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The SARS-CoV-2 virus and COVID-19 disease have posed unprecedented and overwhelming demand,
challenges and opportunities to domain, model and data driven modeling. This paper provides a
comprehensive review of the challenges, tasks, methods, progress, gaps and opportunities in relation
to modeling COVID-19 problems, data and objectives. It constructs a research landscape of COVID-
19 modeling tasks and methods, and further categorizes, summarizes, compares and discusses the
related methods and progress of modeling COVID-19 epidemic transmission processes and dynamics,
case identification and tracing, infection diagnosis and medical treatments, non-pharmaceutical
interventions and their effects, drug and vaccine development, psychological, economic and social
influence and impact, and misinformation, etc. The modeling methods involve mathematical and
statistical models, domain-driven modeling by epidemiological compartmental models, medical and
biomedical analysis, AI and data science in particular shallow and deep machine learning, simulation
modeling, social science methods, and hybrid modeling.
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1 INTRODUCTION
Here, we give a brief overview of the COVID-19 pandemic, the global effort on modeling
COVID-19, and the scope, motivation and contributions of this comprehensive review.

1.1 COVID-19 Pandemic
The coronavirus disease 2019, designated as COVID-19, is a new epidemic caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. SARS-CoV-2
and COVID-19 have overwhelmingly shocked and shaken the entire world. After the first
outbreak in Wuhan China in Dec 2019, the disease spread rapidly across the world in only
two months due to its strong human-to-human transmission ability. The World Health
Organization (WHO) declared COVID-19 a pandemic on 11 March 2020. To date, COVID-
19 has infected more than 194M people with 4M having lost their lives1. The continuous
iterative mutative infections are even more seriously troubling 215 countries and territories
with increasingly unexpected resurgences and virus mutations continuously challenging
pandemic containment, vaccinations and treatments. With these widespread and continuous
∗Corresponding to: Longbing Cao (Longbing.Cao@uts.edu.au).
1https://www.worldometers.info/coronavirus/#countries
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infections, the increasingly contagious mutations and resurgences, and the slow rollout
of global vaccination to achieve herd immunity, COVID-19 is and will continuously and
fundamentally transform global public health, the economy and society with an increasingly
unprecedented impact on every aspect of life. COVID-19 has not only exerted unprecedented
pressure on global healthcare systems it has also fundamentally challenged the relevant
scientific research on understanding, modeling, diagnosing and controlling the virus and
disease. Many questions and challenges arise about COVID-19 in relation to the nature of
the coronavirus; the virus’ epidemic characteristics, transmission and influence processes;
the disease’s medical and genomic characteristics, dynamics and evolution, and the pros and
cons of existing containment, diagnosis, treatment and precaution strategies.

Compared with the epidemics that have been defeated in recent decades, such as the severe
acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS),
SARS-CoV-2 and COVID-19 are more complicated and more transmissible from human to
human [167]. Its strong uncertainty, transmission and mutation are some of the key factors
that make COVID-19 a continuous, unprecedented and evolving pandemic. Another key
challenge of COVID-19 is its long incubation period ranging from 1 to 14 days or even
longer and high asymptomatic proportion. In the incubation period, infectious individuals
are contagious but show no symptoms. Consequently, susceptible individuals may not be
aware that they are infected, hindering their timely identification and contact tracing.
Unfortunately, the number of asymptomatic and mild symptomatic infections is significant.
Asymptomatic infectives are a concerning hidden source of the widespread infection and
resurgence of COVID-19 [120], making it extremely difficult to be absolutely clear about
the source, diagnosis and mitigation of COVID-19. This brief comparison poses challenging
questions to be answered scientifically, including how does COVID-19 differ from other
epidemic or endemic diseases, what is the nature of its asymptomatic phase and infection,
what are more effective methods to contain and treat the virus and disease, and how does
the virus mutate and react to vaccines.

Specifically, to slow the pandemic and bring infections under control, most governments
have implemented many non-pharmaceutical interventions (NPI) such as social distancing,
school and university closure, infective isolation or quarantine, banning public events and
travel, and business lockdowns, etc. These interventions also incur significant socioeconomic
costs and have a wide impact on businesses, triggering various debates on a trade-off between
epidemic control and introduced negative impact, relaxed mitigation, or even herd immunity.
However, it is quantitatively unclear what makes a better trade-off or timing and the
appropriate extent of mitigation, what are the positive and negative impacts of NPI on
pandemic control and socioeconomic wellness, and how has COVID-19 influenced other
aspects of public life, work, mental and medical health, and the economy on both individual
and population (e.g., a city, country to the globe) levels.

The SARS-CoV-2 virus and the COVID-19 disease present significant challenges for
health care, the government, society and the economy, and also present both challenges and
opportunities for the scientific and research communities. Coronavirus and COVID-19 have
reshaped the focus of global scientific attention and efforts, including the exploration of
the aforementioned challenges. The scientific research is comprehensive, spreading across
almost every discipline from epidemiology to psychology and fostering new research areas
and topics such as coronavirus epidemiology and genomics. Of the scientific efforts in 2020,
COVID-19 studies emerged as the most important and active research area, where the
growing volume of COVID-19 data is a valuable intangible asset for evidence-based virus
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and disease understanding, fostering a critical research agenda and global interest in COVID-
19 modeling. COVID-19 modeling aims to quantitatively understand and characterize
the virus and disease characteristics, estimate and predict COVID-19 transmission, and
identify cases and trends, intervention measures and their effects, and their impacts on
social, economic, psychological and political aspects, etc. COVID-19 modeling plays an
irreplaceable role in almost every aspect of the fight against the COVID-19 pandemic, in
particular, in characterizing the intricate nature of COVID-19 and discovering insights for
virus containment, disease treatment, drug and vaccine development, and mitigating its
broad socioeconomic impact. These motivate this review of the global reaction to modeling
COVID-19.

1.2 Global Effort on Modeling COVID-19
Hundreds of thousands of studies on coronavirus and COVID-19 and the related issues have
been published in the literature in less than two years, as indicated by the WHO-collected
global literature on the coronavirus disease COVID-192. There are also an increasing number
of publications, which review the relevant progress of specific aspects of coronavirus and
COVID-19 studies. As of 22 February 2021, approximately 200k references have been
published on issues relating to COVID-19 in various fields such as medical/biological science,
computer science, economics, environment, policy, engineering, etc. to understand and
study SARS-CoV-2 and COVID-19 and the associated problems. The computer science
communities alone have contributed to approximately 7k publications, including work on
modeling COVID-19 using so-called AI and data science techniques, in particular classic
and deep analytical and machine learning methods. Data-driven discovery [36, 68] and
COVID-19 data science play a major role in COVID-19 modeling, aiming to discover
valuable knowledge and insights from various kinds of publicly available data including daily
cases, texts, biomedical images, mobility, and so on. As further illustrated in this paper,
every modeling technique has been applied to COVID-19 in some way. For example, classic
epidemic models are tailored for COVID-19 to model its macroscopic transmission and
predict the trends of the spread of the virus; generative models with Bayesian hierarchical
structures are applied to capture the effects of NPI; deep natural language processing
approaches are adopted to understand the growth, nature and spread of COVID-19 and
people’s reactions based on the textual data from social media such as Twitter. Modeling
also helps to understand and characterize every aspect of coronavirus and COVID-19, from
its epidemiological characteristics to the underlying genomic reactions and mutations and
drug and vaccine development.

This review also shows that there are many challenges, gaps and opportunities in modeling
COVID-19. First, publicly available COVID-19 data is limited with partial, inconsistent,
even erroneous, biased, noisy and uncertain observations and statistics due to the limited,
imbalanced and non-universal test ability, and non-unified reporting standards and statistical
errors, especially at the beginning of the epidemic and in those undeveloped regions and
countries. Second, the aforementioned long incubation period from infection to the onset
of symptoms and the large number of asymptomatic to mild infections make correct and
instant reporting difficult and leads to a significant number of undetected and unreported
cases, degrading data quality and trust. Third, coronavirus and COVID-19 exhibit unique
complexities, which differ from existing epidemics, including its transmission, infectivity
in ethnic populations, external NPIs, people’s NPI reactions and behavioral changes as a

2https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/
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result of COVID-19 mitigation policies, and the rapid and mysterious mutation and spread
of coronavirus. Lastly, the modeled problems and areas are fragmented, and although the
modeling techniques and results are highly comprehensive, they are divided and evolving.

These brief observations indicate the critical need to model COVID-19 and the urgency of
forming a comprehensive understanding of the progress being made in COVID-19 modeling,
the research gaps and the open issues. This overview is crucial for not only furthering COVID-
19 modeling research but also for informing insights on scientific and public strategies and
actions to better battle this pandemic and future pandemics.

1.3 Our Findings
In this review, we seek answers and indications to the following major questions:

∙ What is the research landscape of COVID-19 modeling, i.e., what COVID-19 problems
can be modeled and what modeling techniques can address these COVID-19 issues?

∙ How well do AI and data science, specifically machine learning and deep learning,
deepen and broaden the understanding and management of the COVID-19 pandemic?

∙ How do varied techniques perform differently in modeling COVID-19?
∙ What are the gaps in modeling COVID-19?
∙ Where can AI and data science make new, more or better difference in containing

COVID-19?

This comprehensive review obtains a relatively full spectrum of the virus challenges, data
issues, techniques, gaps and opportunities in relation to modeling COVID-19. In addition
to many specific observations obtained through this review, as discussed in the following
sections, here we highlight the following high-to-low level observations and quantitative
indications of results in modeling different COVID-19 problems and data.

∙ COVID-19 problems and complexities: as summarized in Section 3.1, the spectrum
of problems covers typical aspects of epidemic dynamics and transmission, virus and
disease diagnosis, infection identification, contact tracing, virus mutation and resur-
gence, medical diagnosis and treatment, pharmaceutical interventions, pathological
and biomedical analysis, drug and vaccine development, non-pharmaceutical interven-
tions, and socioeconomic influence and impact. We further summarize the COVID-19
characteristics and complexities in Section 2.1, including complex hidden epidemic
attributes, high contagion, high mutation, high proportion of asymptomatic to mild
symptomatic infections, varied and long incubation periods, ethnic sensitivity, and
other high uncertainties, which shows significant differences between SARS-CoV-2 and
other existing viruses and epidemics.

∙ COVID-19 data and challenges: the core data is related to the daily reported number
of asymptomatic infections, the number of confirmed, recovered and deceased cases,
patients’ demographics, pathological, clinical and genomic results of the virus and
disease tests, and patients’ activities and hospitalized information, etc.; external data
comprises NPI policies and events, the resident’s responses and behaviors, public
activities, texts from online and health services, weather, and environment, etc. Since
the data spectrum is indeed comprehensive, almost all data complexities widely
explored in general modeling have also been involved in modeling COVID, including
data uncertainty, dynamics and nonstationarity, various data quality issues such as
incompleteness, inconsistency, inequality and incomparability, lack of ground truth
information, and limited size of daily reports. For further discussion, see Section 2.2.
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∙ Modeling challenges: the COVID-19 complexities and data challenges bring about vari-
ous modeling issues and challenges, as summarized in Section 2.3, including modeling
low-to-poor quality data, modeling small and limited data, learning with weak-to-no
prior knowledge and ground truth, modeling hierarchical and diverse forms of hetero-
geneities and interactions between multi-source core and external data, and disclosing
hidden and unknown attributes and dynamics of the virus and disease.

