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ABSTRACT

Capillaries are the smallest vessels in the body responsible
for the delivery of oxygen and nutrients to the surrounding
cells. Various diseases have been shown to alter the density
of nutritive capillaries and the flow velocity of erythrocytes.
In previous studies, capillary density and flow velocity have
been assessed manually by trained specialists. Manual anal-
ysis of a standard 20-second long microvascular video takes
on average 20 minutes and requires extensive training. Sev-
eral studies have reported that manual analysis hinders the
application of microvascular microscopy in a clinical setting.
In this paper, we present a fully automated state-of-the-art
system, called CapillaryNet, that can quantify skin nutritive
capillary density and red blood cell velocity from handheld
microscopy videos. Moreover, CapillaryNet measures sev-
eral novel microvascular parameters that researchers were
previously unable to quantify, i.e. capillary hematocrit and
intra-capillary flow velocity heterogeneity. Our system has
been used to analyze skin microcirculation videos from vari-
ous patient groups (COVID-19, pancreatitis, and acute heart
diseases). Our proposed system excels from existing capillary
detection systems as it combines the speed of traditional com-
puter vision algorithms and the accuracy of convolutional
neural networks.
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1 INTRODUCTION

Capillaries are the smallest blood vessels in the body measur-
ing less than 20 micrometers in diameter [1]. The exchange of
many nutrients with the interstitial fluid occurs here includ-
ing water, oxygen and other essential nutrients necessary
for the maintenance of cellular metabolism [2, 3]. A net-
work of capillaries constitutes the microcirculation of the
body [4]. Studies assessing microcirculation reveal that cap-
illary density and flow velocity is altered in several diseases
[5-17]. Furthermore, some studies claim that changes in mi-
crocirculation occur early in disease progression and thus
microcirculation monitoring could be used for early detec-
tion for various clinical conditions [12, 17]. Determining the
density of capillaries allows us to understand the surface
area available for the exchange of nutrients [3]. One result
of a study suggests that capillary density can be used as an
early marker of mortality rate from cardiovascular diseases
[6]. A second study shows measuring capillary density can
be a key component in understanding fibrotic diseases [18].
A study on chronic kidney disease has determined that a
reduction in capillary density over time can be used as early
detection to prompt timely interventions [19]. Quantifying
the velocity of the red blood cells within the capillaries can
help assess fluid homeostasis and the transcapillary fluid flux
[3]. One study suggests that alterations in the velocity of
red blood cells within the capillaries influence the number
of supplies being delivered to the surrounding cells and the
time it has to be exchanged across the microvascular wall to
the surrounding tissues [20]. Another study shows that an
increase in flow velocity in cerebral capillaries can be due
to a body response trying to regulate a decrease in oxygen
tension in the neurons [21].
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A common theme among microvascular analysis articles
is the time-consuming, laborious tasks that require clinicians
and/or researchers to manually (or semi-automatically) se-
lect capillaries and determine the velocity of the blood flow.
Such jobs are strenuous on the eyes and are susceptible to
errors and observer variations across different datasets. On
average it takes a trained researcher 20 minutes to analyze
a 20-second long microvascular video [22]. The long analy-
sis time and training requirements are some of the reasons
that hinder microvascular microscopy to be integrated into
routine clinical practice [23]. Furthermore, manual analy-
sis limits the number of parameters that can be analyzed
within a microvascular video. Flow velocity and capillary
density are assessed, while intra-capillary flow heterogene-
ity and Capillary hematocrit are not routinely recorded [23].
Our observations suggest that all the above-mentioned pa-
rameters are altered in specific patient groups. In a series
of three meetings organized by international experts in mi-
crovascular microscopy, it was concluded that an automatic
assessment of the microcirculation is required to integrate
microvascular microscopy into clinical practice [23].

This article proposes a novel system that can automatically
assess the microcirculation in microvascular videos as per
the following requirements.

e Detect and quantify capillaries density and capillary
hematocrit;

o Track the intra-capillary flow heterogeneity and direc-
tion; and

o Classify the velocity of red blood cell flow.

We aim to lift the burden of the manual job from the
professionals and allow them to focus on the method and
hypotheses development. The input and outputs of Capil-
laryNet are shown in Figure 1. We compare our proposed
architecture with other state-of-the-art capillary detection
methods. We also compare the output of CapillaryNet with
that of a trained researcher. We show that our approach
can be more accurate and efficient than the annotations of
the trained researchers and other state-of-the-art capillary
detection architecture. This system is used part of a larger
system for microcirculation analysis by various institutions
and projects around the world.

2 RELATED WORK

In this section we review the current microcirculation sys-
tems in the literature.

Dobble et. al [24] uses a frame averaging method to remove
the plasma and white blood cells gaps within the capillary
before using an algorithm to detect capillaries. Using frame
averaging can lead to a lower overall density calculation since
capillaries with a majority of gaps or not enough blood flow
will be disregarded. Furthermore, Dobble et. al [24] removes
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capillaries that are out of focus, since they consider it to add
noise to the frame averaging method. From our experiments
with handheld microscopy, the nature of the rounded lens
may lead to 40% out-of-focus images on both edges of the
video. It is very challenging to have a fully focused video
the whole time and some parts can always be out of focus.
Therefore, this will further significantly reduce the capillary
density values.

Hilty et. al [25] has a very similar flow as Dobble et. al [24]
with minor changes. Hilty et. al [25] detects capillaries by
first generating a mean image across all frames and then pass-
ing the resulting image to two pipelines, firstly classifying
vessels of 20-30 ym in diameter as capillaries and secondly
any vessel of up to 400um in diameter as venules. The capil-
laries are then passed to a modified curvature-based region
detection algorithm [26] to an image that has been stabilized
and equalized with an adaptive histogram. The result is a
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vessel map that contains centerlines across structures that
are between 20-30pm wide. As stated by the authors of the
curvature-based region detection algorithm [26], this type of
detection is unintelligent and can lead to detecting artifacts
such as hair or stains with similar sizes. Furthermore, due
to the challenges in skin profile stated above, the mean of
the images across the whole video is not always the best
representation value since different parts of the video might
have different lighting or capillaries can be out of the optimal
focus. Moreover, videos that have slight motion will have to
be completely disregarded since the central line is calculated
across all frames instead of per frame.

