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Abstract

The COVID-19 pandemic considerably affects public health systems around the

world. The lack of knowledge about the virus, the extension of this phenomenon,

and the speed of the evolution of the infection are all factors that highlight the

necessity of employing new approaches to study these events. Artificial intelli-

gence techniques may be useful in analyzing data related to areas affected by

the virus. The aim of this work is to investigate possible relationships between

air quality and the spread of the pandemic. We also evaluate the performance of

machine learning techniques on predicting new cases. Specifically, we describe a

cross-correlation analysis on daily COVID-19 cases and environmental factors,

such as temperature, relative humidity, and atmospheric pollutants. Our anal-

ysis confirms a significant association of some environmental parameters with

the spread of the virus. This suggests that machine learning models trained

using environmental parameters might provide accurate predictions about the

number of infected cases. Predictive models may be useful for helping insti-

tutions in making decisions for protecting the population and contrasting the

pandemic. Our empirical evaluation shows that temperature and ozone are neg-

atively correlated with confirmed cases (therefore, the higher the values of these
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parameters, the lower the number of infected cases), whereas atmospheric par-

ticulate matter and nitrogen dioxide are positively correlated. We developed and

compared three different predictive models to test whether these technologies

can be useful to estimate the evolution of the pandemic.

Keywords: Air Quality Effects, COVID-19 Pandemic, Machine Learning,

Correlation Analysis

1. Introduction

The new coronavirus SARS-CoV-2 is responsible for the respiratory disease

named COVID-19. It was first identified on the 9th of January 2020 by the

Municipal Health Commission of Wuhan (China) which reported to the World

Health Organization (WHO) a cluster of pneumonia cases of unknown origin in

the city of Wuhan, in the Chinese province of Hubei. The spread of COVID-19

was then declared a global pandemic by WHO on the 11th of March 2020 [1].

On the 8th of April 2021, the World Health Organization reported the number

of confirmed global cases of COVID-19 exceeds 132 million, with more than 2.8

million deaths. At that date in Italy more than 3.6 million positive cases and

almost 112 thousand deaths have been recorded 1.

The scale of the public health emergency caused by COVID-19 has no prece-

dent in recent decades and it will surely have serious social and economic con-

sequences. Indeed, the rapid spread of this global pandemic has immediately

raised urgent issues, which need a coordinated study to slow down the evolu-

tion of the disease. In this context, Artificial Intelligence (AI) techniques can

represent a great support for government institutions and health organizations

in order to provide information on the mechanisms which describe how the

virus spread and, possibly, on the methodologies to be adopted to contrast it

in the most effective way. If properly implemented and used, machine learning

algorithms can help in analyzing data relating to some areas affected by the

1https://covid19.who.int/
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infection (see for instance, [2, 3, 4]). Analyzing the available historical data,

machine learning models can be trained to predict possible developments of the

pandemic as well as the impacts on the population.

Understanding a complex system such as the spread of the pandemic is an im-

portant challenge in a country’s sustainable development process. The concept

of sustainable development has spread widely in recent decades and generally

consists of a combination of three goals: the social goal, the economic goal, and

the environmental goal. Policy makers play a key role in these scenarios in order

to reach these goals, but they have to be properly informed in order to make the

right decision. This process may be helped and improved by adopting the right

technology such as artificial intelligence techniques. During the last months, the

attention of many researchers has moved to this new challenge that has involved

the entire planet. For instance, a group of researchers and engineers has created

a global collaboration, called CORD-19, which collects thousands of scientific

publications focused on the new coronavirus [5].

Identifying the main factors that contribute to the spread of the SARS-

CoV-2 virus is certainly one of the current public health goals. However, the

complexity of the phenomenon and the limited availability of information make

this study particularly difficult. The possible relationship between fine partic-

ulate matter (PM) and SARS-CoV-2 immediately aroused particular interest,

especially if one compares the distribution of infections and pollutants.

In [6], authors show that areas with high concentration of pollutants (i.e.,

dark blue districts in Figure 1b) mostly coincide with areas with high number

of positive cases of COVID-19 (i.e., Figure 1a). Unfortunately, the time window

used in the two figures is different, mostly due to a lack of information for Italian

districts in 2019 and 2020 about the pollutants. However, this observation mo-

tivates the interest in investigating the possible correlations between air quality

and daily confirmed cases of COVID-19. In addition, the graph of the new daily

cases in Italy (Figure 2) shows an important decrease in infections during the

summer months. This leads us to think that there may be a relationship be-

tween the environmental temperature and the spread of the pandemic. In this
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(a)
(b)

Figure 1: (1a) The choropleth map shows the distribution of COVID-19 total cases in the

Italian districts (as of 3rd October 2020). The data are divided into quartiles. (1b) The

choropleth map shows the average PM10 concentrations of 2018 in the Italian districts. The

data are divided into quartiles. [6]

work we focus on the study of possible relationships among the number of new

daily infected cases and the air quality in some Italian districts.