∙ Modeling techniques: as summarized in Section 3.2 and detailed in Sections 4 to 9,
the spectrum of techniques is wide enough to cover conventional mathematical and
statistical modeling, simulation methods and epidemiological modeling, modern data-
driven discovery and machine learning, and the recent advances in deep learning, in
addition to social science methods including psychological, economic and behavior
modeling methods. Among the 200k publications on COVID-19 with 22k on modeling
COVID-19 [38], about 4%, 6%, and 60% of the entire literature involves the research
and application on broad computer science, social science, and medical science problems
and methods, respectively. Of the 22k publications on modeling, about 50% applies
machine learning, deep learning, mathematical modeling, epidemic modeling to address
medical problems. In addition, mathematical models, machine learning, deep learning,
and epidemiological models are mostly explored in modeling COVID-19, contributing
some 59%, 18%, 9% and 15% to the 22k publications, respectively. In the top-10
modeling methods, regression methods contribute to 34%, CCNs to 3%, Bayesian
models to 3%, SIR models to 4%, and simulation to 9% of all modeling publications.

∙ Modeling tasks: on one hand, modeling tasks address almost all of the aforementioned
COVID-19 problems and complexities, amounting to 15% on epidemic modeling, 9%
on diagnosis and identification, 15% on influence and impact, 7% on simulation, and
1% on resurgence and mutation; on the other hand, the literature covers overwhelming
analytical and learning tasks including roughly 2% on unsupervised learning and
clustering, 6% on classification, 2% on multi-source and multi-modal data modeling
and multi-task learning, and 6% on forecasting and prediction.

∙ Epidemic attributes: as summarized in Section 2.1, it is estimated that the reproduction
number (probably larger than 3 in the original waves and over 2 in the resurgence after
receiving vaccination) is much higher than SARS and MERS, the incubation may last
for an average of 5 to even beyond 14 days, the asymptomatic infections may be much
higher than 20% with even up to 80% undocumented infections in some countries,
some of virus mutants may have increase the transmission rate by more than 50% over
the original strain.

∙ Machine learning performance: as shown in Section 5.2, shallow machine learning
methods report an accuracy of over 90% in predicting COVID-19 outbreaks, over 96%
in disease diagnosis on clinical reports, over 98% in diagnosis on medical images, and
close to 99% in diagnosis further involving latent features with specific settings and
data; in addition, as shown in Sections 5.3 and 6.2, DNN variants achieve significant
prediction performance on COVID-19 images and signals, e.g., an accuracy of over 92%
on cough sound using LSTM, over 99% on chest X-ray images using CNN and imagenet
variants, and less than 5% MAE on real unlabelled lung CT images by attention and
gated U-net.

∙ Non-pharmaceutical intervention effect: as discussed in Section 7.1, NPIs such as
business lockdowns, school closures, limiting gatherings, and social distancing are
crucial to contain the virus outbreaks and reducing COVID-19 case numbers; e.g.,
reducing the reproduction number by 13%-42% individually or even 77% jointly by
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these control measures; and resulting in over 40% transmission reduction by restricting
human mobility and interactions.

∙ Emotional, social and economic impact: the COVID-19 pandemic has generated an
overwhelming negative impact on the public mental health (e.g., significantly increasing
anxiety, stress, depression and suicide), economic growth and workforce (e.g., over
20% estimated annual GDP loss in 2020), public health systems, global supply chain,
sociopolitical systems, and information disorder, as discussed in Section 7.1.

∙ Modeling gaps: as commented in Section 10.1, the review also finds various issues and
limitations of existing research, e.g., an insufficient, biased and partial understanding
of COVID-19 complexities and data challenges; a simple and direct application of
modeling techniques on often simple data; lack of robust, generalizable and tailored
designs and insights into the virus and disease nature and complexities.

∙ Future opportunities: the discussion in Section 10.2 indicates significant new oppor-
tunities, e.g., studying rarely to poorly addressed problems such as epidemiologically
modeling mutated virus attributes, complex interactions between core and external
factors, and the influence of external factors on epidemic dynamics and NPI effect;
new directions and methods such as hybridizing multiple sources of data or methods
to characterize the complex COVID systems; and novel AI, data science and machine
learning research on large-scale simulation of the intricate evolutionary mechanisms in
COVID, discovering robust and actionable evidence to dynamically personalize the
control of potential resurgence and balance the economic and mental recovery and the
virus containment.

Note, the above-quoted numerical results are illustrative, which do not represent the
state-of-the-art performance. Interested readers may refer to [38] and specific references
for more comprehensive information about how the global scientists have responded to
model COVID-19 and [37] to understand what quantitative results COVID-19 modeling has
identified in both the above questioned areas and other areas.

1.4 Contributions and Limitations
Several surveys have been conducted on COVID-19 modeling, which review the progress
from specific perspectives, e.g., COVID-19 characteristics [70], epidemiology [173], general
applications of AI and machine learning [157, 160] such as for epidemic and transmission
forecasting and prediction [30, 47, 192], virus detection, spread prevention, and medical
assistance [207], policy effectiveness and contact tracing [143], infection detection and disease
diagnosis [28, 120], virology and pathogenesis [132], drug and vaccine development [111],
and mental health [258]. The methods which have been reviewed include epidemiological
modeling [173], general AI and machine learning methods [47, 106, 111, 151, 157, 160, 194],
data science [122], computational intelligence [224], computer vision and image processing
[209, 227], statistical models [151], and deep learning [103, 265]. These reviews paint a partial
picture of what happened in their selected areas based on several references and specific
techniques. However, there are currently no comprehensive surveys or critical analyses of
the intricate challenges posed by the virus, the disease, the data and the modeling.

This review is the first attempt to provide a comprehensive picture of the problems by
modeling coronavirus and COVID-19 data. We start by categorizing the characteristics
and challenges of the COVID-19 disease, the data and the modeling in Section 2. A
transdisciplinary landscape is formed to categorize and match both COVID-19 modeling
tasks and objectives and categorize the corresponding methods and general frameworks in
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Section 3. The review then focuses on structuring, analyzing and comparing the work on
mathematical, data-driven (shallow and deep machine learning), domain-driven (epidemic,
medical and biomedical analyses) modeling in Sections 4, 5 and 6, respectively. Section
7 further discusses the modeling on the influence and impact of COVID-19, Section 8
reviews the work on COVID-19 simulations, and the related work on COVID-19 hybrid
modeling is reviewed in Section 9. Lastly, Section 10 further discusses the significant gaps
and opportunities in modeling COVID-19.

This review aims to be specific to COVID-19 modeling so pure domain-specific research
on its medicine, vaccine, biology and pathology is excluded; more comprehensive than the
other references to cover problems and techniques from classic to present AI, data science
and beyond; unique in summarizing the challenges of the COVID-19 disease, data and
modeling; structural and critical by categorizing, comparing, criticizing and generalizing
typical modeling methods tailored for COVID-19 modeling from various disciplines and areas;
and insightful by extracting conclusive and contrastive (to other epidemics) findings about
the virus and disease from the references. The review incorporates much discussion on the
topics, opportunities and directions to tackle those issues which are rarely or poorly addressed
or areas which remain open in the broad research landscape of modeling COVID-19.

However, this review also presents the various limitations and opportunities for further
work. (1) As the scope and capacity of the review is limited, we do not cover the domain-
specific literature on pure medical, biomedical and social science-oriented topics and methods
without involving modeling methods. (2) There are over 10k references closely relevant to
modeling COVID-19 and numerous specific modeling techniques from various disciplines and
areas [38], which could not be fully covered or highlighted in detail in this review. (3) As
discussed in the above, different from the narrowly-focused review papers in the area which
highlight specific techniques and their relevant references, we only present those mostly
used (useful) modeling techniques by summarizing their generalizable formulations. (4)
This review does not answer many important questions concerning modelers, governments,
policy-makers and domain experts, e.g., what has the modeling told us about the nature
of COVID-19, which could be further highlighted in more purposeful reviews and analyses.
(5) There are many challenging problems yet to be informed or addressed by the modeling
progress, as discussed in Section 10. (6) There are increasingly more and newer references
including preprints emerging online every day, which poses significant challenges for us to
cover all up-to-date important references on modeling COVID-19.

2 COVID-19 CHARACTERISTICS AND COMPLEXITIES
In this section, we summarize the main characteristics and challenges of the COVID-19
disease, the data and the modeling, which are connected to the various modeling tasks and
methods reviewed in this paper.

2.1 COVID-19 Disease Characteristics
Modeling COVID-19 is highly challenging because its sophisticated epidemiological, clinical
and pathological characteristics are poorly understood [93, 96, 173]. Despite common epidemic
clinical symptoms like fever and cough [105], SARS-CoV-2 and COVID-19 have many
other sophisticated characteristics [167] that make them more mysterious, contagious and
challenging for quantification, modeling and containment. We highlight a few of these below.

High contagiousness and rapid spread. The high contagiousness of SARS-CoV-2 is one of the
most important factors driving the COVID-19 pandemic. In epidemiology, the reproduction
number 𝑅0 denotes the transmission ability of an epidemic or endemic. It is the expected
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number of cases directly generated by one case in a population where all individuals are
susceptible to infection [79]. If 𝑅0 > 1, the epidemic will begin to transmit rapidly in the
population, while 𝑅0 < 1 indicates that the epidemic will gradually vanish and will not
lead to a large-scale outbreak. Different computational methods have resulted in varying
reproduction values of COVID-19 in different regions. For example, Sanche et al. [201] report
a median 𝑅0 value of 5.7 with a 95% confidence interval (CI) [3.8, 8.9] during the early stages
of the epidemic in Wuhan China. Gatto et al. [80] estimate a generalized reproduction value
of 3.60 (95% CI: 3.49 to 3.84) using the susceptible-exposed-infected-recovered (SEIR)-like
transmission model in Italy. de Souza et al. [62] report a value of 3.1 (95% CI: 2.4 to 5.5)
in Brazil. The review finds that the 𝑅0 of COVID-19 may be larger than 3.0 in the initial
stage, higher than that of SARS (1.7-1.9) and MERS (< 1) [180]. It is generally agreed that
SARS-CoV-2 is more transmissible than severe acute respiratory syndrome conronavirus
(SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) although
SARS-CoV-2 shares 79% of the genomic sequence identity with SARS-CoV and 50% with
MERS-CoV [70, 96, 138, 179].

A varying incubation period. The incubation period of COVID-19, also known as the pre-
symptomatic period, refers to the time from becoming infected by exposure to the virus and
symptom onset. A median incubation period of approximately 5 days was reported in [124]
for COVID-19, which is similar to SARS. In [173], the mean incubation period was found
to range from 4 to 6 days, which is comparable to SARS (4.4 days) and MERS (5.5 days).
Although an average incubation period of 5-6 days is reported in the literature, the actual
incubation period may be as long as 14 days [124, 167, 264]. The widely varying COVID-19
incubation period and its uncertain value in a specific hotspot make case identification and
infection control very difficult. Unlike SARS and MERS, COVID-19 infected individuals are
already contagious during their incubation periods. As it is likely that they are unaware
that they are infected and have no-to-mild symptoms during this period, they may easily be
the unknown sources of widespread transmission. This has informed screening and control
policies, e.g., mandatory 14-day quarantine and isolation, corresponding to the longest
predicted incubation time.