Similar to Dobble et. al [24], Bezemer et. al [27] improves
the method by using 2D cross-correlation to fill up the blood
flow gaps caused by plasma and white blood cells. This is a
better method since the number of frames to be disregarded
is reduced. However, 2D cross-correlation assumes a uniform
flow of blood and does not take into account the dynamic
change of flow between the gaps which can inherently de-
crease the accuracy of prediction.

Tam et. al [28] detect capillaries through a semi-automated
method which requires the user to select points on the image.
The algorithm then decides if there is a capillary present.
Since this method relies on the user to select the capillaries
it cannot be used in a clinical environment due to the time
of analysis of a microscopy video.

Geyman et. al [29] takes more of a manual approach by
first using software to click away from the major blood ves-
sels and then applying hardcoded calculations to detect the
total number of capillaries based on the number of pixels
in the region of interest. This is quite a manual approach
and highly susceptible to observer variations across different
datasets.

Demir et. al [30] uses a Contrast Limited Adaptive His-
togram Equalization method (CLAHE) [31] with a median
filter and an adjustable threshold to detect capillaries on the
weighted mean of five consecutive frames. However, these
methods need to be adjusted accordingly depending on the
illumination on the video and thickness of the skin. This
introduces a manual job where the user has to find the right
combination of values for different videos, or the same video
with different illumination.

Cheng et al. [32] applies an image enhancement step fol-
lowed by the manual highlighting by the user of the capillar-
ies. The image enhancement process darkens the capillaries
and increases the brightness of the background using a best
fit histogram method. Using their system, the user can fur-
ther increase the contrast and smoothen the images manually
to increase the differentiation of the capillaries from the back-
ground. Macros of this modifications can then be generated
and applied to all future captured microscopy videos. How-
ever this macro generation assumes that the videos will be
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captured with the same brightness and thickness of skin.
Moreover, the image used is in the grayscale therefore if
there are any artifacts it can be mistaken for capillaries.

Tama et al. [33] uses binarization followed by skeleton
extraction and segmentation to quantify the capillaries. The
binarization is applied to the green channel since they as-
sume it has the highest contrast between the capillaries and
the background. They use the Top-Hat transform method
to reduce uneven illumination followed by Wiener filtering
to remove noisy pixels and then the gaussian smoothing
method to smoothen the image. The OTSU thresholding
method is then applied to segment the capillaries from the
background. This method relies on the user finding a refer-
ence frame from the video which has the highest contrast.

Prentasic et al. [34] used a custom neural network to seg-
ment the foveal microvasculature. Their neural network con-
sists of 3 CNN blocks coupled with max pooling along with
a dropout layer followed by 2 dense layers. Their neural
network was trained in 30 hours and the segmentation took
approximately 2 minutes per single image with an accuracy
of 83%. The time taken and high-end hardware used to ana-
lyze a single image makes it unsuitable for clinical use since
the users would like the results instantly.

Dai et al. [35] used a custom neural network similiar to
Prentasic et al. for segmentation. However, Dai et al. used 5
CNN blocks instead of 3. They used gamma correction and
contrast limited adaptive histogram equalization for image
enhancement. They reported an accuracy of 60.94%, which
is too low to be useful.

Nivedha et al. [36] used the green channel of the image and
used a non-linear Support Vector Machine [37] to classify
the capillaries. This method involved a manual step where
the user had to crop the region of interest to improve the
histogram equalization. Nivedha et al performed different
experiments comparing different denoising filters such as
Gaussian, Wiener, Median and adaptive median and con-
cluded that the Gaussian filter is the most suitable for their
data. Furthermore, they compared different segmentation
method including OTSU, K Means, watershed and concluded
that OTSU method was the most suitable for their data. The
segmented images where then passed to an SVM and they
achieved an accuracy of 83.3%.

Javia et al. [38] modifies the ResNet18 [39] to quantify
capillaries and uses the first 10-layers of the architecture.
The main limitation of the ResNet architecture is that im-
ages have to be resized to 224x224 however most capillary
images are less than 100x100. This means images have to
be scaled up which makes this method inefficient and uses
more resources than needed. They reported an accuracy of
89.45% on their data however ResNet 18 [39] has 11 million
trainable parameters and with such scaling up training time
can be up several hours and prediction time can be up to
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several minutes. This can make this slow and inefficient to
be used within a clinical setting. The training and test time
was not reported in this paper.

Hilty et al. [25] uses a similar method to Cheng et al where
they first apply an image enhancement process followed
by the highlighting of the vessels of interest to quantify
the capillary. They use a combination of Contrast-limited
adaptive histogram and combination of the first and second-
derivative Gaussian kernel convolutions [25] to quantify
capillaries. This method is susceptible to detecting artifacts
as capillaries in the images since the kernel convolutions
will not be able to difference between capillaries and other
objects in the image. The accuracy, training and test time
was not reported in this paper.

Ye et al. [40] utilized the concept of transfer learning and
used the inception Single Shot Detector V2 (ssd-inception
v2) [41] to build their neural network. The ssd-inception v2
has high accuracy with reduced computational complexity
making it suitable for capillary detection [42]. On the other
hand, they used a spatiotemporal diagram analysis for the
flow velocity calculation. This method requires white blood
cells or plasma gaps in order to detect the velocity accurately.
Therefore, capillaries that lacked such characteristics had
to be disregarded reducing the overall efficiency of velocity
classification. Furthermore, as stated by the authors of the
paper the spatiotemporal method can be cumbersome and
time consuming. The accuracy was not reported in this paper.