Contribution. In this work, we performed a cross-correlation analysis that

highlights possible relationships among the number of daily cases and several

factors related to the air quality. We exploit these correlations by developing and

comparing three different supervised learning models. We trained these models

to predict the number of new cases of COVID-19, showing that the number of

infected cases can be computed in advance with good accuracy. These tools can

be used to enrich the set of information available to governments and institutions

for helping in making decisions in order to protect the population and stemming

the pandemic. Indeed, accurate predictive models might help modeling possible

scenarios, helping government institutions to better manage the pandemic.
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Figure 2: Number of diagnosed cases of COVID-19 in Italy by test/diagnosis date (from 24th

of February 2020 to 8th of April 2021).

2. Related Works

The rapid spread of the COVID-19 pandemic has attracted the attention of

numerous scholars and researchers from many different disciplines. The aim is

twofold: on one side, scholars want to understand the modalities of transmission

of the SARS-CoV-2 virus and its mechanisms of interaction with the host. On

the other side, they want to investigate all possible contributing causes that may

have played a key role in the number of infections and in the mortality rate of

the disease. Currently, evidence indicates that the SARS-CoV-2 virus spreads

mainly from person to person through the inhalation of respiratory droplets,

which are normally released when an infected person speaks, coughs or sneezes

[7]. However, it is hypothesized that the virus may be aerosolized during certain

activities or procedures and may remain active for prolonged periods [8]. On the

30th of January 2020, the Istituto Superiore di Sanità (ISS) confirmed the first

two cases of SARS-CoV-2 infection in Italy: two tourists from Wuhan landed

in Milan and then hospitalized in Rome. The first autochthonous positive case

was confirmed on the 21st of February 2020 and was a patient hospitalized in

serious condition in Lodi. Always on the 21st of February 2020 the first death of
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COVID-19 in the country was reported; he was a man from Vo’ (Padova). From

the 23rd of February 2020, 11 municipalities in northern Italy (in Lombardy and

Veneto) were quarantined and from the 10th of March 2020 the lockdown was

extended to the entire country, until the 3rd of June 2020. Of course, the taken

measures may have influenced the progress of the pandemic. The study by

Lavezzo et al. [9], for example, shows that containment measures have helped

to decrease the transmission of SARS-CoV-2 in the municipality of Vo’.

The review of the literature, conducted on the variables that influence sea-

sonal viruses affecting the respiratory system, underlines that there is a multi-

tude of factors that can influence the behaviour of viruses, including humidity,

pollution, human behaviour, physiological and demographic characteristics, hu-

man mobility, as well as climate change [10]. Each of these factors is important

as it affects virus survival, virulence, and transmissibility between individu-

als. From several studies, that have examined the mechanisms underlying the

seasonal nature of respiratory viral infections, it has been deduced that, in gen-

eral, the two main factors contributing to the spread of virus infections are

identifiable in changes in environmental parameters and in human behaviours.

A recent investigation [11, 12], that has analysed the mechanisms of action of

viruses, shows how the combination of favourable winter levels of humidity, tem-

perature, and solar radiation can compromise our antiviral defense mechanisms,

resulting in a greater susceptibility of the host to respiratory viruses. Further-

more, various studies [13, 14, 15] report evidence in favour of an association

between exposure to air pollutants and the increased risk of respiratory viral

infections, although the potential cellular and molecular mechanisms underlying

the increased susceptibility are still largely unknown.

The scientific literature that has investigated the possible relationships be-

tween environmental factors and SARS-CoV-2 is very large and there are also

conflicting opinions. In [16] Setti et al. show how the PM10 limit exceedances

may be compatible with a role of particulate matter as virus carrier. This

hypothesis is also supported by the discovery of the presence of SARS-CoV-2

RNA on atmospheric particulate matter [17]. Furthermore, the results of a sur-
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vey on 120 Chinese cities [18] reveal significantly positive associations between

daily measurements of atmospheric particulate matter and nitrogen dioxide and

COVID-19 confirmed cases, while sulphur dioxide is negatively associated.

Regarding ozone, many studies [19, 20, 21] claim that it is particularly lethal

against viruses due to its high oxidizing property. However, there are no studies

confirming the role of ozone in the specific inactivation of SARS-CoV-2. Any-

way, it was effective in killing the SARS-CoV virus of the 2003 epidemic [22] and

therefore it could also be lethal against SARS-CoV-2 as both viruses come from

the same group and have similar structures. This hypothesis, however, would

not seem to agree with the results of a recent research [18] that found a signif-

icantly positive association between ozone concentrations and daily COVID-19

confirmed cases.

Finally, the scientific literature argues that high temperature and relative hu-

midity affect the environmental resistance of SARS-CoV-2, reducing its spread.