A large number of asymptomatic and undocumented infections. It is clear that COVID-19
has a broad clinical spectrum which includes asymptomatic and mild illness [42, 128, 179].
However, the accurate number of asymptomatic and mild-symptomatic infections of both
original and new-generations of viruses remains unknown. Asymptomatic infections may not
be screened and diagnosed before symptom onset, leading to a large number of undocumented
infections and the potential risk of contact with infected individuals [120]. The review in [30]
reports that of those who tested positive in studies which were conducted in seven countries,
the proportion who were asymptomatic ranged from 6% to 41%, while the study in [249]
reports that 23% of those infected by COVID were asymptomatic. Buitrago-Garcia et al. [28]
found that most people who are infected with COVID-19 do not remain asymptomatic
throughout the course of infection, and only 20% of infections remain asymptomatic during
follow-up, however this estimate requires further verification and study. Ravindra et al. [195]
analyzed the possibility of different levels of asymptomatic transmission in the community
and concluded that asymptomatic human transmission is relevant to the varying incubation
periods between people and about 31% of all populations are asymptomatic, including familial
clusters, adults, children, health care workers, and travelers. The study in [130] shows that a
large percentage (86%) of infections are undocumented, about 80% of documented cases are
due to transmission from undocumented cases, and the transmission rate of undocumented
infections is about 55% of that of documented cases.
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High mutation with mysterious strains and high contagion. The four major SARS-CoV-2
variants of concern such as B.1.1.7 (labeled Alpha by WHO) and B.1.351 (Beta) variants
have higher transmissibility (B.1.1.7 has approximately 50% increased transmission) [186]
and reproduction rate (B.1.1.7 has an increase reproduction rate of 1-1.4) [235], challenging
existing vaccines, containment and mitigation methods. The recently identified variant
B.1.617.2 (Delta) in India has even more sophisticated transmissibility and infectious charac-
teristics. The identified variants of concern generally have increased transmissibility (20-50%),
increased detrimental change of epidemiology, more severe virulence and disease presentation
(e.g., increased hospitalizations or deaths), and result in the decreased effectiveness of public
health and social measures, reduced effectiveness of available diagnostics, vaccines and ther-
apeutics, increased diagnostic detection failures, and reduced neutralization by antibodies
generated during previous infection or vaccination [229, 251].

Discussion. While the above summarizes the most recent understanding of SARS-CoV-2
and COVID-19 complexities, it is also noted that knowledge on the nature of the virus and
its mutation is limited. Without knowing its origins, there is much misinformation about
the virus, its contagion and the interventions required [199]. There is weak to no ground
truth about the reality of its infection, symptoms shown in medical imaging, and mitigation
and treatment measures. There have been no joint global pathological, epidemiological,
biomedical and socioeconomic studies which provide a deep and systematic understanding
of the COVID-19 virus and disease complexities, common knowledge, and ground truth.

2.2 COVID-19 Data Challenges
COVID-19 involves multisource, small, sparse and quality-inconsistent data [122]3. Typical
data sources and factors include (1) epidemiological factors (e.g., origin, incubation period,
transmission rate, mortality, morbidity, and high to least vulnerable population, etc.);
(2) daily new-infected-recovered-death case numbers, their reporting time and region of
occurrence; (3) quarantine and mitigation measures and policies (e.g., social distancing and
border control) relating to communities and individuals; (4) clinical, pathological and genomic
data (e.g., symptoms, medical facilities, hospitalization records, medical history, medical
imaging, pharmaceutical treatments, gene and protein sequences); (5) infective demographics
(e.g., age, gender, race, cultural background, and habit); (6) social activities and mobility;
(7) domain knowledge and precautionary guidance from authorities on the virus and disease;
(8) seasonal and environmental factors (e.g., season, geographical location, temperature,
humidity, and wind speed); (9) news, reports and social media discussions on coronavirus
and COVID-19; and (10) fake news, rumor and misinformation. Such COVID-19 data are
heterogeneously coded in character, text, number or image; in unordered, temporal/sequential
or spatial modes; in static and dynamic forms; and with the characteristics as follows.

Despite the large volume of existing research, modeling COVID-19 is still in an early
stage with many open issues, partially because of the significant complexities of COVID-19
data. The main characteristics of COVID-19 data are summarized below and impose a
computational burden on the modeling of COVID-19.

Acyclic and short-range case numbers which are small in size. The publicly available data
for COVID-19 modeling is limited. Except in rare scenarios such as in the US, most countries
and regions report a short-range (2-3 months or even shorter such as local hotspot-based
outbreaks), low-granularity (typically daily), and small-size (daily case numbers for a short
period of time and a small cluster of the population) record of COVID-19 data. Such data

3COVID-19 modeling: https://datasciences.org/covid19-modeling/
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is typically acyclic without obvious seasonal or periodical patterns as in influenza [56] and
recurrent dengue epidemics in tropical countries [228].

Inaccurate statistics on COVID-19 cases. The reported new-infected-recovered-death case
numbers are estimated much lower than their real number in most countries and regions.
This may be due to many reasons, such as pre-symptomatic and asymptomatic infections,
limited testing capability, nonstandard manual recording, different confirmation standards,
an evolving understanding of the disease nature, and other subjective factors. The method
of calculating case statistics may vary significantly from country to country; the actual
figures in some countries and regions may even be unknown; and no clear differentiation
is made between hotspot and country/region-based case reporting. The gaps between the
infection reality and what has been documented may be more apparent in the first wave, in
the early stage of outbreaks, and in some countries and regions [141]. As result, the actual
infected number and infected regions of COVID-19 pandemic may be much bigger than
those publicly reported.

Lack of reliable data particularly in an initial outbreak. The spread of an epidemic in
its initial phase can be regarded as transmission under perfect conditions. In its initial
phase, the intrinsic epidemiological characteristics of COVID-19, such as reproduction rate,
transmission rate, recovery rate and mortality are closer to their true values. For example,
the modeling results in [198] show a wide range of variations due to the lack of reliable data,
especially at the beginning of an outbreak.

Lack of high-quality microlevel data. Data on COVID-19 cases, including daily infected
cases, daily new cases, daily recovery cases, and daily death cases, is collected on a daily basis,
while daily susceptible case numbers were also reported in Wuhan. However, macrolevel
and low-dimensional data is far from comprehensive for inferring the complex transmission
processes accurately and more fine-grained data with various aspects of features and high
dimensions are needed. For example, during the initial phase of the Wuhan outbreak, the
dissemination of SARS-CoV-2 was primarily determined by human mobility in Wuhan,
however no empirical evidence on the effect of key geographic factors on local epidemic
transmission was available [191]. The risk of COVID-19 death varies across various so-
ciodemographic characteristics [66], including age, sex, civil status, individual disposable
income, region of residence, and country of birth. More specific data is required to address
the sociodemographic inequalities related to contracting the COVID-19 virus. To contain
the spread of COVID-19, governments propose and initiate a series of similar to different
NPIs. No quantitative evidence or systematic evaluation analyzes how these measures affect
epidemic transmission, leading to challenges in inferring NPI-based COVID-19 transmission
and mitigation.

Data incompleteness, inconsistencies, inequality and incomparability. Typically, it is diffi-
cult to find all-round information about a COVID-19 patient’s infection source, demographics,
behaviors, social activities (including mobility and in social media), clinical history, diagnoses
and treatments, and resurgence if any. COVID-19 public data also presents strong inconsis-
tencies and inequalities across reporting hotspots, countries and regions, updating frequencies
and timelinesses, case confirmation standards, collection methods, and stages [198]. Data
from different countries and areas may be unequal and incomparable due to their non-unified
statistical criteria, confirmation standards, sampling and coverage methods, and health and
medical conditions and protocols. These are also related to or affected by a person’s race,
living habits, and their applied mitigation policies, etc.

Other issues. Comparing public data available from different sources also reveals other
issues like potential noise, bias and manipulation in some of the reported case numbers
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(e.g., due to their nonuniform statistic standards or manual statistical mistakes), missing
values (e.g., unreported on weekends and in the early stage of outbreaks), different catego-
rization of cases and stages (e.g., some with susceptible and asymptomatic case numbers),
misinformation, and lack of information and knowledge about resurgence and mutation.

Discussion. While increasing amounts of COVID-19 data are publicly available, they are in
fact poor and limited in terms of quality, quantity, capability and capacity to discover deep
insights about the nature of COVID-19, its interaction with external factors, and its effects.
It is fundamental and urgent to acquire substantially larger and better-quality multisource
COVID-19 data. This is crucial so that meaningful modeling can be robustly conducted and
evaluated to reveal intrinsic knowledge and insights about the disease and to assist effective
pandemic control.

2.3 COVID-19 Modeling Complexities
The COVID-19 pandemic is essentially an open complex system with significant system com-
plexities [35, 247]. Examples are the hidden nature and strong uncertainty, self-organization,
dynamics and evolution of the virus, disease and their developments and transmissions; their
sophisticated interactions and relations to environments and context; the differentiated virus
infections of individuals and communities; and the significant emergence of consequences
and impacts on society in almost every part of the world. However, the publicly available
small and limited COVID-19 data does not explicitly display a complete picture and a
sufficient indication of the above complexities and intrinsic epidemiological attributes, trans-
mission process, and cause-effect relations. It is thus challenging to undertake sound, robust,
benchmarkable and generally useful modeling on such potential-limited data.

Achieving ambitious modeling objectives on low-quality small COVID-19 data. As discussed
in Section 3.1, many business problems and objectives are expected to be addressed by
modeling COVID-19. However, the strong constraints in COVID-19 public data discussed
in Section 2.2 significantly limit this potential. Modelers have to carefully define learnable
objectives, i.e., what can be learned from the data, acquire the essential and feasible data, or
leverage data poverty by more powerful modeling approaches. For example, when a model is
trained on a country’s case numbers, its application to other countries may produce unfair
results owing to their data inequalities. Another example is how to combine multisource but
weakly connected data for meaningful high-potential analysis and results.

Undertaking complex modeling with limited to no domain knowledge and ground truth. The
weak to no-firm knowledge and ground truth about COVID-19 and its medical confirmation
and annotations and poor-quality data limit the capacity and richness of the hypotheses
to be tested and modeled on the data. It is not surprising that rather simple and classic
analytical and learning models are predominantly applied by medical and biological scientists
to verify specific hypotheses, e.g., various SIR models, time-series regression, and traditional
machine learning methods [49, 81, 207], which occupy the top-80 keywords-based methods
in the 200k WHO-collected references. In contrast, statisticians and computer scientists tend
to enforce overparameterized models, over-complicated hypotheses, or over-manipulated
data, resulting in highly specific results and over- or under-fitting issues.

Challenges in addressing the COVID-19 disease and data complexities. The unique char-
acteristics and complexities of the COVID-19 disease and data discussed in Sections 2.1 and
2.2 challenge the existing modeling methods including deep neural learning. Examples are
generalized modeling of quality and quantity-limited COVID-19 data from different countries
and regions and over evolving time periods [232], robust modeling of short-range, small-size
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and incomplete-cycle data, and high-capacity modeling of mixture distributions with expo-
nential growth [63], sub-exponential growth [141], discontinuous phase transition [232] and
instant changes in case developments.

Disclosing complicated relations and interactions in weakly-coupled multisource data.
COVID-19 is affiliated with many personal, social, health/medical, political and other
factors, dispersedly reflected in explicitly or implicitly related multisource systems. The
COVID-19 pandemic is formed and evolves as a dynamic social-technical process and
the co-effects of multi-factor interplay. These multi-aspect factors are coupled strongly or
weakly, locally or globally, explicitly or implicitly, subjectively or objectively, statically or
dynamically, and essentially or accidentally in the virus and disease formation, development,
influence, and evolution. Disclosing such sophisticated factor couplings and interactions
is significantly challenging as they are not obvious or easily verifiable in observations.
Therefore, modeling COVID-19 requires in-depth transdisciplinary cooperation between
computer science, bioinformatics, virology, sociology and many other disciplines. A single
factor alone cannot disclose the intrinsic and intricate nature of COVID-19 or explain the
variability or shape the dynamics of this epidemic.