Hariyani et al. [43] used a U-net architecture combined
with a dual attention module [44, 45]. The images has to be
resized to 256x256 and accuracy of 64% was reported. This
accuracy is low for it to be used in a clinical setting.

In the above, the more accurate methods requires semi-
automatic analysis while the more automatic methods are
less accurate making it unsuitable for a clinical setting. In
contrast, CapillaryNet is fully automatic and able to classify
microcirculation videos in ~0.9s with 93% accuracy making
it suitable to be used in a clinical setting. With a dataset of
~11,000 capillaries, the training time of capillary net is under
10 minutes.’

3 METHOD

In this section, we explain how CapillaryNet method was
developed.

3.1 Data Acquisition for CapillaryNet
development

Videos were acquired on human subjects with a hand-held
digital microscope (Digital Capillaroscope, Inspectis, Swe-
den) in the form of videos with a resolution of 1920x1080 at
30 frames per second for 20 seconds. The videos visualized
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Figure 2: a) The skin region from where the microvas-
cular videos were recorded is marked in white. b) An
image from the video captured in that skin region

the nutritive capillaries in the skin papillae in the dorsum
region of the hand (Figure 2a shows the region of interest
and 2b the capillaries displayed by the microscope in this
region). The region was coated with a layer of transparent
oil before applying the microscope to the skin. 365 videos
displaying the capillaries from 50 subjects were analyzed.
All subjects gave their informed consent to participate in
the study (IRB protocol and approval number: 2020P001987).
The average age of the subjects was 57 years with a standard
deviation of 17 years.

3.2 Manual Data Analysis

A trained researcher analyzed the obtained microvascular
videos using in-house software for manual marking of cap-
illaries. Capillaries visible in different frames of each video
were marked. To calculate the accuracy of the algorithm
the labeled bounding boxes and velocity classification were
then compared with the algorithm output by the trained
researcher. The algorithm was trained by extracting the cap-
illaries within the bounding boxes which were labeled by
the researcher. Regions with capillaries were compared to re-
gions with no capillaries and regions with other skin features
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(i.e. hair, skin folds and other artifacts). The algorithm was
trained on ~70% of the labeled data and then validated on
~30% of the labeled data. CapillaryNet was then tested with
35 new videos acquired independently with a total of ~1000
capillaries. This test dataset was independently analyzed by
two researchers and was used to calculate the reproducibility
of capillary detection between two researchers.

3.3 CapillaryNet Architecture - Capillary
Detection

The first part of our architecture detects the number of cap-
illaries and calculates the density within a given area. This
part consists of 2 stages, the region of interest (Rol) genera-
tion, and the CNN part. In our case, Rols are bounding boxes
in specific areas in the image suggesting the presence of a
capillary. The regions of interest is detected by 2 independent
pipelines, by analyzing the HSV color space of the image and
by using Structural Similarity Index (SSIM) [46]. Different
levels of enhancements are applied to the Rols and passed to
2 CNNss for detecting if there is a capillary in the Rol. This
way our architecture uniquely combines both traditional and
Deep Learning models, and tailors it for capillary detection.

3.3.1 Stage 1: Generating Rols. The first stage generates the
Rols. The literature (see related work section) either used tra-
ditional methods solely or deep neural networks. Although
traditional methods are relatively faster than deep neural
networks, they lack the accuracy of the deep neural networks
since deep neural networks can learn from trained data. The
Rol stage is critical since it suggests to the algorithm which
parts of the image it should analyze. Using purely traditional
methods will make the prediction unintelligent as anything
that is not background (in our case the skin) will be sug-
gested as a capillary. While with deep neural networks, it
will have to analyze the whole image to find if capillaries ex-
ist which is resource intensive and time-consuming. For our
Rols stage we use a combination of 2 computer techniques
divided into 2 independent pipelines to suggest the Rols. We
use these method instead of deep neural networks since they
are relatively less computationally expensive.

The first pipeline generate Rols by smoothing the image
using 3 steps. First by convolving an image with a 5 by 5
normalized box filter and changes the central value with the
average value (see equation 1). We then blur the image using
a Gaussian blur window in 2D with 9 by 9 (see equation
2). We then alpha blend this image with the original input
image using a Gaussian weight of -0.5 (see equation 3). Alpha
blending overlays the original image with the smoothing
image with a transparent look while it has a original image
as the background. With this arithmetic operation we reduce
the noise as much as possible while maintaining the details
of the image. The transparency mask between both of these
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images is known as the alpha mask and in this case we use a
value of & = 1.5.

1 1 1 1 1
1 1 1 1 1
1
K==|1 11 1 1 (1)
0 1 1 1 1 1
1 1 1 1 1
where:
K = image smoothing factor
x2+y2
G(x,y) = e 202 2
() = @)
where:
x = distance from the origin in the horizontal axis
y = distance from the origin in the vertical axis
o = standard deviation of the Gaussian distribution
G(x) = (1 = a)Fy(x) + aF;(x), (3)

where:
Fy = original image
F; = smoothing image

The image color is then enhanced by a factor of 3 and the
contrast by factor of 2.5 [47]. We then convert the image
to the hue, saturation, value (HSV) color model. The value
presents the brightness of the color from black to the average
saturation value. The hue channel presents the color i.e., red,
yellow. The saturation presents the amount of color from
gray to the pure form of the color.

In an image, the brightness V, can be calculated by using
equation 4 [48]

V = max(R, G, B) 4)

The intermediate value C is then calculated by using equa-
tion 5 [48]

C =V —-min(R,G,B) (5)
The value C is used to derive the hue value and is calculate
by using the equation 6 [48]

undefined ifC=0

H = 60° (S5£) (mods) ifV=R ©
(¥+Z) (mod6) ifV =G
(B +4) (mod6) ifV=B

The saturation of the pixel is calculated by using the equa-
tion 7 [48]

0 ifvV=0
S=1c , (7)
v otherwise
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Figure 3: The Structural Similarity Index System

We use HSV color model instead of RGB because the HSV
space provides robustness against light changes and shad-
ows [48]. After several experiments, we conclude that the
capillaries lay between HSV (155,60,0) and (180, 255, 255).
However these values are modifiable in our code and can be
changed by the user. We then use the bitwise and operator
to calculate the conjunction of pixels between the specified
HSV range and the image. This operation only considers
pixels that are common between the HSV range and the im-
age. The remaining pixels are removed. We then detect the
borders between the removed pixel and the HSV range. The
borders are detected using the OTSU threshold combined
with contour approximation method [49, 50]. The input is
shown in figure 4a, after the processing with the HSV, the
image is shown in figure 4b and the output is shown in figure
4c. Every red box is then send to the CNN (in Stage 2) to be
classified. The flow of this method is shown in figure 5.

