the training process. As shown in Fig 3b, our approach has
a faster growth in validation score than FedAvg. After ap-
proximately 40 rounds, we observe a rise of α1 and drops of
α2 and α3, indicating that assigning higher weights to client
I benefits the global model eventually, making it more gen-
eralizable across different clients.

In terms of the latent Dirichlet distribution of α (shown
in Fig 3c), we plot the different states of α as well as the
latent variable β in round 0, 30, 50, and 300. Interestingly,
the distribution becomes more concentrated with a smaller
variance in round 300 compared to that of round 0. We
interpret it as a higher certainty of the aggregation weights
in the end of the training process than that in the beginning
(starting from an initialization with β = (6.0, 6.0, 6.0)).
The effect of interval of the aggregation weight learning.

We plot the global test accuracy under different aggrega-
tion weight learning intervals t0 in Fig. 4.
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Figure 4: The impact of the aggre-
gation weight learning interval t0.

The overall ten-
dency is that the
performance will de-
grade if we increase
the interval t0. It is
worth mentioning
that an interval of
t0 = 10 will only
add to 10% extra
communication cost
with merely a 0.36%
decline in performance compared to t0 = 1. In terms
of future applications of our approach, we expect no
concern with such additional communication burden as
medical institutions usually have relatively reliable network
connectivity.
Re-initialize aggregation weights before learning each



Table 3: Multi-institutional pancreas segmentation. “Global test avg” is the major metric to measure the generalizability of
the FL global model. n specifies the total dataset size at the client.

Method I (n=281) II (n=82) III (n=30) global test avg local avg local gen

Local only - I 69.43 71.38 63.79 68.20
Local only - II 49.69 75.47 53.02 59.39 65.32 56.9
Local only - III 42.35 61.18 51.08 51.34

FedAvg 71.85 78.36 69.12 73.11 ±0.17 72.84 70.75
FedAvg - even 69.18 78.82 70.91 72.97 ±0.14 73.49 71.33
FedProx 71.96 78.35 69.57 73.29 ±0.25 73.66 70.79

Auto-FedAvg-L-Softmax 71.22 78.38 71.04† 73.54 ±0.28 73.92 71.49
Auto-FedAvg-L-Dirichlet 71.06 79.60† 70.56† 73.74 ±0.34 74.17 71.68
Auto-FedAvg-N-Softmax 70.40 78.80 70.48† 73.22 ±0.21 74.02 71.50
Auto-FedAvg-N-Dirichlet 71.20 79.30† 71.19† 73.90 ±0.25 74.25 71.83
Auto-FedAvg-N-Dirichlet* 71.26 79.90† 71.49† 74.21 ±0.28 74.33 72.30

∗ With the interval of aggregation weight learning t0 = 5.
† Significance of the global model over FedAvg.

round. Before each round of learning aggregation weights,
we reuse the previously learned α from the last round as ini-
tialization. Another variant could be re-initializing α to be
(0.33,0.33,0.33) before each round of aggregation weights
learning (see LearnAggWeight, Alg. 1). We conduct
an experiment under this setting named “Auto-FedAvg-N-
Dirichlet*” in Table 2 and find the performance of test ac-
curacy drops to 61.84% compared to the original 63.11%.
We speculate that this is because reusing the previous α not
only offers a good starting point of the current round but
also accelerates the learning process.

4.3. Multi-institutional Pancreas Segmentation

Dataset description. In this experiment, we study pancreas
segmentation from CT scans, which is an important pre-
requisite of pancreatic tumor detection and surgical plan-
ning [49]. We use the provided annotations from three
public datasets, i.e., (i) pancreas segmentation subset of
Medical Segmentation Decathlon [50] which contains 281
cases (denoted as Dataset I), (ii) the Cancer Image Archive
(TCIA) Pancreas-CT dataset [51] which contains 82 cases
(denoted as Dataset II), and (iii) Beyond the Cranial Vault
(BTCV) Abdomen data set [52] which contains 30 cases
(denoted as Dataset III). All the data include manual per
voxel annotations of the pancreas from radiologists. For
each dataset, we randomly split the annotated cases into
training/validation/test sets, which are 95/93/93 for Dataset
I, 28/27/27 for Dataset II, and 10/10/10 for Dataset III.
Implementation details. In all FL experiments, we fix the
number of total communication rounds to 50. In the local
training process of each client, we adopt an initial learning
rate of 0.001 with a cosine learning rate decay and with a
batch size of 16. Same as the Covid-19 study, these hyper-
parameters are tuned to achieve the best local performances.
Results. We keep the same notation of our experiments as
in Sec. 4.2. We found the conclusions are the same: our
Auto-FedAvg outperforms FedAvg in all metrics and “Auto-

FedAvg-N-Dirichlet” is the best in both local performance
and generalizability, indicating that the network-wise ag-
gregation and using the Dirichlet distribution to model ag-
gregation weights produce the best results. The conclusion
is the same as of COVID dataset that network-wise for-
mulation is better than layer-wise formulation and Dirich-
let models aggregation weights better than the softmax. As
for the significance test (Wilcoxon signed rank test) of the
global model, we achieve significant improvements for two
of three clients (datasets II and III), while the performance
stays comparable to FedAvg for I (with no significant dif-
ference). Interestingly, we find that with interval t0 = 5, as
denoted as “Auto-FedAvg-N-Dirichlet*”, the performance
is even better than its t0 = 1 counterpart (Auto-FedAvg-N-
Dirichlet). This could result from the benefit of stabilization
when the server keeps the aggregation weights fixed during
the interval.

5. Conclusions, Limitations, and Future Work
In this paper, we introduced Auto-FedAvg, which im-

proves the standard federated learning (FL) algorithm, Fe-
dAvg, by automatically and dynamically learning the aggre-
gation weights instead of keeping them fixed. We also pro-
posed a communication-efficient algorithm that alternates
updates between the local model weights and the global ag-
gregation weights. We further explored different constraints
over the aggregation weights and variants of aggregation
strategies. Experiments on the Cifar-10 and two extensive
studies on real-world medical image analysis datasets illus-
trate the effectiveness of our approach.

One limitation of our algorithm is that relatively sta-
ble connections between the server and each of the clients
are necessary. This is feasible in our “cross-silo” situa-
tion but could be problematic in “cross-device” scenarios
where new edge devices regularly drop in or out [5]. As
a result, decreasing the communication frequency and in-
tegrating mechanisms for tolerating regular disconnections



are two directions to improve the scalability of the current
design. Our algorithm also introduced a general and flexible
means to boost the performance of FL by updating a small
number of global parameters and could be combined with
differential privacy techniques for added protection against
potential inversion attacks [23, 53]. Here, we explored only
the network-wise and layer-wise learning of aggregation
weights. Future research can include more complex aggre-
gation operations and additional parameters to allow further
personalization for accounting for non-i.i.d data and domain
shift cases in FL.
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[22] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp,
Thomas Brox, and Olaf Ronneberger. 3d u-net: learning
dense volumetric segmentation from sparse annotation. In
International conference on medical image computing and
computer-assisted intervention, pages 424–432. Springer,
2016. 2, 6

[23] Wenqi Li, Fausto Milletarı̀, Daguang Xu, Nicola Rieke,
Jonny Hancox, Wentao Zhu, Maximilian Baust, Yan Cheng,
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