Discussion. The COVID-19 complexities result in significant modeling challenges, resulting
from the data, the unclear epidemic transmission mechanisms and processes, and the entan-
glement between epidemic factors/observations and external objective (e.g. countermeasures)
and subjective (e.g. people behavior changes) factors. COVID-19 modeling goes beyond
the transformation and applications of powerful models such as overparameterized deep
neural networks, SIR variants and hierarchical Bayesian networks on the highly limited and
poorly coupled small COVID-19 data. Careful designs are necessary to address the specific
COVID-19 characteristics and complexities of its data and disease, avoid under-/over-fitting,
and focus on modeling the complexities in relation to their underlying nature and insight.
Complicating models does not necessarily contribute to better or more actionable knowledge
and intelligence about the COVID-19 disease and data [22, 34, 223].

3 COVID-19 MODELING LANDSCAPE
To address the aforementioned COVID-19 disease, problems, data and modeling challenges,
we present a high-level landscape to categorize and connect the comprehensive objectives
and techniques for modeling COVID-19.

3.1 Objectives of COVID-19 Modeling
Here, we summarize the main business problems and objectives in modeling COVID-19. The
analysis of the WHO-collected literature [38] gives us a clear indication of the top business
terms in over 200k references and 22k modeling-focused references. The top-ranked keywords
include COVID-19 and coronavirus pandemic outbreak, spread, infection, transmission,
factors, symptoms, characteristics, treatment, diagnosis, mortality, their risk and effects,
as well as major data analysis and domain-specific research areas and methods. Below, we
consolidate the main concerns and objectives of modeling COVID-19. Table 1 summarizes
the associated modeling factors, modeling methods, and references.

Characterizing and predicting the COVID-19 epidemic dynamics and transmission. An
imperative challenge is to understand the COVID-19 epidemic mechanisms, transmission
process and dynamics, infer its epidemiological attributes, and understand how the virus
spreads spatially and socially [1]. The majority of COVID-19 modeling tasks focus on
exploring the source and spectrum of the COVID-19 infection, clinical and epidemiological
characteristics, tracking its transmission routes, and forecasting case development trends
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Table 1. Business Problems and Objectives of COVID-19 Modeling.

Objectives Modeling factors Approaches References
Epidemic
dynamics and
transmission

Epidemiological factors (e.g., origins, incu-
bation period, transmission rate, morbid-
ity, mortality, and highly to least vulner-
able population, etc.), daily new-infected-
recovered-death case numbers and report-
ing time, side information about population,
etc.

Regression, com-
partmental models,
time/age-dependent
compartmental models,
probabilistic com-
partmental models,
etc.

[5, 49, 57,
81, 177,
212, 250,
275]

Non-
pharmaceutical
intervention
and policies

Intervention measures, quarantine and mit-
igation measures and policies on com-
munities and individuals, epidemiological
factors, daily new-infected-recovered-death
case numbers and reporting time, social ac-
tivities, communications

Regression, customized
compartmental mod-
els, Bayesian hierarchi-
cal models, stochastic
compartmental models,
etc.

[5, 24, 63,
77, 81, 121,
141, 185,
221]

Diagnosis,
identification
and tracing

Clinical, pathological and genomic data
(symptoms, medical facilities, hospitaliza-
tion records, medical history, respiratory
signals, medical imaging, physical and chem-
ical measures, gene sequences, proteins), mo-
bility and contacts, etc.

Regression, statistical
learning, shallow (e.g.
decision trees, random
forest) and deep mod-
els, image and sig-
nal processing meth-
ods, etc.

[11, 17, 51,
54, 61, 112,
143, 149,
152, 240,
253, 268]

Treatment
and phar-
maceutical
interventions

Clinical measures, hospitalization records,
medical test records, drug selection, phar-
maceutical treatments, ICU records, venti-
lator use, healthcare records, etc.

Classifiers, time-series
methods, DNNs, etc.

[18, 133,
254, 260,
274]

Pathological
and biomedi-
cal analysis

Genomic data, protein structures,
pathogenic data, drug and vaccine
info, immunization response, etc.

Classifiers, outlier de-
tectors, genome anal-
ysis, protein analysis,
DNNs, etc.

[7, 18, 111,
139, 169,
193, 205,
237, 256,
270]

Resurgence
and mutation

Daily new-infected-recovered-death case
numbers and reporting time, quarantine
and mitigation measures and policies on
communities and individuals, social activ-
ities and mobility, seasonal and environ-
mental factors (e.g., season, geographical
location, temperature, humidity, and wind
speed)

Compartmental mod-
els, simulation models,
compartmental models
combined with regres-
sion, epidemic renor-
malisation group, etc.

[12, 31,
127, 137,
174]

Influence and
impact

Quarantine and mitigation measures and
policies on communities and individuals, do-
main knowledge and precaution guidance
from authorities, social activities and mobil-
ity, demographics (e.g., age, gender, racist,
cultural background, habit), related news,
reports, social media discussions, and mis-
information.

Statistical analysis,
questionnaire meth-
ods, age-structured
SIR/SEIR models,
deep neural networks
(e.g., BERT and
LSTM), simulation
models, etc.

[40, 119,
131, 208,
236]

and the peak number of infected cases and disease transmission [42, 254, 255]. They aim for
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findings to understand the nature of the virus and disease and inform disease precaution,
virus containment, mitigation campaigns, and medical resource planning, etc.

Modeling the resurgence and mutation. As the SARS-CoV-2 mutation and COVID-19
resurgence are highly uncertain and much more transmissible and infectious, we highlight
their relevant research here. However, as our current understanding of the resurgence and
mutation is very limited, COVID-19 may become another epidemic disease which stays
with humans for a long time. The WHO-identified four variants of concern which have
higher transmissibility, contagion and complexities [85, 86, 229, 251]. Imperative research is
expected to quantify the resurgence conditions, control potential resurgences after lifting
certain restrictions and reactivating businesses and activities [137, 174], distinguish the
characteristics and containment measures between waves [8, 72, 84], and prepare for and
predict resurgence, mutation and their responsive countermeasures [12].

Disease diagnosis, infection identification and contact tracing. Given the strong transmis-
sion and reproduction rates, high contagion, and sophisticated transmission routes and the
unexpected resurgence of COVID-19 and its virus mutation, it is crucial to immediately
identify and confirm exposed cases and trace their origins and contacts to proactively imple-
ment quarantine measures and contain their potential spread and outbreak [159]. This is
particularly important during the varying incubation periods (usually 2 - 14 days) which
are asymptomatic to mildly symptomatic yet highly contagious. In addition to chemical
and clinical approaches, identifying COVID-19 by analyzing biomedical images, genomic
sequences, symptoms, social activities, mobility and media communications is also essential
[226].

Modeling the efficacy of medical treatment and pharmaceutical interventions. The gen-
eral practices of timely and proper COVID-19 medical treatments, drug selection and
pharmaceutical measures, and ICU and ventilation etc. play fundamental roles in fast recov-
ery, mitigating severe symptoms and reducing the mortality rate of both the original and
increasingly-mutated virus strains. However, the lack of best practices and standardized
protocols and specifications of medical and pharmaceutical treatments on the respective
virus variants in terms of patient’s demographic and ethnic context and the wide dispersal
of online misinformation of drug use may also contribute to global imbalance in containing
COVID-19. Research is required to select and discover suitable drugs, which best match the
patient’s diagnosis and ethnic contexts with suitable medical treatments to mitigate critical
conditions and mortality in a timely manner, etc. [18, 254, 260, 274].

Modeling the efficacy of non-pharmaceutical intervention and policies. Various NPIs, such
as travel bans, border control, business and school shutdowns, public and private gathering
restrictions, mask-wearing, and social distancing are often implemented to control the
outbreak of COVID-19. Different governments tend to enforce them in varied combinations
and levels and ease them within different timeframes and following different procedures,
resulting in different outcomes. Limited research results have been reported to verify the
effects of these measures and their combinations on containing the virus spread and case
number development, the balance between enforcement levels and containment results, and
the response sensitivity of the restrictions in relation to the population’s ethnic context [24,
63, 221]. Limited results are available on the threshold and effects of COVID-19 vaccinations
and herd immunity. More robust results will inform medical and public health policy-making
on medication, business and society.

Understanding pathology and biomedical attributes for drug and vaccine development. By
involving domain knowledge and techniques such as virology, pathogenesis, genomics and
proteomics, pathological and biomedical analyses can be conducted on pathological test
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results, gene sequences, protein sequences, physical and chemical properties of SARS-CoV-2,
drug and vaccine information and their effects. Accordingly, it is necessary to conduct
domain-driven analysis and model correlated drugs and vaccines with genomic and protein
structures to select and develop COVID-19 drug and vaccines, to understand the drug-
target interactions, and to diagnose and identify infection, understand virus mutation, etc.
[18, 97, 193]. More research is needed on COVID-19 immunity responses, drug and vaccine
development, and mutation intervention.

Modeling COVID-19 influence and impact. While the COVID-19 pandemic has changed
the world and has had a significant and overwhelming influence on almost all aspects of
life, society and the economy, quantifying its influence and impact has rarely been studied.
COVID-19 negative impact modeling may include (1) economic impact on growth and
restructuring [252]; (2) social impact on people’s stress, psychology, emotions, behavior and
mobility [175, 258]; and (3) transforming business processes and organizations, manufacturing,
transport, logistics, and globalization [204, 234]. In contrast, it would also be interesting
to model its ‘opportunity’ and influence on (1) enhancing the wellbeing and resilience of
individuals, families, society and work-life balance [187]; (2) digitizing and transforming
work, study, entertainment and shopping [215]; (3) restructuring supply-demand relations
and supply chains for better immediate availability and to satisfy demand [64]; (4) promoting
research and innovation on intervening in global black-swan disasters like COVID-19 and its
impacts [269]; and (5) enhancing trust and development in science, medicine, vaccination
and hygiene [182]. Other impact modeling tasks include analyzing the relations between
the COVID-19 containment effect and socioeconomic level (e.g., income level particularly
in relation to lower-income and disadvantaged groups), healthcare capacity and quality,
government crisis management capabilities, citizen-government-cooperation, and public
health and hygiene habits.

3.2 Categorization of COVID-19 Modeling
The flow of COVID-19 modeling has strong features such as: (1) multi-disciplinary techniques
of mathematics and statistics, epidemiology, broad AI and data science including shallow and
deep learning, and social science; (2) epidemiological methods to explore business problems
and research areas; (3) domain, model and data-driven approaches consisting of various
families of domain knowledge, models and methods which are widely applied in all business
problems; (4) case studies and hypothesis tests to highlight the results of particular methods
or modeling specific settings, scenarios or data.

The keyword-based analysis of the 22k WHO-collected modeling references in [38] shows
that epidemiological modeling, mathematical and statistical modeling, artificial intelli-
gence and data science, and simulation modeling play predominant roles in understanding,
characterizing, simulating, analyzing and predicting COVID-19 issues. We thus categorize
the research landscape of COVID-19 modeling into six: domain-driven modeling, mathe-
matical/statistical modeling, data-driven learning, influence/impact modeling, simulation
modeling, and hybrid methods in this review. Fig. 1 summarizes the transdisciplinary
research landscape connecting the aforementioned six categories of modeling techniques
and their respective modeling methods to major COVID-19 business problems and their
modeling objectives in Section 3.1.