The second pipeline utilizes the SSIM method [46]. The
SSIM pipeline extracts the background and subtracts it from
the original image. The SSIM method extracts three infor-
mation from the image which is luminance, contrast and
structure. The SSIM method is highlighted in Figure 3[46].

The luminance is measured by averaging the the pixel in
a given window (equation 8). In our case, we use a 11 by 11
window.

L X
b= ; X (8)
The contrast is measured by taking the standard deviation
of the pixel values (see equation 9).

;X 3
Ox = (m Z (x; — ,Ux)z) )
i=1

The structural comparison is done by dividing the image
with its standard deviation on both input signals, first on the
X using

(X = pix) [Ox (10)
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then on the signal y using

(Y_lly) /‘Ty (11)

Each of the above is done by comparing the background
image with the original image. The luminance comparison
function shows the difference of brightness between 2 images
(see equation 12.

2pixpty +C1
13+ ,Uz +C

I(xy) = (12)

The C1 factor in the luminance comparison equation is
calculated by multiplying a constant value with the pixel
value (see equation 13). The constant value is determined by
experimenting on the dataset and finding a suitable value.

C1 = (K]L)Z (13)

The contrast comparison between the 2 images is calcu-
lated using the standard deviation (see equation 14.

2050y +C2

c(xy) = (14)

0z +05+Cy
The C2 factor in the contrast comparison equation is cal-
culated by multiplying a constant value with the pixel value
(see equation 15). The constant value is determined by ex-
perimenting on the dataset and finding a suitable value.

C, = (KyL)* (15)

The structure comparison function is calculated also using
the standard deviation of the images (see equation 16.

(oy) = 2% (16)
S\%y) = 0x0y +Cs
where:
Oxy = see equation 17
.
Oxy = N7 ; (xi = ) (i = py) (17)

The SSIM is them deduced by calculating the difference in
luminance, contrast and structural difference (see equation
18) however as deduced by the author of the SSIM paper[46],
assuming « = f§ = y are equal to 1 and C3 is half of C2, the
equation can be simplified as shown in equation 19.

SSIM(x,y) = [ y)]“ - [e(xy)IP - [s(x )" (18)

(prpy + Cl) (20xy + Cz)
(,u,zc +,ui + Cl) (0,2( + 05, + Cz)

SSIM(x,y) = (19)
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Figure 4: a) The original image input b) The image af-
ter calculating the region of interest c) the suggested
Rols on the image

To our knowledge SSIM method was used for image qual-
ity check while we are using it for the first time to detect
Rols in a capillary image.

The mean structural similarity index between the result-
ing image and the original image is calculated and the dif-
ference between both of these images gets a bounding box
and becomes a Rol. The Rol is enhanced using using pixel
cumulative histogram equalization. With the combination of
these 2 pipelines we are able to detect the potential capillar-
ies in a relatively inexpensive ways in comparison to using
a purely CNN based detector.
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Figure 5: CapillaryNet Architecture - Capillary Detec-
tion

3.3.2 Stage 2: CNN. The second stage is passing these Rols
to a convolutional neural network part of the CapillaryNet
to detect which of the Rols are capillaries. We experimented
with several architectures and our goal was to minimize the
number of parameters to keep the prediction time as low as
possible. Each pipeline has a CNN model. For the HSV color
space pipeline, the model has a total of 6,746 parameters.
The image input is 15 by 15. Our architecture consists of 1
convolutional neural networks with 16 filters followed by
max pooling and a dropout layer of 0.2. The convolutional
layers contain an activation function of relu [51] followed
by 1 dense layer with 8 neurons and also uses an activation
function relu. The architecture is shown in Figure 6. The
CNN was optimized using sparse categorical cross-entropy
and was trained for 20 epochs. The loss of the model was
computed using cross-entropy loss between the labels and
predictions.

For the second pipeline with SSIM, the model architecture
consists of 2 convolutional neural networks with an activa-
tion function of relu and 32 and 64 filters respectively [51]
followed by 2 dense layers with 64 and 2 neurons respectively.
This is shown in Figure 7. The total number of parameters is
512,202. The CNN was optimized using Adam [52] and was
trained for 30 epochs. The loss of the model was computed
using cross-entropy loss between the labels and predictions.
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Figure 6: Convolutional Neural Network Architecture
of the HSV color space pipeline- Convolutional Neural
Network part of CapillaryNet

Conv2D Conv2D
32 filters, 3x3 —>{ 64 filters, 3x3 —>| Maxpooling2D
activation relu activation relu

Dense layer

Dense layer
64 neurones
2 neurones [— [e— Flatten

activation softmax activation relu
dropout 0.5

Total params: 515,202

Figure 7: Convolutional Neural Network Architecture
of the SSIM Pipeline- Convolutional Neural Network
part of CapillaryNet

The overall accuracy of the models was 93% with 97% to
the class with capillaries and 88% to the non-capillaries class.
By combining the output of both of these CNNs we are able
to detect more capillaries in the image.