Two different studies [23, 24] show that virus viability decayed more rapidly at

higher temperatures, indicating that viral infectivity can be altered with the in-

crease of temperature. Furthermore, a recent research [25] claims the existence

of a negative correlation between the average temperature by country and the

number of SARS-CoV-2 infections. Regarding relative humidity, another study

[26] supports the existence of robust negative associations between humidity

and transmission of COVID-19.

3. Background

In this work, we performed an analysis on the collected data, studying the

correlation between environmental features and the target variable (i.e., the

number of new daily infected cases).

3.1. Correlation Analysis

A correlation analysis [27] is a statistical study that evaluates the strength

and the sign of a relationship between two variables. There exist many different
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indexes that can be employed to describe such relationships. The Pearson’s

correlation coefficient [28] rp is usually adopted as correlation index. Given two

vectors of values X and Y, the Pearson correlation index can be calculated as

follows:

rp =

n−1∑
i=0

(xi − x̂)(yi − ŷ)√√√√n−1∑
i=0

(xi − x̂)2(yi − ŷ)2

where n is the number of samples, xi and yi are the samples, and x̂ and ŷ

correspond to the average values of X and Y respectively.

This index assumes that: (i) both variables are normally distributed; (ii)

relationship between each of the two variables is linear; (iii) variables have

continuous values; (iv) data are equally distributed about the regression line

(also known as homoscedasticity).

Another function is the so-called Spearman correlation coefficient [29]. This

is a simple and efficient way to analyze the similarity of the shape of two time

series, it is computed as follows:

r = 1−
6
∑

d2i

n(n2 − 1)

where di is the difference between the two ranks of each observation and n

is the number of observations. Spearman coefficient operates on raw data, it is

based on the ranks of the data, it is insensitive to outliers and can operate with

ordinal values. Due to the characteristics of the data, in this work, we adopted

the Spearman correlation coefficient.

The value of the coefficient is in [−1, 1] and it describes the relationship

between the variables. Specifically, a high value, close to +1, indicates a positive

correlation, while a low value, close to −1, indicates a negative correlation.

A positive correlation exists when the increase in the value of one variable

makes also increase the value of the other variable. On the other hand, if a

negative correlation exists, then as the value of one variable increases, the value
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of the other variable decreases. Furthermore, when the index value is close or

equal to 0 there is a poor or no correlation between the two variables, which

means that increasing or decreasing one variable does not affect the value of

the other variable. In particular, we will use the following terminology based

on the absolute value of r, we say that there is no correlation or very weak

correlation when r < 0.3; weak correlation when 0.3 ≤ r < 0.5; moderate when

0.5 ≤ r < 0.7; and we will say that the correlation is strong when r ≥ 0.7.

It is important to remember that the correlation analysis does not provide

any indication of a cause-effect relationship between the variables. To establish

a true causal condition, the variables should be completely isolated from any

other possible confounding variable. If a correlation is found between air quality

and SARS-CoV-2 infection, this would constitute just one more proof to be able

to subsequently support any scientific demonstration.

3.2. Machine Learning Techniques

Machine learning is a branch of AI that studies and develops learning al-

gorithms able to model intrinsic characteristics or relationships in the data.

Usually, machine learning algorithms have a bottom-up approach, which means

that they infer information from a collection of data called dataset, which de-

scribes the studied scenario. Thus, a dataset is an M × N matrix in which each

column corresponds to a variable (also called “feature”) that describes a specific

characteristic of the domain, and each row corresponds to a sample ci = (xi; yi)

where xi = (xi,1, xi,2, . . . , xi,N ) and yi represents the “label” of the sample (i.e.,

the value of a variable that we want to predict), which is not always known a

priori. The problem addressed in this paper is a supervised learning problem.

The term “supervised” refers to the fact that in the set of samples the labels

y1, . . . , yM are already known. In this approach, we assume that there exists

an ideal function f : X → Y such that f(xi) = yi, where X is the space of all

possible samples and Y is the set of all possible outputs. Supervised learning

tries to find a function f̄ : X → Y that approximates f as closely as possible,

finding the same labels as f for most of the samples.
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In this work we adopt the following models: Random Forest, XGBoost, and

Neural Network.

3.2.1. Random Forest

The Random Forest algorithm [30] is based on decision trees and applies the

bagging technique. This consists in training multiple decision trees on distinct

partition of the dataset by sub-sampling it with re-insertion. Random For-

est typically has better generalization performance than a single decision tree,

thanks to randomness which helps to contain the over-fitting problem, reducing

model variance.