∙ COVID-19 mathematical/statistical modeling: developing and applying mathematical
and statistical models such as time-series analysis (e.g., regression models and hazard
and survival functions) and statistical models (e.g., descriptive analytics, statistical
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Fig. 1. The transdisciplinary research landscape of COVID-19 modeling: From right: business problems
and modeling objectives to the left: modeling techniques and methods.

processes, latent factor models, temporal hierarchical Bayesian models, and stochastic
compartmental models) to estimate COVID-19 transmission processes, symptom
identification, disease diagnosis and treatment, sentiment analysis, misinformation
analysis, and resurgence and mutation.

∙ COVID-19 data-driven learning: developing and applying data-driven classic (e.g., tree
models such as random forests and decision trees, kernel methods such as support
vector machines (SVMs), NLP and text analysis, and classic reinforcement learning)
and deep (e.g., deep neural networks, transfer learning, deep reinforcement learning,
and variational deep neural models) analytics and learning methods on COVID-19
data to characterize, represent, classify, and predict COVID-19 problems, such as case
development, mortality and survival forecasting, medical imaging analysis, NPI effect
estimation, and genomic analysis.

∙ COVID-19 domain-driven modeling: developing and applying domain knowledge and
domain-specific models for COVID-19; examples are epidemiological compartmental
models to characterize the COVID-19 epidemic transmission processes, dynamics,
transmission and risk, and the influence of external factors on COVID-19 epidemics,
resurgence and mutation; and medical, pathological and biomedical analysis for infection
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diagnosis, case identification, patient risk and prognosis analysis, medical imaging-based
diagnosis, pathological and treatment analysis, and drug development.

∙ COVID-19 influence/impact modeling: developing and applying methods to estimate
and forecast the influence and impact of SARS-COV-2 variations and COVID-19
diseases and their interventions, treatments and vaccination on epidemic transmission
dynamics, virus containment, disease treatment, public resources including healthcare
systems, social systems, economy, and human psychological health and behaviors.

∙ COVID-19 simulation modeling: developing and applying simulation models such as
theories of complex systems, agent-based simulation, discrete event analysis, evolution-
ary learning, game theories, and Monte-Carlo simulation to simulate the COVID-19
epidemic evolution and the effect of interventions and policies on the COVID-19
epidemic.

∙ COVID-19 hybrid modeling: hybridizing and ensembling multiple models to tackle
multiple business problems and objectives, multiple tasks, and multisource data and
those individual objectives, tasks and data sources that cannot be better understood
by single approaches.

It is worth mentioning that each of the above modeling techniques and their specific
methods may be applicable to address different business problems and modeling objectives,
as shown in Fig. 1. Below, we review the progress of the above six categories of COVID-19
modeling by (1) summarizing the typical modeling techniques and (2) categorizing their
typical applications in modeling diverse COVID-19 issues.

4 COVID-19 MATHEMATICAL MODELING
Mathematical and statistical models are overwhelmingly used to estimate and predict the
transmission dynamics and reveal the truth of epidemic in a formalized and quantitative way.
Accurate COVID-19 mathematical models are indispensable for the COVID-19 epidemic
forecasting and decision making, amounting to 13k of 22k references on modeling COVID-19.
Here, we review two sets of main mathematical methods: time-series analysis and statistical
modeling, and their applications in COVID-19 modeling.

4.1 Time-series Analysis
4.1.1 Time-series modeling. We here focus on two typical methods that are predominantly

customized for modeling COVID-19: regression models and hazard and survival functions.
Regression models. Typical regression models such as logistic regression and auto-regressive

integrated moving average (ARIMA) variants are widely used in epidemic and COVID-19
modeling. Logistic growth models can model the number of COVID-19 infected cases. For a
population of 𝑆 with the infection rate 𝛽, the growth scale of infection number 𝐼 can be
modeled by

𝜕𝑡𝐼 = 𝛽𝐼1 − 𝐼𝑆 (1)
over time t. Accordingly, with historical COVID-19 cases of a place at a time period,
an S-shaped curve can be derived to describe and forecast the growth distributions of the
COVID-19 infections and the peak infected number by adjusting the constant rate 𝛽. Logistic
models are weak to incapable of modeling other states of COVID-19 cases and there are
many challenges, such as nonstationary characteristics discussed in Section 2.2, while some
may be better modeled by more sophisticated regression models.

ARIMA and its variants also model the temporal movement of COVID-19 case numbers
with more flexibility than logistic ones. For example, the number 𝐼 of infected cases can be
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modeled by 𝐴𝑅𝐼𝑀𝐴𝑝, 𝑑, 𝑞 which factorizes the number into consecutive past numbers with
errors:

𝐼𝑡 = 𝛼1𝐼𝑡−1 𝛼2𝐼𝑡−2 · · · 𝛼𝑝𝐼𝑡−𝑝 𝜀𝑡 𝜃𝑡−1𝜀𝑡−1 · · · 𝜃𝑡−𝑞𝜀𝑡−𝑞 𝑐 (2)
over the number of time lags (order) of autoregression 𝑝, the order of moving average 𝑞, the
degree of differencing 𝑑, and time 𝑡 with a constant 𝑐. 𝐼𝑡−𝑝 refers to the infected cases at
time 𝑡 − 𝑝 with weight 𝛼𝑝, 𝜀𝑡−𝑞 refers to the error between 𝐼𝑡−𝑞 and 𝐼𝑡−𝑞−1 with weight
𝜃𝑡−𝑞. Adjusting parameters like 𝑝, 𝑑 and 𝑞 can simulate/capture some of the time series
characteristics (e.g., the process and trend of the infection series by 𝑝 and 𝑞, seasonality by 𝑑,
and volatile movement by the distribution of error terms). Similarly, ARIMA models can be
used to simulate and forecast the number of recoveries and deaths in relation to COVID-19.

In addition, ARIMA and its variants can be integrated with other modeling methods to
characterize other aspects of COVID-19 time series. For example, the wavelet decomposition
of frequency-based nonstationary factors can model the oscillatory error terms of ARIMA-
based modeling of COVID-19 infected cases [40]). Another example is to combine the decision
tree method with regression to form a regression tree and identify mortality-sensitive COVID-
19 factors [41].

Hazard and survival functions. Hazard functions and survival functions are often used to
model the mortality and survival (recovery) rates of patients using time-to-event analysis.
A hazard function models the mortality probability ℎ𝑡|x of a COVID-19 patient with the
factor vector x (∈ ℛ𝑑) of dying at discrete time t:

ℎ𝑡|x = 𝑝𝑇 = 𝑡|𝑇 ≥ 𝑡; x (3)
On the contrary, the survival function models the probability 𝑆𝑡|x of surviving until time t:

𝑆𝑡|x = 𝑃𝑇 > 𝑡|x (4)
In discrete time, 𝑆𝑡 = 𝑡

𝑡𝑖=11 − ℎ𝑡𝑖 where ℎ𝑡𝑖 is the mortality probability at time 𝑡𝑖. In
continuous time, 𝑆𝑡|x = 1 − 𝐹𝑡|x where 𝐹 · is the cumulative distribution function until
time t. For covariates x with their relations represented by an either linear or nonlinear
function 𝑓 ·; 𝛿 with parameters 𝛿, the mortality rate of COVID-19 can be modeled by a Cox
proportional hazard model [190]:

ℎ𝑡|x = ℎ0𝑡𝑒𝑥𝑝𝑓 ·; 𝛿 (5)
where ℎ0𝑡 is the baseline hazard function, the function 𝑓 ·; 𝛿 can be implemented by a linear
function such as a linear transform or a nonlinear function such as a deep convolutional
network. For example, in [203], 𝑓 ·; 𝛿 is implemented by a shallow neural network with a leaky
rectified linear unit-based activation of the input and then another tangent transformation.
In the case of time-varying covariates x𝑡, the above hazard, survival and transform functions
should be time sensitive as well.

Typically, the performance of mathematical modeling is measured by metrics such as
mean absolute error (MAE), root mean square error (RMSE), the improvement percentage
index (IP), and symmetric mean absolute percentage error (sMAPE) in terms of certain
levels of confidence intervals.

4.1.2 COVID-19 time-series modeling. Time-series analysis contributes the most (about
3k of the 22k WHO-listed references) to COVID-19 modeling. As shown in [38], regression
models, linear regression, and logistic regression are mostly applied in COVID-19 modeling.
Many linear and nonlinear, univariate, bivariate and multivariate analysis methods have been
intensively applied for the regression and trend forecasting of new, susceptible, infectious,
recovered and death case numbers. Popular methods include linear regression models such

, Vol. 1, No. 1, Article . Publication date: August 2021.



COVID-19 Modeling: A Review :19

as ARIMA and GARCH [213, 217], logistic growth regression [243], COX regression [203],
multivariate and polynomial regression [6, 46, 89], generalized linear model and visual
analysis [153], support vector regression (SVR) [87] [196], regression trees [41], hazard
and survival functions [203], and more modern LSTM networks. In addition, temporal
interpolation methods such as best fit cubic, exponential decay and Lagrange interpolation,
spatial interpolation methods such as inverse distance weighting, smoothing methods such
as moving average, and spatio-temporal interpolation [33] are applicable to fit and forecast
COVID-19 case time series. We illustrate a few tasks below: COVID-19 epidemic distributions,
case number and trend forecasting, and COVID-19 factor and risk analysis.

COVID-19 case number and trend forecasting and epidemic distributions. Regression-
centered time series analysis has been widely applied to forecast case number developments
and trends. For COVID-19 prediction, Singh et al. [213] apply ARIMA to predict the
COVID-19 spread trajectories for the top 15 countries with confirmed cases and conclude
that ARIMA with a weight to adjust the past case numbers and the errors has the ability to
correct model prediction and is better than regression and exponential models for prediction.
However, ARIMA lacks flexible support for volatility and in-between changes during the
prediction periods [213]. Gupal et al. [89] adopt polynomial regression to predict the number
of confirmed cases in India. Almeshal et al. [9] utilize logistic growth regression to fit the
actual infected cases and the growth of infections per day. Wang et al. [243] model the cap
value of the epidemic trend of COVID-19 case data using a logistic model. With the cap
value, they derive the epidemic curve by adapting time series prediction. To find the best
regression model for case forecasting, Ribeiro et al. [196] explore and compare the predictive
capacity of the most widely-used regression models including ARIMA, cubist regression
(CUBIST), random forest, ridge regression, SVR, and stacking-ensemble learning models.
They conclude that SVR and stacking ensemble are the most suitable for the short-term
COVID-19 case forecasting in Brazil. In addition, linear regression with Shannon diversity
index and Lloyd’s index are applied to analyze the relations between the meta-population
crowdedness in city and rural areas and the epidemic length and attack rate [191].

COVID-19-specific factor and risk analysis. Time-series analysis may be used to (1) ana-
lyze the influence of specific and contextual factors on COVID-19 infections and COVID-19
epidemic developments including infection, transmission, outbreak, hospitalization, and
recovery, e.g., on COVID-19 survival, mortality and recovery; and (2) analyze the influence
and impact of external and contextual factors of COVID-19 outbreak on the population,
health, society and the economy, case developments and containment. For example, to
investigate the potential risk factors associated with fatal outcomes from COVID-19, Schwab
et al. [203] present an early warning system assessing COVID-19 related mortality risk with
a variation of the Cox proportional hazard regression model. Chen et al. [48] adapt the
Cox regression model to analyze the clinical features and laboratory findings of hospitalized
patients. Charkraborty et al. [41] design the wavelet transform optimal regression tree (RT)
model, which combines various factors including case estimates, epidemiological characteris-
tics and healthcare facilities to assess the risk of COVID-19. The advantage of RT is that it
has a built-in variable selection mechanism from high dimensional variable space and can
model arbitrary decision boundaries.