3.3.3 Stage 3: Mask Generation. To auto-generate the mask
on the capillary detected, we pass the image to a gaussian
blur function which reduces the pixelation of the image. The
gaussian blur has a window size of 31. The red pixels are
then extracted within that image by applying an adaptive
gaussian threshold function that converts all red pixels to
white and the other pixels to black. The total amount of
white pixels and the output of the Rol on a single capillary is
shown in Figure 8a and Figure 8b respectively. The mask is
then re-calculated on every consecutive frame of the video to
determine the capillary density across time and the capillary
hematocrit. This helps us calculate the heterogeneity of the
perfusion of the capillary to monitor how much red blood
cell flows through the capillary. In this way, CapillaryNet
is not only able to detect the capillary and its area, but also
proceed to detect how much blood flows through it across
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Figure 8: a) Original image of Rol detected by Capil-
laryNet Architecture - deep learning part b) Area oc-
cupied by the capillary

time. This can provide the clinician with information on the
average capillary hematocrit and its variation over time.

3.4 CapillaryNet Architecture - Velocity
Detection, Intra-capillary Flow and
Flow Direction

The capillary detected is passed to the velocity detection
stage of CapillaryNet. The velocity detection method is illus-
trated in Figure 10. The intra-capillary heterogeneity of the
flow velocity vector and direction of flow is detected using
the GF algorithm [53]. The average of the intra-capillary
heterogeneity of the flow velocity vector is used to deduce
the velocity classification. GF is a two-frame motion estima-
tion algorithm where the approximation is done by calcu-
lating the quadratic polynomials and polynomial expansion
transform between each frame. This polynomial expansion
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coefficient is used to derive the displacement fields of the
pixel assuming the pixel intensities are constant between the
two frames. We first apply gaussian denoising to reduce the
noise algorithm to the frames; then, automatically enhance
the brightness and contrast using the image histogram. We
then pass these sequences of images to the GFA and obtain
the difference in the location of the pixels which becomes the
velocity vector. The velocity vector value determines the ve-
locity classification. The GF method then shows the direction
of flow and the intra-capillary flow between frames.

3.4.1 Image Enhancement using Pixel Cumulative Histogram
Equalization. The first step is to apply a median blur with a
kernel size of 5 to each channel independently. In our case, all
3 channels red, green and blue had their central pixels within
the kernel window recomputed with the median value of the
pixels within the kernel window. The histogram was then
obtained from the modified image. The pixels in the image
ranged from 0 to 255 and the histogram obtained represents
the intensity distribution of the pixels. We then calculated the
cumulative distribution of pixels from the histogram. There-
after, we applied a cutoff threshold that removed the pixel
values in the 10% of the cumulative distribution increasing
the overall brightness and contrast.

3.4.2 Image Denoising using Non-local Means Denoising Al-
gorithm. The median blur uses a kernel window to smoothen
the image which applies local denoising to the pixels. How-
ever, if we consider noise as a variable on the pixels, this
variable is not necessarily distributed equally across all the
pixels. Thus, some places in the image might need more de-
noising in relation to other pixels in the same image. With
the non-local mean, we take the noise variable as a gaussian
distribution and remove it. This is achieved by converting the
image to a CIELAB colorspace and then separately denoising
the L and AB components [54].

3.4.3 GF Algorithm. This algorithm is based on 2 assump-
tions. The first assumption is that in 2 consecutive frames,
the objects have the same visual values, only that one object
may move in a certain direction. The second assumption is
that the visual values locally around a pixel can be described
by a quadratic function I(x, y, t). It is mentioned in [53] that
this quadratic function can be efficiently implemented in
practice using a hierarchical scheme of separable convolu-
tions technique.

Now assume that the object moves from the pixel (x,y)
in a direction (dx,dy) in a small time dt. Hence, by the first
assumption, we get an equality as shown in equation (20).
Applying taylor series approximation of right-hand side [55]
we get a system of linear equations in variables dx, dy, dt
(we can choose dt=1), which can then be solved. An example
image is shown in Figure 9.
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Figure 9: example of how pixel displacement is calcu-
lated. For a pixel at position x,y at point t. When dis-
placed, the new position difference will be at dx, dy at
point dt
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Figure 10: CapillaryNet Architecture - Velocity Detec-
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Table 1: Benchmark of CapillaryNet capillary detec-
tion against manual analysis performed by a trained
researcher on a Microcirculation video.

Name Detection Time | Accuracy
Researcher ~120s ~84%
CapillaryNet ~0.9s ~93%
I(x,y,t) = I(x +dx,y +dy, t +dt) (20)

For CapillaryNet we use a 2 level pyramid with a scale
of 0.9. We use a window size of 10 and apply 10 iterations
at each pyramid level. We use a polynomial size of 5 and
a polynomial sigma of 1.2. The Cartesian coordinates are
then converted to polar coordinates, essentially calculating
the magnitude and angle of the 2D vector produced by the
GF algorithm. The magnitude represents the velocity vector
while the angle represents the direction of the flow.

4 RESULTS AND DISCUSSION

The total amount of capillaries labeled was ~11,000. To our knowl-
edge, this is the largest dataset used for training an algorithm on
skin capillaries. This data was divided into a ~70% training set
and ~30% validation set for the bounding boxes. Moreover, 12 new
microcirculation videos with ~1000 capillaries were acquired as
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Table 2: An overview of different object detection al-
gorithms with their size and number of parameters to
tun. We also show the training time on the capillary
dataset given the same dataset for capillary detection

Model Name | Size (MB) | Param (Mil) | training time
Mask RCNN ~256 ~6.3 ~days
DenseNet201 ~7947 ~18.28 ~weeks
ResNet152 ~9097 ~58.34 ~weeks
CapillaryNet ~10 ~0.6 ~minutes

an independent test set.The independent dataset of 12 videos was
labeled by a trained researcher A. The algorithm and the trained
researcher B scored ~93% and ~84% respectively. Furthermore, Cap-
illaryNet is able to analyze 30 frames in ~4 seconds %, which is the
equivalent of ~0.9s per frame, while an analyst spends on average 2
minutes on the same frame to highlight the capillaries and calculate
the capillary density in the image. Table 1 summarizes the main
differences in capillary detection between a trained researcher and
CapillaryNet.