3.2.2. XGBoost

XGBoost is based on Friedman’s original Gradient Boosting [31, 32]. It intro-

duces a regularization term to control over-fitting, obtaining better performance

results. The Gradient Boosting technique creates a final model based on a com-

bination of single models such as Random Forest, but it builds them sequentially

by giving more weight to instances with incorrect predictions. Specifically, in

each learning cycle, prediction errors are used to calculate the gradient, i.e. the

partial derivative of the loss function with respect to the prediction, and build

a new tree capable of predicting gradients. Then, the prediction values are up-

dated. After the learning phase, XGBoost derives the final predictions of the

target variable by adding the average calculated in the initial step to all the

residuals predicted by the trees, multiplied by the learning rate.

3.2.3. Neural Network

Neural Network [33] is made up of stacks of neurons. A neuron is a pro-

cessing unit connected to different inputs xi, each of which is associated with

a weight wi. The neuron computes the weighted sum of the input vector

z = w1x1 + w2x2 + ... + wmxm = wTx and applies a threshold function σ

to it. The set of nodes of the network can be decomposed into a union of dis-

joint subsets V0, V1..., VT , called “layers”, such that each edge connects some

node in Vt−1 to some node in Vt. The lower level, V0, is called “input layer”,
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the levels V1, ..., VT−1 are called “hidden layers”, while the upper level VT is

called “output layer”. During the learning phase, the neural network adopts a

back-propagation approach, which repeatedly updates the weights, minimizing

the loss function. At the end of this phase, it uses the forward propagation to

calculate the prediction.

4. Empirical Study

In this section, we describe the datasets and the results of the correlation

analysis performed on them. We describe the predictive models and their per-

formances on the different datasets.

4.1. Data Collection

The data used in this work comes from two different sources: one contains

the daily details of the pandemic, and the other contains the environmental

information of different districts or geographical areas around the world.

We focus on the pandemic situation in Italy. Italian data about the pandemic

has been made available in a GitHub repository under a CC-BY-4.0 license from

the Italian Civil Protection Department (ICP) 2. In this repository, the number

of total cases is available at the level of each Italian district. For security and

privacy reasons, other information (i.e., the number of infected cases in a specific

city or the number of deaths per district) is stored and protected in a platform

of the Integrated Surveillance and thus accessible only by authorized people 3.

Therefore, only the daily number of total cases of COVID-19 in different areas

is used to describe the progress of the pandemic in Italy.

The time window of this study goes from the 1st of January 2020 to the 8th

of April 2021 (date of our last measurement). We collected environmental data

from the Air Quality Open Data Platform (AQODP) [34]. This platform was

2https://github.com/pcm-dpc/COVID-19 - Last visited on 8th of April 2021
3https://www.epicentro.iss.it/en/coronavirus/sars-cov-2-integrated-surveillance-data -

Last visited on 8th of April 2021
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created by the World Air Quality Index project team and contains meteorolog-

ical and air quality information of major cities around the world, unfortunately

not all the data published in this website is validated. But it is worth noting that

data of Italian districts contained in AQODP is provided by the ARPA (Agenzia

Regionale per la Protezione Ambientale), which is an official and trusted source

for this kind of data. The AQODP platform publishes information about 12 dis-

tricts of Italy. Due to the fact that many features of 4 out of the 12 districts have

missing values, we decided to focus exclusively on the eight districts with the

most complete set of data. Specifically, we used data about Bologna, Brescia,

Milan, Modena, Naples, Parma, Prato, and Rome. For each of these districts,

we derived a dataset merging data from the two aforementioned sources: each

row in a dataset describes information about environmental factors and the

number of new infected cases for a specific date. All the adopted variables are

summarized in Table 1.

4.2. Data Analysis

Initially, we performed a pre-processing task which removed all negative

values for the new cases variable. These negative values occur when the Italian

Civil Protection Department adjusted the daily data about total cases for some

areas, resulting in a reduced number of infected people compared to the number

of the previous day. This was probably due to errors in the positive cases count.

In addition, all records with missing values were removed before the correlation

analysis.

In order to perform an accurate correlation analysis, it is necessary to take

into account a probable incubation period of the virus. It is important to notice

that an additional delay time might be due to the bureaucracy related to the

execution and analysis of the nasopharyngeal swab. This value was not known

to us a priori.

In this study, cross-correlations are used for the analysis of time-lagged re-

lationships between several environmental factors and their possible influence

on the number of new positive cases. The use of the cross-correlation functions

12



Table 1: List of considered variables in the datasets.

Variable Description Measure Source

date Date

humidity median Daily median of the relative hu-

midity

percentage ARPA

no2 median Daily median concentration of

NO2 (nitrogen dioxide)

µg/m3 ARPA

o3 median Daily median concentration of

O3 (ozone)

µg/m3 ARPA

pm10 median Daily median concentration of

PM10

µg/m3 ARPA

pm2.5 median Daily median concentration of

PM2.5

µg/m3 ARPA

so2 median Daily median concentration of

SO2 (sulfur dioxide)

µg/m3 ARPA

temp median Daily median temperature Celsius ARPA

total cases Cumulative number of COVID-

19 cases

ICP

new cases Number of new daily cases of

COVID-19

ICP

allows to assess the sensitivity and responsiveness at different time [35]. This

is due to the fact that a specific environmental configuration may influence the

spread of the virus, but consequences may be evident only some days later. For

a specific factor evidence, the amount of days needed is not known a priori.