Correlation analysis between COVID-19 epidemic dynamics and external factors. Much
research has been conducted on analyzing the relationships between COVID-19 transmission
and dynamics and external and contextual factors. For example, Cox proportional hazard
regression models are used to analyze high risk sociodemographic factors such as gender,
individual income, education level and marital status that may be associated with a patient’s
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death [66], and logistic regression models are applied to analyze the relations between
COVID-19 (or SARI with unknown aetiology) and socioeconomic status (per-capita income)
[62]. To reveal the impact of meteorological factors, Chen et al. [46] examine the relationships
between meteorological variables (i.e., temperature, humidity, wind speed and visibility) and
the severity of the outbreak indicated by the confirmed case numbers using the polynomial
regression method; while Liu et al. [134] fit the generalized linear models (GLM) with
negative binomial distribution to estimate the city-specific effects of meteorological factors
on confirmed case counts. In [183], Loess regression does not show an obvious relation
between the COVID-19 reproduction number, weather factors (humidity and temperature)
and human mobility. Lastly, linear models including linear regression, Lasso regression,
ridge regression, elastic net, least angle regression, Lasso least angle regression, orthogonal
matching pursuit, Bayesian ridge, automatic relevance determination, passive aggressive
regressor, random sample consensus, TheilSen regressor and Huber regressor are applied to
analyze the potential influence of weather conditions on the spread of coronavirus [142].

Discussion. Time-series methods excel at characterizing sequential transmission processes
and temporal case movements and trends. They lack the capability to involve other multi-
source factors and disclose deep insights into why case numbers evolve in a certain way and
how to intervene in the infection, treatment and recovery.

4.2 Statistical Modeling
Statistical learning, in particular Bayesian models, play a critical role in stochastic epidemic
and infectious disease modeling [23]. It takes generative stochastic processes to model
epidemic contagion in epidemic modeling [10, 166]. In contrast to compartmental models,
statistical models involve prior knowledge about an epidemic disease and their results have
confidence levels corresponding to distinct assumptions (i.e., possible mitigation strategies),
which better interpret and more flexibly model COVID-19 complexities. Below, we summarize
typical statistical models and their applications in COVID-19 statistical modeling.

4.2.1 Statistical models. Statistical models are widely applied to COVID-19 modeling tasks
including (1) simulating and validating the state distributions and transitions of COVID-19
infected individuals over time, (2) modeling latent and random factors affiliated with the
COVID-19 epidemic processes, movements and interactions, (3) forecasting short-to-long-
term transmission dynamics, (4) evaluating the effect of non-pharmaceutical interventions
(NPI), and (5) estimating the impact of COVID-19 such as on socioeconomic aspects.
Typical methods include descriptive analytics, Bayesian hierarchical models, probabilistic
compartmental models, and probabilistic deep learning. Below, we introduce some common
statistical settings and corresponding statistical models in both frequentist and Bayesian
families that are often applied in COVID-19 statistical modeling.

Taking a stochastic (vs. deterministic) state transition assumption, various statistical
processes can be assumed to simulate and estimate the state-specific counts (case numbers)
and the probability of state transitions (e.g., between infections and deaths) during the
COVID-19 spread. The stochastic processes and states (e.g., its infection and mortality) of
a COVID-19 outbreak are influenced by various explicit and latent factors. Examples of
explicit (observable) factors include a person’s demographics (e.g., age and race), health
conditions (e.g., disease history and hygienic conditions), social activities (e.g., working
environment and social contacts), and the containment actions (e.g., quarantined or not)
taken by the person. Latent factors may include the person’s psychological attitude toward
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cooperation (or conflict) with containment, health resilience strength to coronavirus and the
containment influence on the outcome (e.g., infected or deceased).

Fig. 2(a) illustrates a general graphical model of the temporal hierarchical Bayesian
modeling of COVID-19 case numbers for estimation and forecasting. The reported case
number 𝑌𝑡 (e.g., death toll or infected cases) at time 𝑡 can be estimated by 𝑦𝑡, which
is inferred from the documented (declared) infections 𝑖𝐾𝑡 and removed (e.g., recovered
and deceased) rate 𝜅𝑡. The documented infection number 𝑖𝐾𝑡 is inferred from the infected
population 𝑖𝑡 and the test rate 𝜌𝑡. 𝑖𝑡 is inferred from the exposed population 𝑒𝑡 and the
infection rate 𝛽𝑡, 𝑒𝑡 is determined by its exposed rate 𝜖𝑡. Further, we assume the removed
rate 𝜅𝑡 is influenced by various medical treatments 𝛼, determined by auxiliary variables
including socioeconomic condition 𝜆2, the treatment effectiveness 𝜓, and the public health
quality 𝜔. The infection rate 𝛽𝑡 is determined by NPIs 𝜁, which are further influenced by
the NPI execution rate 𝜏 and the socioeconomic factor 𝜆1. The priors of the corresponding
parameters are 𝑎, 𝑏, 𝑐, 𝑑1, 𝑑2, 𝑓 , 𝑔, ℎ and 𝑗, which may follow specific assumptions.

For the statistical settings and hypotheses, typical statistical distributions of COVID-19
state-specific counts are applied to (1) infection modeling, e.g., by assuming a Bernoulli
process (𝐵𝑛, 𝜀 with the probability 𝜀 of exposure to infections over 𝑛 contacts) and then
a Poisson process at points of infections with exponentially-distributed infectious periods
(𝑃𝑜𝑖𝑠𝛽 with the rate 𝛽 referring to the infection rate within the infectious period); (2)
mortality modeling, e.g., by assuming a negative binomial distribution (𝑁𝐵𝜇, 𝜎) or a Poisson
distribution (𝑃𝑜𝑖𝑠𝛾 with the rate 𝛾 parameterized on the mortality rate 𝛾𝐷 and population
𝑁). Further, the basic reproduction number 𝑅0 may be estimated by 𝑁𝜀𝛽𝛽 𝛾, the infections
will be under control if 𝑅0 is less than a given threshold (e.g., 1).

(a) A general graphical model of statis-
tical COVID-19 modeling

(b) The graphic model for the method proposed in [77]

Fig. 2. A general and a specific hierarchical Bayesian model for COVID-19.

, Vol. 1, No. 1, Article . Publication date: August 2021.



:22 Cao, et al.

The standard deviation: 𝜅 ∼ Normal0, 0.5 (6a)
The initial reproduction number: 𝑅0,𝑚 ∼ Normal2.4, |𝜅| (6b)
The intervention impact: 𝛼𝑘 ∼ Gamma0.5, 1 (6c)

The time-varying reproduction number:𝑅𝑡,𝑚 = 𝑅0,𝑚exp− 6
𝑘=1

𝛼𝑘𝐼𝑘,𝑡,𝑚 (6d)

The distribution rate: 𝜏 ∼ Exponential0.03 (6e)
The 6 sequential days of infections: 𝑐1,𝑚, ..., 𝑐6,𝑚 ∼ Exponential𝜏 (6f)
The daily serial interval: 𝑔 ∼ Gamma6.5, 0.62 (6g)

The number of infections: 𝑐𝑡,𝑚 = 𝑅𝑡,𝑚
𝑡−1
𝜏=0

𝑐𝜏,𝑚𝑔𝑡−𝜏 (6h)

The time from infection to death: 𝜋𝑚 ∼ ifr𝑚Gamma5.1, 0.86 Gamma18.8, 0.45 (6i)
The variance latent variable: 𝜓 ∼ Normal0, 5 (6j)

The expected number of deaths: 𝑑𝑡 =
𝑡−1
𝜏=0

𝑐𝜏,𝑚𝜋𝑡−𝜏,𝑚 (6k)

The observed daily deaths: 𝐷𝑡 ∼ Negative Binomial𝑑𝑡,𝑚, 𝑑𝑡,𝑚

𝑑2
𝑡,𝑚

𝜓
(6l)

The above hierarchical statistical model in Fig. 2(a) can be customized to estimate and
forecast COVID-19 case numbers in terms of specific hypotheses, settings and conditions.
For example, Fig. 2(b) shows the graphic model for the hierarchical model proposed in [77]
to estimate the death number 𝐷 from its inferred variable 𝑑𝑡 and inferred from auxiliary
variable 𝜓. The inferred death number 𝑑𝑡 is sampled from the basic reproduction number 𝑅0
with a normally-distributed prior 𝑁𝑜𝑟𝑚𝑎𝑙2.4, |𝜅| parameterized by its variance variable 𝜅
and the probability of infected death 𝜋 determined by two Gamma priors. In addition, 𝑑𝑡 is
also influenced by the number of new infections 𝑐 with two latent variables, the distribution
rate of the Exponential distribution 𝜏 and the daily serial interval 𝑔 and a variable 𝛼 as
a parameter of the reproduction rate. Fig. 2(b) also shows the prior distributions of the
auxiliary variables, for example, assuming the variable describing the time from infection to
death 𝜏 following an exponential prior 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙0.03. The hierarchical statistical model
in Fig. 2(b) to estimate the death number can be described by the following equations.

Another major set of COVID-19 statistical modeling incorporates statistical hypotheses
and settings into other epidemic models such as compartmental models to approximate
some state distributions or estimate some parameters. A typical application reformulates
SIR-based models as a system of stochastic differential equations, e.g., by assuming Gamma-
distributed probability density of the exposed 𝐸 and infected 𝐼 states in Section 6.1. Lastly,
modeling the influence of mitigation strategies on the COVID-19 case numbers is also a
typical statistical modeling problem.

4.2.2 COVID-19 Statistical Modeling. The contagion of an epidemic like COVID-19 is com-
plex and uncertain. Statistical or probabilistic modeling naturally captures this uncertainty
around epidemics better than other models. In COVID-19, for example, hierarchical Bayesian
distributions with hidden states and parameters are used to model the causal relationships in
their transmission [77, 162], and probabilistic compartmental models [91, 168, 275] integrate
the transmission mechanisms of epidemics with the statistics of observed case data. Below,
we summarize the relevant applications of descriptive analytics, Bayesian statistical modeling
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and stochastic compartmental modeling of the COVID-19 epidemic statistics, epidemic
processes, and the influence of external factors such as NPIs on the epidemic. Table 2 further
summarizes various applications of COVID-19 statistical modeling.

COVID-19 descriptive analytics. Descriptive analytics are the starting point of COVID-
19 statistical analysis, which are typically seen in non-modeling-focused references and
communities. Typically, simple statistics such as the mean, deviation, trend and change
of COVID-19 case numbers are calculated and compared. For example, the statistics of
asymptomatic infectives are reported in [120]. In [19], change point analysis detects a change
in the exponential rise of infected cases and Pearson’s correlation between the change and
lockdown implemented across risky zones. In addition, case statistics may be calculated in
terms of specific scenarios, e.g., a population’s mobility [100] or workplace [15].