Figure 11: An image of the hand dorsum capillaries
showing dirt and microscope artifacts. We expect that
using purely rule-based algorithms to detect capillar-
ies will lead to the detection of the artifacts due to
similarities in sizes. On the other hand, by combining
salient detection methods with convolutional neural
networks we can distinguish between capillaries and
artifacts.

4.1 Capillary Detection: CapillaryNet vs
Object Detection Algorithms

Object detection in computer vision is one of the most challenging
problems where the aim is to find the area occupied by an object
instance in an image [56]. Deep learning is one of the powerful
tools which significantly increased the mean average precision in
object detection competitions (i.e., VOC 2007-2012, ILSVRC 2013-
2017) since its arrival in 2012 [57, 58]. Before deep learning, salient
detection (SD) methods were the state of the art in object detection
[59-61].

Object detection algorithms have millions of parameters to tune
to optimize for the dataset [56]. For example, Mask R-CNN algo-
rithm which is one of the top-ranked object detection algorithms

2Tested on AMD Ryzen 9 5950X with 16 processors

Maged, et al.

Figure 12: CapillaryNet applied to the image to detect
capillaries. Areas with capillaries are marked in green.
The bounding boxes on the videos are shown in 12a
and 12c with green boxes highlighted around the cap-
illaries. 12b and 12d shows the corresponding mask ap-
plied.
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achieved state-of-the-art results on the COCO dataset (80 object
categories with 1.5 million object instances) for object segmentation
[56, 62]. Mask R-CNN architecture extends Faster R-CNN [63] by
adding a branch to predict the segmentation mask of each Region
of Interest (Rol) on a pixel-to-pixel basis. However, Mask RCNN
has 6.3 million parameters to tune and our experiments show that
it takes approximately 5 days to train given the same dataset and
hardware as CapillaryNet. The power consumption to train such
models is relatively high and when deployed demands disk space
and ram from medical devices which can be relatively challenging.

CapillaryNet has a training time of ~5 seconds per epoch * as op-
posed to several days which is due to the fact that the CapillaryNet
bounding box detection part has ~0.6 million parameters which is
~10% of Mask R-CNN size. This makes the model feasible to run
in a clinical situation without the need to upgrade to powerful or
energy-hungry computers. With ~10% of the size of Mask R-CNN,
our model can be considered more sustainable in terms of power
consumption. The main reason why CapillaryNet is ~10% the size
of Mask R-CNN and relatively much smaller than the other object
detection algorithms is due to the shallower convolutional neural
network (CNN) used. A shallower CNN also makes the model more
versatile because we can re-train and improve the model when new
data comes in with relatively fewer delays (seconds for training
instead of weeks for larger CNNs). Therefore, CapillaryNet is a
much smaller, faster, and more flexible production-ready capillary
detection model that is optimized to address the issue for microcir-
culation analysis in clinical settings. Table 2 shows some commonly
used models and the number of parameters to tune as compared
with CapillaryNet and Mask RCNN [64].

With 1000x+ the training speed, 100x detection time and 0.12%
of the size of Mask RCNN we can achieve an equivalent accuracy
to that of state-of-the-art object detection.

Furthermore, from our experiments, we hypothesize that the
CNN Rol-based detectors such as the one present in Mask R-CNN
do not generalize well with new capillary data. This is due to varied
illumination on different parts of the image, blur due to the size
of a capillary relative to the image, or occlusion due to hair, stains
and other artifacts on the skin as shown in Figure 11. This in turn
makes it challenging for the Mask R-CNN and any other CNN Rol-
based detector to generalize with accuracy equivalent to the trained
researcher. The CapillaryNet architecture tackles these challenges
posed by the profile of the skin by using the HSV color space to
detect Rols instead of pure CNNs. Moreover, these Rol detection
methods are computationally less expensive in comparison to the
Mask R-CNN Rol detection step, making CapillaryNet faster.

The output of the CapillaryNet bounding boxes is shown in
Figure 12. Figures 12a shows the bounding box detected by Cap-
illaryNet and 12b highlights the area occupied by that capillary.
Similiary, 12c shows another image obtained from a handheld mi-
crocope and 12d shows the area occupied by those capillaries. With
the lines finely wrapped around the capillaries within the bounding
box, we can calculate with high accuracy the area occupied by the
capillary and thus the capillary density.

3Tested on a Nvidia GeForce RTX 3090
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4.2 Capillary Detection: CapillaryNet vs
Capillary Detection Methods in the
Literature

CapillaryNet compensates for the unequal illumination challenge
highlighted in the related work section in 2 ways. First, we use
an HSV color space that is robust to such challenges instead of
the RGB color space and second our training dataset consisted of
out-of-focus capillaries captured on real data to make it capable of
detecting them. Furthermore, CapillaryNet reduces the observer
variation factor by attaching a CNN to classify the Rols. This CNN
is trained on a validated capillary dataset labeled by trained re-
searchers.

Moreover, several methods highlighted the need for taking the
mean pixel value of several frames. In contrast, in this paper, by
using HSV color space combined with a CNN network CapillaryNet
is able to detect capillaries from a single frame. This way we elim-
inate the need to take a mean value across the whole video and
treat each frame uniquely with its values. This also brings us closer
to real-time detection since we do not need to wait for the whole
video to be recorded to get the mean value, but rather we can start
detecting capillaries from a single independent frame.

4.3 Capillary Hematocrit

Detecting capillary hematocrit can provide the clinician informa-
tion on the potential of each capillary to deliver oxygen to the sur-
rounding tissue. To our knowledge, only flow velocity and capillary
density were assessed in previous studies. However, if capillaries
have a normal flow and are normally distributed, but show a low
concentration of red blood cells (i.e., low hematocrit) the oxygen de-
livery ability of the microcirculation may be compromised. Clinical
studies will need to be conducted to elucidate the potential of using
capillary hematocrit as a marker for abnormal microcirculation and
our method provides a good tool to do so. Figure 13a shows the
capillary filled with red blood cells, Figures 13b and 13c shows the
same capillary a couple of seconds later with white blood cells and
plasma gaps. Figure 14 shows the red blood cell distribution of this
capillary derived using CapillaryNet.