Therefore, to find the best time-lag, we shift the number of new daily cases of i

positions in the datasets (with i varying from 0 to 60). This is done to compare

the environmental data of a given day with the number of new infected cases

after i days. In this way, we looked for the maximum correlation value of each

13



environmental parameter in a time window of two months in the past.

4.3. Correlation Analysis Results

In general, we observed a strong negative correlation with temperature and

ozone; a moderate positive correlation with NO2, PM2.5, PM10, and humidity;

a poor positive correlation with SO2. Depending on the area, the results are

different. Among all the analyzed districts, here we report results for Brescia

dataset and a brief discussion about the differences with other datasets. All

the results about the correlation analysis are available under the Appendix in

Section Appendix A.

In the district of Brescia (which was one of the most compromised during

the pandemic), we found a strong negative correlation with the temperature

and a negative correlation with ozone. This means that as the daily temper-

ature increases, we observe that the number of daily infections decreases. In

particular, the correlation peak between temperature and new COVID-19 cases

occurred for i = 10 (r = −0.7799, p value < 0.001). Similarly, ozone has a

strong negative correlation with COVID-19 cases and the pick is for i = 15

(r = −0.7358, p value < 0.001). Therefore, an increase in the maximum con-

centration of ozone in the atmosphere is associated with a decrease in positive

cases. Figure 3 depicts the different values for the correlation indexes when we

shift the time-lag window from 0 to 60 days. As you can notice, after the peak

the effect of these two factors on the virus decreases as expected.

Figure 3: Area of Brescia: cross-correlations values for temperature, ozone, and new daily

infected cases, sliding time-window from 0 to 60.
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Figure 4: Area of Brescia: cross-correlations values for NO2, PM2.5, PM10, and new daily

infected cases, sliding time-window in 0 to 60.

On the other hand, the number of new infected cases and the concentra-

tion of the main air pollutants (i.e., NO2, PM2.5, and PM10) show a moderate

correlation at close but different lag values. Specifically, the median concentra-

tions of NO2, PM2.5 and PM10 are positively correlated and the values of the

correlation coefficients are respectively: for NO2 after i = 23 days, r = 0.5699

(p value < 0.001); for PM2.5 after i = 21 days, r = 0.5639 (p value < 0.001);

and for PM10 after i = 22 days, r = 0.5617 (p value < 0.001). These results

indicate that a higher median daily concentration of these pollutants is asso-

ciated with a greater number of people contracting the infection after more or

less 20 days. Figure 4 depicts the different values for correlation indexes when

we shift the time-lag window from 0 to 60 days. The oscillating behaviour that

can be observed in Figure 4 might be due to traffic emissions or industrial pro-

ductions which are higher during working days of the week and should decrease

in the week-end (also due to the restrictions imposed). In fact, oscillations have

a period of 7 days. Similar results were also obtained with data regarding the

areas of Milan, Bologna, Parma and Modena.

The results obtained for the datasets of Naples, Prato, and Rome are much

weaker (see Section Appendix A in the Appendix). The moderate correlation

with temperature and ozone might be caused by a set of co-factors probably not

considered in this study. For instance, all the other considered areas are in the Po

Valley which is a geographical area surrounded by the Alps and the Apennines.
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The wind is rare and the air is colder in the plains than in the mountains,

causing emissions stay above Po Valley and making harder for natural and

artificial emissions to be dissolved. This may be one of the reasons why the

atmospheric pollutants seem to have more effects on the spread of the virus in

areas of Po Valley than in other Italian areas which instead are close to the sea

like Rome or Naples. Although the sign of the correlation coefficients are in line

with those of the other northern provinces.

Figure 5: Area of Rome: cross-correlations values for temperature, ozone, and new daily

infected cases, sliding time-window from 0 to 60.

Figure 6: Area of Rome: cross-correlations values for temperature, ozone, and new daily

infected cases, sliding time-window from 0 to 60.

The correlation peak occurs at distance of different days depending on the

parameter analyzed: atmospheric particulate matter, median nitrogen dioxide

and ozone are more related to new cases registered after 22-23 days from the

environmental measurements, while temperature is more related to cases iden-

tified 9-10 days later. This difference could be due to a different effect of these
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factors on the virus. Indeed, atmospheric pollutants could take a few days to

decrease the environmental resistance of SARS-CoV-2, while the contribution

of the temperature to the spread of the virus could be more immediate.

4.4. Machine Learning Models

Given the statistically significant correlation of some variables with COVID-

19 cases, we developed and trained some regressors for predicting the number

of new infected cases based on the values of the environmental parameters.