Bayesian statistical modeling of COVID-19 epidemic processes. Bayesian statistical mod-
eling can model stochastic COVID-19 epidemic processes, specific factors that may influence
the COVID-19 epidemic process, causality, partially-observed data (e.g., under-reported
infections or deaths), and other uncertainties. For example, stochastic processes are adopted
to model conventional epidemic contagion [10, 166]. Niehus et al. [162] use a Bayesian
statistical model to estimate the relative capacity of detecting imported cases of COVID-19
by assuming the observed case count to follow a Poisson distribution and the expected
case count to be linearly proportional to daily air travel volume. To capture the complex
relations in the COVID-19 pandemic, the causal relationship in the transmission process
can be modeled by hierarchical Bayesian distributions [77, 162]. In [71], a special case of the
continuous-time Markov population process, i.e., a partially-observable pure birth process,
assumes a binomial distribution of partial observations of infected cases and estimates
the future actual values of infections and the unreported percentage of infections in the
population.

Bayesian statistical modeling of external factors on COVID-19 epidemic. Another im-
portant application is to model the influence of external factors on COVID-19 epidemic
dynamics. For example, Flaxman et al. [77] infer the impact of NPIs including case isolation,
educational institution closure, banning mass gatherings and/or public events and social
distancing (including local and national lockdowns) in 11 European countries and estimate
the course of COVID-19 by back-calculating infections from observed deaths by fitting a
semi-mechanistic Bayesian hierarchical model with an infection-to-onset distribution and an
onset-to-death distribution. In addition, case numbers, especially deaths, their model also
jointly estimates the effect sizes of interventions.

Stochastic compartmental modeling of COVID-19 epidemic. Stochastic compartmental
models can simulate stochastic hypotheses of specific aspects (e.g., probability of a state-
based population or of a state transition) of the COVID-19 epidemiological process and
the stochastic influence of external interventions on the COVID-19 epidemic process. Such
probabilistic compartmental models integrate the transmission mechanisms of epidemics
with the characteristics of observed case data [63, 91, 168, 275]. For example, in [239], a
COVID-19 transmission tree is sampled from the genomic data with Markov chain Monte
Carlo (MCMC)-based Bayesian inference under an epidemiological model, the parameters of
the offspring distribution in this transmission tree are then inferred, and the model infers the
person-to-person transmission in an early outbreak. Based on probabilistic compartmental
modeling, Zhou et al. [275] develop a semiparametric Bayesian probabilistic extension of the
classical SIR model, called BaySIR, with time-varying epidemiological parameters to infer
the COVID-19 transmission dynamics by considering the undocumented and documented
infections and estimates the disease transmission rate by a Gaussian process prior and the
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removal rate by a gamma prior. To estimate the all-cause mortality effect of the pandemic,
Kontis et al. [117] apply an ensemble of 16 statistical models (autoregressive with holiday
and seasonal terms) on the vital statistics data for a comparable quantification of the weekly
mortality effects of the first wave of COVID-19 and an estimation of the expected deaths in
the absence of the pandemic. Other similar stochastic SIR models can also be found such as
by assuming a Poisson time-dependent process on infection and reproduction [94], a beta
distribution of infected and removed cases [241], and a Poisson distribution of susceptible,
exposed, documented infected and undocumented infected populations in a city [130].

Statistical influence modeling of COVID-19 interventions and policies. Apart from modeling
the transmission dynamics or forecasting case counts, Bayesian statistical models are also
applied in some other areas, e.g., to estimate the state transition distributions by applying
certain assumptions such as of the susceptible-to-infected (i.e., the infection rate) or infected-
to-death (mortality rate) transition. For example, Cheng et al. [50] use a Bayesian dynamic
item-response theory model to produce a statistically valid index for tracking the government
response to COVID-19 policies. Dehning et al. [63] combine the established SIR model with
Bayesian parameter inference with MCMC sampling to analyze the time dependence of the
effective growth rate of new infections and to reveal the effectiveness of interventions. With
the inferred central epidemiological parameters, they sample from the parameter distribution
to evolve the SIR model equations and thus forecast future disease development. In [241], a
basic SIR model is modified by adding different types of time-varying quarantine strategies
such as government-imposed mass isolation policies and micro-inspection measures at the
community level to establish a method of calibrating cases of under-reported infections.

Discussion. Statistical modeling and a Bayesian statistical framework allow us to elicit
informative priors for parameters that are difficult to estimate due to the lack of data
reflecting the clinical characteristics of COVID-19, offer coherent uncertainty quantification
of the parameter estimates, and capture nonlinear and non-monotonic relationships without
the need for specific parametric assumptions [275]. Compared with compartmental models,
statistical models usually converge at different confidence levels for different assumptions
(i.e., possible mitigation strategies), providing better interpretability and flexibility for
characterizing the COVID-19 characteristics and complexities discussed in Section 2. However,
the related work on COVID-19 statistical modeling is limited in terms of addressing COVID-
19-specific characteristics and complexities, e.g., asymptomatic effect, the couplings between
mitigation measures and case numbers, and the time-evolving and nonstationary case
movement.

5 COVID-19 DATA-DRIVEN LEARNING
This section reviews the related work on data-driven discovery, i.e., applying classic (shallow)
and deep machine learning methods, AI and data science techniques on COVID-19 data, to
discover interesting knowledge and insights through characterizing, representing, analyzing,
classifying and predicting COVID-19 problems.

5.1 Shallow and Deep Learning
Classic shallow machine learning methods have been predominantly applied to COVID-19
classification, prediction and simulation, as shown by the WHO-based literature statistics
in [38]. Typical shallow learning methods include artificial neural networks (ANN), SVM,
decision trees, Markov chain models, random forest, reinforcement learning, and transfer
learning. These tools are easy to understand and implement and they are more applicable
than other sophisticated methods (e.g., deep models and complex compartmental models)
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Table 2. Examples of COVID-19 Mathematical and Statistical Learning.

Objectives Approaches Data
Infection diag-
nosis

Descriptive analytics, Bayesian models,
continuous-time Markov processes [26, 71,
120, 162, 226]

Case numbers, demographics, biomedi-
cal test, medical imaging, sensor data,
etc.

Transmission
processes

Bayesian inference, stochastic compartmental
models, state-space model, MCMC [91, 94,
130, 168, 239, 275]

Case numbers, demographics, genomic
data, external factors, etc.

Medical treat-
ment

Descriptive analytics, Bayesian models [117] Health/medical data, case numbers, etc.

NPI evaluation Bayesian models, temporal and hierarchical
Bayesian model, stochastic compartmental
models, compartmental models with Bayesian
inference [5, 24, 50, 63, 77]

NPI policies, case numbers, external
data (e.g., social activities), etc.

Sentiment
and emotion
impact

Descriptive analytics, latent models for sen-
timent/topic modeling, time-series analysis
like regression variants [175, 187, 230, 258]

Questionnaire data, social media data,
external factors like wellbeing, etc.

Social, eco-
nomic and
workforce
influence

Descriptive analytics, time-series analysis, nu-
merical methods, stochastic compartmental
models [15, 64, 100, 109, 118, 129, 154, 215,
234, 236]

Case numbers, data related to econ-
omy, trade, supply chain, logistics, social
activities, workforce, technology, trans-
port, mobility, sustainability and public
resources, etc.

Misinformation Descriptive analytics, time-series models, nu-
merical methods, statistical language models
[4, 126, 199]

Fact data, online texts, social media,
case numbers, etc.

for the often small COVID-19 data. They are well explained in the relevant literature (e.g.,
[47, 157, 160]) and interested readers can refer to them and other textbooks for technical
details. Though different machine learning methods may be built on their respective learning
paradigms [36], their main learning tasks and processes for COVID-19 modeling are similar,
including (1) selecting discriminative features x, (2) designing a model 𝑓 (e.g., a random
forest classifier) to predict the target 𝑦: 𝑦x = 𝑓𝜃,x,b with parameters 𝜃 and bias term b,
and (3) optimizing the model to fit the COVID-19 data by defining and optimizing an
objective function ℒ = arg min𝜃𝑦 − 𝑦x for the goodness of fit between expected 𝑦 and actual
𝑦 target (e.g., infective or diseased case numbers).

Deep learning as represented by deep neural networks is a more advanced COVID-19
modeling typically favored by computing researchers. Typical models applied in COVID-19
modeling include (1) convolutional neural networks (CNN) and their extensions in particular
for images such as ImageNet and ResNet; (2) sequential networks such as LSTM, recurrent
neural networks (RNN), memory networks and their variants; (3) textual neural networks
such as BIRT, Transformer and their variants; (4) unsupervised neural networks such as
autoencoders and generative adversarial networks (GAN); and (5) other neural learning
mechanisms such as attention networks.

Typical approaches for COVID-19 deep modeling can be represented by a general deep
interaction and prediction framework as follows. It models (1) temporal dependencies over
sequential case (x, which may consist of categories of case numbers 𝑠, 𝑖 and 𝑟 or their rates)
evolution, (2) interactions and influence between external containment actions (a, which
may consist of various control measures such as masking and social distancing) and case
developments, and (3) the influence of personal context (c, which may consist of demographic
and health circumstances and symptomatic features on COVID-19 infections) over time 𝑡.
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As COVID-19 case developments are sequential and stochastic to be influenced by many
external factors, the framework combines autoencoders for the influence of unknown and
stochastic asymptomatic and unreported case dynamics on reported numbers x, RNN
for sequential evolution of case numbers, control measures and personal context, and
contextual attention for exterior containment strategies applied on case control to model
complex interactions between various sources of underlying and control factors in COVID-19
sequential developments.

Fig. 3. A time-varying case-action-context neural interaction network for COVID-19 deep sequential
modeling.

Fig. 3 illustrates a deep sequential case-action-context interaction network for this purpose.
The formulation of the key variables and their interactions are shown below. In practice,
networks h can be based on an LSTM, RNN, Transformer or other deep networks, the
gating function unit 𝑔 can be implemented by a gated recurrent unit (GRU) or other gating
functions to determine the influence of control actions/context on case number movement.
The transformation from input case vector x to action and context (a and c) adjusted case
representation e through network 𝑞𝜃 can be treated as an encoder, while the estimation
(reconstruction) of x𝑡 from e by network 𝑝𝜙 is a decoding or prediction process.
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h𝑥
𝑡 ∼ ℎ𝑥x𝑡,W𝑥

𝑡 ,b𝑥
𝑡 |h𝑥

𝑡−1 (7a)
h𝑐

𝑡 ∼ ℎ𝑐c𝑡,W𝑐
𝑡 ,b𝑐

𝑡 (7b)
h𝑎

𝑡 ∼ ℎ𝑎a𝑡,W𝑎
𝑡 ,b𝑎

𝑡 (7c)
g𝑥

𝑡 ∼ 𝑔x𝑡,h𝑡 (7d)
e𝑡 ∼ 𝑞𝜃e𝑡|e𝑡−1,h𝑥

𝑡 ,h𝑥
𝑡−1,g𝑥

𝑡 ,g𝑐
𝑡 ,g𝑎

𝑡 (7e)
x̃𝑡 ∼ 𝑝𝜙x̃𝑡|e𝑡,h𝑥

𝑡 (7f)

The interaction and prediction network in Fig. 3 can be implemented in terms of an autoen-
coder (where 𝑞 and 𝑝 refer to encoding and decoding networks, e.g., [101]) or LSTM/RNN-
based prediction (with 𝑞 for representation and 𝑝 for estimating the next input, e.g., [206])
framework. Accordingly, the objective function can be defined in terms of the discrepancy 𝒥
between x𝑡 and x̃𝑡 (i.e., arg min𝜃,𝜙 𝒥 x𝑡, x̃𝑡) or the KL-divergence (𝒟) with loss ℒ (where
h𝑡 and h𝑡−1 refer to the representations of input x interacting with actions a under the
context c through gating 𝑔 integration).