4.4 Velocity Detection

The quantification of red blood cell flow is a more challenging task
than capillary detection. Some papers base their red blood cell flow
on manual quantification of the red blood cell with different scales
[65-68] which is subject to intra-individual variation. In manual
quantification, each individual vessel receives a score representing
the average flow velocity estimated by a researcher. Flow velocity
scales vary between publications; some researchers classifying flow
on a scale from 0 to 2 (absent, intermittent or continuous flow)
[69], others on a scale between 0 to 3 (absent, intermittent, sluggish
or normal flow) [69], while others on a scale from 0 to 5 (no-flow,
sluggish, continuous very low, continuous low, continuous high, or
brisk flow) [70].

More recent papers use space-time diagrams [25, 27, 71] to quan-
tify red blood cell flow. A space-time diagram (STD) is a fundamental
improvement over the manual eye analysis since it is independent of
the individual performing the analysis [24], [67]. However, it comes
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Figure 13: a) A capillary filled with red blood cells b)
and c) A capillary partially filled with plasma gaps or
white blood cells
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Figure 14: Graph showing how much a capillary is
filled with red blood cells (capillary hematocrit) across
time

with its drawback. It is very sensitive to the slightest movements
since it strictly counts on the central line being at the center of the
capillary between all the frames to have an accurate space-time
diagram. Therefore, if the position or width of the capillary changes
between the frames due to a camera shake or flow variation, the

user must re-calibrate the central line to plot an accurate diagram.
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This might add an extra task to velocity classification which can be
prone to errors and user bias. Furthermore, to construct an accurate
central line we are dependent on identifying the exact width and
length of the capillaries in the earlier stage. Therefore, capillaries
that get out of focus have to be disregarded since fitting the central
line to plot the STD will not be accurate. Moreover, space-time dia-
grams need to go through the whole video to calculate the velocity
and rely on gaps in the flow to deduce the flow.

CapillaryNet overcomes the limitation of needing the whole
video by utilizing the Gunnar Farneback (GF) algorithm [53].

Thus, our velocity detection method can be considered as an
alternative way to the space-time diagram and manual eye anal-
ysis which is considered as the gold standard for red blood cells
(rbe) velocity classification [25]. We do not need the central line
to deduce the velocity therefore we reduce the steps needed to de-
tect velocity. Furthermore, we use the GF algorithm to deduce the
intra-capillary flow heterogeneity. This makes our method more
accurate in tracking red blood cells since we do not singly rely on
a central line accurately placed between the frames.

For videos with high resolution (1920x1080) and 30FPS, the GF al-
gorithm was used to classify the velocity. A sequence of 240 frames
(8 seconds) was classified for its velocity by a trained researcher.
The velocity of about 2250 capillaries was classified in one of the fol-
lowing categories: no flow, slow flow, normal flow and fast flow. For
each capillary classified by an analyst, the GF algorithm provided a
velocity vector value. Figure 15 displays the analyst classification
(on the x axis) compared to the velocity vector value obtained by the
algorithm (y axis). The velocity vectors were significantly different
for each velocity class (the p-value between two classes was below
0.00001). The average velocity vector for no flow was 0.3, slow flow
was 0.7, normal flow was 0.9 and fast flow was 1.5, as illustrated in
Figure 15.

There was an overlap in velocity vector values between the ve-
locity class no flow and slow flow, and between the velocity class
normal flow and fast flow. This points to the lack of a precise enough
definition in manual analysis of where the boundaries between ve-
locity categories are. For instance, analysts may classify sometimes
capillary with a “fast-normal” flow (borderline cases) into the nor-
mal flow category, while other times into the fast flow category.
Hubble et. al have shown that inter-analyst variability can be up to
26% in assessing the flow in capillaries of healthy controls [72]. The
accuracy further decreases between an experienced and a newly
trained analyst [73]. This lack of accuracy for “borderline cases”
creates inconsistent training data for the algorithm and results in
overlapping velocity vector values between categories.

The capillaries classified by the analysts as having fast flow had
a much broader spread in velocity vectors compared to the other
velocity classes as shown by the fast flow on the x-axis in Figure 15.
This indicates that the fast flow category could be potentially split
into two categories (e.g., fast and very fast flow) by the algorithm.
This new classification may bring new insights in understanding
how capillary flow velocity changes in the course of various dis-
eases.

By training the algorithm on the classification of one analyst
and by refining the velocity vector boundaries between categories,
we create a standardized method that has the potential to be more
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Figure 15: CapillaryNet: Velocity vector values of 2,255
capillary videos classified by GF Algorithm part in
CapillaryNet

consistent in classifying capillary velocities. This reduces the bias
of velocity of classification between groups of analysts and is not
influenced by parameters such as analyst level of experience or how
focused/distracted the analyst is on the day of analysis. Furthermore,
the GF can detect the flow in near real-time with almost 15FPS
(~0.07s per bounding box), while an analyst spends on average
1 minute to label the speed of one capillary, and on average 20
minutes to annotate one video.

4.5 Using Deep Neural Networks, instead
of GF, for Velocity Classification: some
experiments

We performed experiments to utilize a deep neural network for
video classification for data with lower resolution (1280x720 in-
stead of 1920x1080) and fps (5fps instead of 30fps). Classifying on
1920x1080 and 30FPS will create a model that is not plausible for
usage in a clinical environment in terms of training and classifica-
tion. We experimented with 4 different deep neural architectures to
train the velocity classification model. We developed and trained 4
different deep neural architectures to test if they can challenge the
GF algorithm and experimented with all sequences in increments
of 10 between 10 frames to 240 frames.

The first architecture was classifying a sequence of frames. For
this, we used InceptionResNetV2 [74] and the concept of transfer
learning. The top 9 layers were fine-tuned on the 4 classes (no flow,
slow flow, normal velocity flow, fast flow) while the rest of the
weights were used from the ImageNet dataset [75].