The machine learning algorithms used in this work estimate the impact of the

environmental factors on the spread of the COVID-19 pandemic. The aim of

these models is to predict the number of confirmed cases given the measurements

of the atmospheric variables.

The simulations are developed in Python 3.7. We adopted RandomFore-

stRegressor by Scikit-learn, XGBRegressor by XGBoost and Sequential Model

by Keras for Neural Network.

Table 2: Neural network configuration.

Layers Shape Learnable Act. Function

Dense (None, 100) 1300 ReLu

Dense (None, 50) 5050 ReLu

Dense (None, 10) 510 ReLu

Dense (None, 1) 11 Linear

Total params 6,871

Trainable params 6,871

The configuration of the used neural network is reported in Table 2. More-

over, for this model data were standardized using StandardScaler() by Scikit-

learn. Each model was trained separately for each of the eight districts for both

the value of i corresponding to the pollutant correlation peak (e.g., i = 22) and

for that corresponding to the temperature correlation peak (e.g., i = 10). This
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was done to compare the results from different trainings in order to determine

which is the best delay time for predicting new cases in each district.

In order to estimate the generalization performance, we adopted the holdout

approach, i.e. the dataset was divided into two disjoint sets, called training sets

and test sets. The training set contains 70% of the instances of the original

dataset and it was used to train the model. The test dataset contains the

remaining 30% of the samples, and it was used to test the generalization level

of the regressor. The split of the instances was done randomly.

For RandomForestRegressor a tuning phase of the hyperparameters was per-

formed in order to obtain the best possible accuracy. To do that, we adopted

a grid search approach (i.e., a list of allowed values is specified for each hy-

perparameters and then they are evaluated through a 5-fold cross validation to

determine the best combination). We chose to optimize the following parame-

ters:

• max depth, that is the maximum depth that each tree can have. Values

for this parameter were searched in the interval [3,7)

• n estimators, that is the number of trees. Values for this parameter were

searched in {10, 50, 100, 1000}.

In order to evaluate and compare the different models, we compute the

Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), and the

R2 score on the test set. Assuming that ŷi is the predicted value of the i-th

sample and yi is the corresponding observed value, then the three metrics are

defined as follows:

RMSE(y, ŷ) =

√√√√ 1

n

n−1∑
i=0

(yi − ŷi)2

MAE(y, ŷ) =
1

n

n−1∑
i=0

|yi − ŷi|

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2
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where n is the number of samples and ȳ is the average of the observed values

of the target variable. The quadratic exponent in the RMSE allows to heavily

penalize large errors. However, this makes Root Mean Squared Error more

sensitive to outliers than Mean Absolute Error.

RMSE and MAE are measures of error, therefore when we compare two

regression models on the same dataset, the one with the lowest values is the

one with the best predictions. In contrast, R2 score or coefficient of determina-

tion represents the proportion of variance of y that has been described by the

independent variables of the model. This metric provides an indication of the

goodness of fit and thus it is a measure of the likelihood that samples never seen

by the model are predicted correctly. The best possible score is 1 and it occurs

when it is possible to predict exactly what the value of the target variable will

be, knowing the values of the independent variables. A constant model that

always predicts the expected value of y, ignoring the input features, has a R2

score equal to 0. The value of R2 can also be negative as the model can be ar-

bitrarily worse than a constant model. Therefore, if we compare two regression

models on the same dataset, the model with the greater R2 score will be the

one with the highest predictive power.

Furthermore, the Mean 5-Fold Cross Validation score was computed over

the entire dataset. This latter approach of evaluation combines the 5-fold cross

validation technique with the R2 score in order to obtain a more generalized

result.

4.5. Prediction Results

As expected, the results obtained for each province are different. The models

have greater predictive capacity for the area of Milan (Table 3), followed by

Bologna. The maximum performance using Milan dataset was achieved with

the Random Forest algorithm. The best delay time due to the identification of

the disease was found to be 10 days (although good results were obtained even

with i = 15). Figure 7 shows the comparison graph of the daily cases of the

province of Milan observed and predicted by Random Forest (when i = 10 and
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the Cross Validation accuracy is 73 %, DS = 2%). Observing the figure, it can

be seen that the predictions are very good, even if in some days the predicted

cases are slightly higher than those observed.