The output was then passed to a convolutional 2D network. The
second architecture was based on a time-distributed CNN and pass-
ing the features of the CNN to a recurrent neural network (RNN).
For the RNN network, we experimented both with Long short-term
memory (LSTM) and Gated recurrent unit (GRU). We demonstrate
the architecture of this method in Figure 16. The third architecture
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Figure 16: An example of a deep neural architecture
built to test for velocity classification

was using a 3D convolutional network. The fourth architecture is
similar to the first architecture where transfer learning of Inception-
ResNetV2 was utilized but the output was passed to a convolutional
3D.

All the above architectures performed poorly with accuracies
of less than 50% for each class. Moreover, they had several mil-
lion parameters to train, consuming more energy and drastically
increasing training time compared to GF (which performed it in
near real-time). Using deep neural networks for velocity classifi-
cation in capillaries is complex and energy-consuming. From our
experiments, we deduce that using deep neural networks for video
classification for such types of data remains a challenging task to
be solved.

4.6 Intra-capillary Flow Velocity
Heterogeneity and flow direction

Flow velocity within a capillary has been calculated in previous
studies as an average value. Our unpublished empirical observa-
tions point that healthy subjects have a relatively homogeneous
flow velocity, while in certain patient groups the flow velocity varies
significantly throughout the 20 seconds of the video. Obtaining one
average value for each capillary does not allow the clinicians to
detect this difference. Therefore, measuring the intra-capillary flow
velocity heterogeneity has the potential to be used as an additional
marker to detect compromised microcirculation. CapillaryNet uti-
lizes Gunnar Farneback (GF) algorithm which tracks moving pixels
which in this case represents the red blood cells. Therefore, if a
capillary is surrounded by the bounding box, we can calculate the
pixel displacement of red blood cells. Thus, by combining deep
neural networks to classify speed and GF, our velocity detection
method can be considered as an alternative way to the space-time
diagram and manual eye analysis which is considered as the gold
standard for red blood cell velocity [25].

We show an example of the velocity vector of the GFA on a
publicly available capillary video [76] in Figure 17a. We take mea-
surements from three different regions of the video to show that
the GF algorithm can detect the movement of red blood cells within
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Figure 17: a) CapillaryNet applied to a capillary video
publicly available to assess capillary flow direction
and heterogeneity. We have plotted 3 lines in the video
where we are interested to detect the velocity vectors.
The black line is approximately in the center of the
capillary. The green line goes around the capillary.
The blue line is randomly placed next to the capil-
lary. These lines are visible in the image. b) Results of
the velocity vector across the frames of the black line
which is the capillary center (average velocity vector
value was 34.9), a green line which is located on the
outside of the capillary (average velocity vector value
was 0.1), a blue line which is randomly placed at the
side of the capillary (average velocity vector value was
0.7)

the capillary. We present the results on a graph in Figure 17b. We
observe that the highest velocity vector values were found at the
center of the capillary which is highlighted with the black line
where red blood cells are flowing through the capillary. The lowest
velocity vector was found on the side of the capillary highlighted
with the blue line where there is no flow. Figure 18 highlights the
flow of the red blood cells within the capillary.
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Table 3: We describe how CapillaryNet can calculate
and derive the applicable parameters suggested for mi-
crocirculation analysis by Hilty et al [25] and Ince et
al [23]. In addition we introduce two new parameters
that can be uniquely identified and calculated by Cap-
illaryNet: Intra-capillary heterogeneity of flow veloc-
ity and capillary hematocrit.

CapillaryNet Detection

Parameter Description
per image or video
The sum of the area occupied by
Total Vessel Density capillaries is derived by the

total number of pixels occupied
by the detected capillary divided
by the dimension of the image
Sum of the area occupied by
capillaries that contain moving red
blood cells which are derived by
the total number of pixels
occupied by the detected capillary
divided by the dimension of the
per vessel
The velocity of red blood cells
flow classified as slow flow,
normal velocity flow and fast flow
Derived from GF algorithm where
we plot the variation in pixel
movement across all frames

for Capillaries

Functional Capillary
Density

Flow Velocity

Intra-capillary
heterogeneity of
flow velocity

Derived from a rule-based
algorithm where we plot the
number of red blood cells
across the frames

Capillary
Hematocrit

Figure 18: Flow direction of capillary automatically
derived by CapillaryNet
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4.7 CapillaryNet Parameters

In Table 3 we show how CapillaryNet can calculate and derive the
microvascular parameters suggested by Hilty [25] and Ince [23]. In
addition, we introduce 2 new parameters that have not been previ-
ously monitored in microvascular videos: capillary hematocrit and
intra-capillary flow velocity heterogeneity. CapillaryNet is a unique
architecture that combines deep neural networks with salient object
detection and two-frame motion estimation techniques to detect
capillaries and estimate the velocity of red blood cells. Our architec-
ture paves the way to a unified automated method for near real-time
bedside analysis of microcirculation.

5 CONCLUSION

In this paper, we are not only pushing forward the state of the
art in capillary detection by presenting an automated architecture
for microcirculation analysis but also increasing the number of
microvascular parameters that can be monitored beyond what is
currently possible today. This can provide novel information on
the potential of each capillary to deliver oxygen to the surrounding
tissue. Moreover, we present a method that can standardize veloc-
ity classification eliminating intra-variability between researchers
and reducing the time taken for microcirculation analysis. In this
study CapillaryNet has been used to assess skin microcirculation.
CapillaryNet can automatically quantify the area occupied by a
capillary, calculate the capillary density, derive the average flow
velocity, derive the intra-capillary flow velocity heterogeneity, and
quantify the capillary hematocrit. With a unified architecture that
can detect capillaries at ~0.9 seconds per frame with ~93% accuracy,
we are closer to real-time microcirculation analysis in a clinical
environment than ever.
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