Table 3: Performance of the models on the dataset of the province of Milan.

i value Model R2 score RMSE MAE 5-fold CV score

10 XGBoost 0,55 530,08 280,62 0,66 ± 0,10

10 Neural Network 0,67 454,51 277,60 0,67 ± 0,10

10 Random Forest 0,74 405,36 241,27 0,73 ± 0,02

15 XGBoost 0,71 447,70 265,24 0,65 ± 0,13

15 Neural Network 0,75 441,84 262,80 0,65 ± 0,10

15 Random Forest 0,66 518,65 283,73 0,72 ± 0,07

21 XGBoost 0,36 719,91 364,29 0,54 ± 0,20

21 Neural Network 0,41 684,29 374,53 0,49 ± 0,16

21 Random Forest 0,46 660,96 338,90 0,53 ± 0,18

Instead, for Bologna district the maximum Cross Validation accuracy was

70% (DS = 5%) by adopting XGBoost as predictive model and 16 days as

delay time. On the other hand, performances of Brescia, Modena, Naples,

Parma, Prato and Rome are weaker, with Cross Validation accuracy values

ranging between 36 % and 63 %. In general, the models that perform better

are XGBoost and Random Forest, while the neural network performs worst.

The low accuracy values of the models could hide a dependence of the target

variable, that is the number of daily COVID-19 cases in Italy, on many factors,

probably not observable from the available data. Indeed, it must be taken into

account that the main modality of transmission of the virus is direct contact

between people. Consequently, the behavior of the population and containment

measures could affect the number of infections. Another important factor is

certainly the number of swabs carried out daily in each district. Unfortunately

this information is not available at district level.
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Figure 7: RandomForest on the area of Milan: predicted number of new infected cases com-

pared with the real number of infected cases. i = 10.

5. Limitations

In this paper we tried to understand, on the basis of current knowledge and

available data, whether air quality may play a role in the spread of the COVID-

19 pandemic and, in particular, on the number of recorded daily cases in several

Italian districts. Of course, the spread of a viral infection is a complex and

multi-factor system. Therefore, our analysis includes some limitations:

• Open-source datasets: open source datasets containing official informa-

tion at district level are very little, poor or completely missing for some

areas. Although numerous research studies on the COVID-19 pandemic

have been published so far, in most cases the databases used have not been

made available or they include data only at national level, such as the well-

known dataset by Johns Hopkins University 4. Furthermore, almost all

the information at provincial level about the spread of the pandemic in

Italy is stored in a platform accessible only to the Istituto Superiore della

Sanità (ISS) and other authorized entities.

4https://coronavirus.jhu.edu/map.html - Last visited on 18th of January 2021
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• Data accuracy: the Civil Protection Department has repeatedly cor-

rected past data, published in the repository, modifying the daily data.

Of course, the inaccuracy in the number of documented infected can cause

a significant increase in the uncertainty of the estimate provided by the

prediction models based on historical data. In addition, environmental

measurements may also be subject to error. Indeed, the World Air Qual-

ity Index project team has underlined that not all data have been validated

[34].

• Missing dimensions: the employed machine learning models does not

take into account (or at least very marginally) the time dimension. We

only consider the data for a given day and we are not taking into account

any restriction that the government enacted during the pandemic. We pre-

sume that the information of previous days may influence the daily data.

Thus considering the time dimension might improve the performance of

regressors.

• Confounding factors: factors capable of generating spurious associa-

tions, which could have altered the results. For instance, the restrictive

measures and the rigor with which they have been observed is a possible

confounding factor. As well as the number of daily swabs which varied

considerably over the time.

• Lack of knowledge: this work is based on a still uncertain understanding

of the phenomenon. There are many questions that the research has yet to

answer. For example, it is not clear to what extent surfaces and aerosols

favor the transmission of the virus and whether it is actually possible

that SARS-CoV-2 can travel incorporated into air pollution particles while

maintaining its vitality.

• Data availability, quality and representativeness: machine learning

algorithms require a large amount of data to be able to accurately learn

the relationships between variables. A small dataset could be poorly rep-
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resentative of the variability of interactions and could consequently lead

to low predictive performance. The limited observation period, due to the

recent discovery of the virus, could therefore represent a further limitation

of the empirical study.

6. Conclusion

In this work, we investigate possible relationships among environmental pa-

rameters, geographical distribution and the spread of the COVID-19 pandemic

in different Italian areas. The analysis highlights a possible diagnostic delay

period. It has also shown that machine learning techniques can be applied to

make useful predictions on the number of COVID-19 cases per day as a function

of environmental data measurements. For instance, the possibility of predicting

future new infected cases could be useful to make adequate decisions on the

management of the pandemic, avoiding the overload of the health system.

This work can be seen as another step towards the understanding of a com-

plex system, which deserves to be investigated through in-depth scientific stud-

ies. Future epidemiological investigations should be based on sufficiently ex-

tensive and comprehensive data. In addition, further studies aimed at inves-

tigating the possible mechanisms of interaction of environmental factors with

SARS-CoV-2 are needed.

In the future, the analysis will be extended to other geographical areas and

additional co-factors will be included in the dataset in order to improve the per-

formance of the models. We plan to investigate the application of new ensemble

methods (e.g., [36]) to improve performance, and recurrent neural networks to

take into account the time dimension in the analysis.
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Appendix A. Correlation Results

This appendix reports the results of the correlation analysis for each dataset.

For the sake of readability, we restrict the plot to the median value of each

attribute. The plot limits are deliberately kept fixed for an easiest comparison

among them.

Appendix A.1. Bologna dataset

This section reports the results of the correlation analysis for the data set

of Bologna. Figure A.8 shows the correlation for the maximal values of tem-

perature and ozone. Figure A.9 shows the correlation for the median values of

humidity and NO2, and for the maximal values for PM2.5 and PM10.

Figure A.8: Area of Bologna: cross-correlations values for temperature , ozone, and new daily

infected cases, sliding time-window from 0 to 60.

Figure A.9: Area of Bologna: cross-correlations values for NO2, PM2.5, PM10, and new daily

infected cases, sliding time-window in 0 to 60.
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Appendix A.2. Brescia dataset

This section reports the results of the correlation analysis for the data set

of Brescia. Figure A.10 shows the correlation for the maximal values of tem-

perature and ozone. Figure A.11 shows the correlation for the median values of

humidity and NO2, and for the maximal values for PM2.5 and PM10.

Figure A.10: Area of Brescia: cross-correlations values for temperature , ozone, and new daily

infected cases, sliding time-window from 0 to 60.

Figure A.11: Area of Brescia: cross-correlations values for NO2, PM2.5, PM10, and new daily

infected cases, sliding time-window in 0 to 60.
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Appendix A.3. Milan dataset

This section reports the results of the correlation analysis for the data set of

Milan. Figure A.12 shows the correlation for the maximal values of temperature

and ozone. Figure A.13 shows the correlation for the median values of humidity

and NO2, and for the maximal values for PM2.5 and PM10.

Figure A.12: Area of Milan: cross-correlations values for temperature , ozone, and new daily

infected cases, sliding time-window from 0 to 60.

Figure A.13: Area of Milan: cross-correlations values for NO2, PM2.5, PM10, and new daily

infected cases, sliding time-window in 0 to 60.
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Appendix A.4. Modena dataset

This section reports the results of the correlation analysis for the data set

of Modena. Figure A.14 shows the correlation for the maximal values of tem-

perature and ozone. Figure A.15 shows the correlation for the median values of

humidity and NO2, and for the maximal values for PM2.5 and PM10.

Figure A.14: Area of Modena: cross-correlations values for temperature , ozone, and new

daily infected cases, sliding time-window from 0 to 60.

Figure A.15: Area of Modena: cross-correlations values for NO2, PM2.5, PM10, and new

daily infected cases, sliding time-window in 0 to 60.
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Appendix A.5. Naples dataset

This section reports the results of the correlation analysis for the data set of

Naples. Figure A.16 shows the correlation for the maximal values of temperature

and ozone. Figure A.17 shows the correlation for the median values of humidity

and NO2, and for the maximal values for PM2.5 and PM10.

Figure A.16: Area of Naples: cross-correlations values for temperature , ozone, and new daily

infected cases, sliding time-window from 0 to 60.

Figure A.17: Area of Naples: cross-correlations values for NO2, PM2.5, PM10, and new daily

infected cases, sliding time-window in 0 to 60.
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Appendix A.6. Parma dataset

This section reports the results of the correlation analysis for the data set of

Parma. Figure A.18 shows the correlation for the maximal values of temperature

and ozone. Figure A.19 shows the correlation for the median values of humidity

and NO2, and for the maximal values for PM2.5 and PM10.

Figure A.18: Area of Parma: cross-correlations values for temperature , ozone, and new daily

infected cases, sliding time-window from 0 to 60.

Figure A.19: Area of Parma: cross-correlations values for NO2, PM2.5, PM10, and new daily

infected cases, sliding time-window in 0 to 60.
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Appendix A.7. Prato dataset

This section reports the results of the correlation analysis for the data set of

Prato. Figure A.20 shows the correlation for the maximal values of temperature

(data for ozone not available for this dataset). Figure A.21 shows the correlation

for the median values of humidity and NO2, and for the maximal values for

PM2.5 and PM10.

Figure A.20: Area of Prato: cross-correlations values for temperature and new daily infected

cases, sliding time-window from 0 to 60.

Figure A.21: Area of Prato: cross-correlations values for NO2, PM2.5, PM10, and new daily

infected cases, sliding time-window in 0 to 60.
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Appendix A.8. Rome dataset

This section reports the results of the correlation analysis for the data set of

Rome. Figure A.22 shows the correlation for the maximal values of temperature

and ozone. Figure A.23 shows the correlation for the median values of humidity

and NO2, and for the maximal values for PM2.5 and PM10.

Figure A.22: Area of Rome: cross-correlations values for temperature , ozone, and new daily

infected cases, sliding time-window from 0 to 60.

Figure A.23: Area of Rome: cross-correlations values for NO2, PM2.5, PM10, and new daily

infected cases, sliding time-window in 0 to 60.
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