ℒ𝜃, 𝜙; x𝑡 ∼ −𝒟𝑞𝜃e𝑡|h𝑡,h𝑡−1||𝑝𝜙e𝑡 ℰ𝑞𝜃
e𝑡|h𝑡,h𝑡−1𝑙𝑜𝑔𝑝𝜙h𝑡,h𝑡−1|e𝑡 (8)

5.2 COVID-19 Shallow Learning
Here, COVID-19 shallow learning refers to the application of general shallow or classic
machine learning methods to the analytics and modeling of COVID-19 problems and data. It
forms the second popular set of modeling methods (about 4k of 22k WHO-listed references)
that model COVID-19 outbreak, risk, transmission, uncertainty, anomalies, complexities,
classification, variation, and prediction and more specifically case forecasting, medical
diagnostics, contact tracing, and drug development [106]. General machine learning methods
including ANN, tree models such as decision trees and random forest, kernel methods like
SVM, transfer learning, NLP and text mining methods, evolutionary computing like genetic
algorithms and fuzzy set, and reinforcement learning are mostly applied in addressing the
above COVID-19 tasks by medical, biomedical, computing and social scientists [151, 194, 207],
as discussed below.

Machine learning for COVID-19 outbreak prediction and risk assessment. Typical classifiers
like ANN, SVM, decision trees, random forest, regression trees, least absolute shrinkage and
selection operator (LASSO), and self-organizing maps are applied to forecast COVID-19
spread and outbreak and their coverage, patterns, growth and trends; estimate and forecast
the confirmed, recovered and death case numbers or the transmission and mortality rates;
and cluster infected cases and groups, etc. For example, in [108], logistic regression, decision
trees, random forest and SVM are applied to estimate the growth trend and containment
sign on the data consisting of factors about health infrastructure, environment, intervention
policies and infection cases with accuracy between 76.2% and 92.9%. Evolutionary computing
such as genetic algorithm, particle swarm optimization, and gray wolf optimizer forecast
COVID-19 infections [161, 200, 224].

Machine learning for COVID-19 diagnosis on clinical attributes. The machine learning of
COVID-19 clinical reports such as blood test results can assist in diagnosis. For example, in
[114], clinic attributes and patient demographic data are extracted by term frequency/inverse
document frequency (TF/IDF), bag of words (BOW) and report length from textual clinic
reports. The extracted features are then classified in terms of COVID, acute respiratory
distress syndrome (ARDS), SARS and both COVID and ARDS by SVM, multinomial naıve
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Bayes, logistic regression, decision tree, random forest, bagging, Adaboost, and stochastic
gradient boosting, reporting an accuracy of 96.2% using multinomial naıve Bayes and logistic
regression. In [25], hematochemical values are extracted from routine blood exam-based
clinic attributes, which are then classified into positive or negative COVID-19 infections by
decision trees, extremely randomized trees, KNN, logistic regression, naive Bayes, random
forest, and SVM. It reports an accuracy of 82% to 86%. The work in [253] applies random
forest to identify COVID-19 infections.

Machine learning for COVID-19 diagnosis on respiratory data. Machine learning can
be conducted on COVID-19 patient’s respiratory data such as lung ultrasound waves and
breathing and coughing signals to extract respiratory behavioral patterns and anomalies.
For example, logistic regression, gradient boosting trees and SVMs distinguish COVID-19
infections from asthmatic or healthy people on the Android app-based collection of coughs
and breathing sounds and symptoms with AUC at 80% [26].

Machine learning for COVID-19 diagnosis on medical imaging. A very intensive application
of classic machine learning methods is to screen COVID-19 infections on CT, chest X-ray
(CXR) or PET images. For example, in [43], the majority voting-based ensemble of SVM,
decision tree, KNN, naive Bayes and ANN is applied to classify normal, pneumonia and
COVID-19-infected patients on CXR images with an accuracy of 98% and AUC of 97.7%.
In [74], the simple applications of SVM, naive Bayes, random forest and JRip on CT images
screen COVID-19 diseases with a reported accuracy of 96.07% by naive Bayes combined
with random forest and JRip, in comparison with 94.11% by CNN.

Machine learning for COVID-19 diagnosis on latent features. Further, shallow learners are
applied to detect and diagnose COVID-19 infections on latent features learned by shallow to
deep representation models on COVID-19 medical images. For example, in [107], ANN-based
latent representation learning captures latent features from gray, texture, histogram, number,
intensity, surface and volume features in CT images, then classifiers including SVM, logistic
regression, Gaussian naive Bayes, KNN and ANN are applied to differentiate COVID-19
infections from community-acquired pneumonia with 95.5% accuracy reported. In [170],
latent features are extracted from CXR and CT images to form a gray level co-occurrence
matrix (GLCM), local binary gray level co-occurrence matrix (LBGLCM), gray level-run
length matrix (GLRLM) and segmentation-based fractal texture analysis (SFTA)-based
features, which are then oversampled by the synthetic minority over-sampling technique
(SMOTE) and further selected by a stacked autoencoder (sAE) and principal component
analysis (PCA), before SVM is applied to achieve 94.23% accuracy. In [222], MobileNetV2
and SqueezeNet extract features from CXR images, which are then processed by social mimic
optimization to classify coronavirus, pneumonia, and normal images with 99.27% accuracy by
SVM. Lastly, in [225], a residual exemplar local binary pattern (ResExLBP)-based method
extracts features from CXR images, which are then selected by an iterative relief-based
method before decision trees, linear discriminant, SVM, KNN and subspace discriminant are
applied on the selected features to detect COVID-19 infection with an accuracy of 99.69%
to 100.0%.

Modeling the influence of external factors on COVID-19. Various machine learning tasks
are undertaken to analyze the relation and influence of external and contextual factors on
COVID-19 epidemic attributes. For example, ensemble methods including random forest,
extra trees regressor, AdaBoost, gradient boosting regressor, extreme gradient boosting
(XGBoost), light gradient boosting machine (LightGBM), CatBoost regressor, kernel ridge,
SVM, KNN, MLP and decision trees indicate potential association between COVID-19
mortality and weather data [142].
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Machine learning-driven drug and vaccine development for COVID-19. Machine learning
methods are applied to analyze the drug-target interactions, drug selection, and the effec-
tiveness of drugs and vaccines on containing COVID-19. For example, machine learning
methods including XGBoost, random forest, MLP, SVM and logistic regression are used to
screen thousands of hypothetical antibody sequences and select nine stable antibodies that
potentially inhibit SARS-CoV-2 [111, 139].

5.3 COVID-19 Deep Learning
Deep learning has been intensively applied to modeling COVID-19 as discussed in Section 5.1,
with about 2k of 22k references on modeling COVID-19. Typical applications involve COVID-
19 data on daily infection case numbers, health and clinic records, hospital transactions,
medical imaging, respiratory signals, genomic and protein sequences, and exterior data such
as infective demographics, social media communications, news and textual information,
etc. Below, we first discuss a common application of deep learning for COVID-19 epidemic
description and forecasting, and then briefly review other applications.

Deep learning of the COVID-19 epidemic. Deep neural networks are intensively applied
to characterize and forecast COVID-19 epidemic outbreak, dynamics and transmission.
Examples are predicting the peak confirmed numbers and peak occurrence dates, forecasting
daily confirmed, diseased and recovered case numbers, and forecasting 𝑁 -day (e.g., 𝑁 =

{7, 14, 10, 30, 60 𝑑𝑎𝑦𝑠}) infected/confirmed, recovered and death case numbers (or their
transmission/mortality rates) through modeling short-range temporal dependencies in case
numbers by applying LSTM, stacked LSTM, Bi-LSTM, convolutional LSTM-like RNNs, and
GRU [65, 206]. Other work models the transmission dynamics and predicts daily infections
of COVID-19 using a variational autoencoder (VAE), encoder-decoder LSTM or LSTM with
encoder and Transformer [116] and modified auto-encoder [178], GAN and their variants,
tracks its outbreak [99], predicts the outbreak size by encoding quarantine policies as the
strength function in a deep neural network [60], estimates global transmission dynamics
using a modified autoencoder [98], predicts epidemic size and lasting time, and combines
medical information with local weather data to predict the risk level of a country by a
shallow LSTM model [172]. In [265], a comparative analysis shows that VAE outperforms
simple RNN, LSTM, BiLSTM and GRU in forecasting COVID-19 new and recovered cases.

Broad deep COVID-19 learning. In addition, we highlight several other typical application
areas of COVID-19 deep learning:

(1) Characterizing symptoms of coronavirus infections, e.g., by pretrained neural networks
(e.g., [202]), with more discussion in Section 6.2.1;

(2) Analyzing health and medical records, blood sample-based test reports, and respiratory
sounds and signals for diagnosis and treatment e.g. by CNN, LSTM and GRU [194],
with more discussion in Section 6.2.2;

(3) Analyzing medical imaging for diagnosis, quarantine and treatment by convolutional
neural networks (CNN, e.g., ImageNet and ResNet), GAN and their mutations [103,
194], with more discussion in Section 6.2.3;

(4) Analyzing COVID-19 genomic and protein sequence and interaction analysis by RNN,
CNN and their variants for drug and vaccine development, tracing infection sources,
and analyzing virus structures and evolution, with more details in Section 6.2.4;

(5) Repurposing and developing drugs and vaccines by generative autoencoders, generative
tensorial reinforcement learning and generative adversarial networks [270] for generative
chemistry discovery;
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(6) Analyzing COVID-19 impact on sentiment and emotion by RNN, Transformer-based
NLP neural models and their derivatives [67, 131];

(7) Characterizing the COVID-19 infodemic by NLP and text mining including misinfor-
mation identification [208], enhancing epidemic modeling using social media data [115],
and analyzing the COVID-19 research progress and topic evolution [269];

(8) Other topics such as analyzing the influence and effect of countermeasures, e.g., the
effect of quarantine policies on outbreak using DNNs [60], with more discussion in
Section 7.

Table 3 illustrates some typical applications of shallow and deep learning methods for
modeling COVID-19. More discussion on COVID-19 deep learning can be found in Section
6.2.

Discussions. Most of the existing studies on shallow and deep COVID-19 modeling directly
apply the existing shallow machine learning methods and deep neural networks on COVID-19
data, as shown in reviews like [133, 205, 240]. Our literature review also shows that deep
neural models are widely applicable to COVID-19 modeling tasks, which are unnecessarily
overwhelmingly applied to all possibilities and significantly outperform time-series forecasters
and shallows machine learners. In fact, sometimes, deep models may even lose their advantage
over traditional modelers such as ensembles, as shown in Table 3, and Table 5.

6 COVID-19 DOMAIN-DRIVEN MODELING
As a complex social-technical issue, COVID-19 modeling brings many specific challenges and
research questions from the relevant domains and for domain-specific research communities.
In this section, we focus on two major and mostly relevant domains of COVID-19: epidemic
modeling, and medical and biomedical analysis.

6.1 COVID-19 Epidemic Modeling
6.1.1 Epidemiological compartmental models. Epidemiological modeling portrays the state-

space, interaction processes and dynamics of an epidemic in terms of its macroscopic
population, states and behaviors. Compartmental models are widely used in characterizing
COVID-19 epidemiology by incorporating epidemic knowledge and compartmental hypothe-
ses into imitating the multi-state COVID-19 population transitions. An individual in the
COVID-19 epidemic sits at one state (compartment) at a time-point and may transit this
state to another at a state transmission rate. The individuals of the closed population are
respectively labeled per their compartments and migrate across compartments during the
COVID-19 epidemic process, which are modeled by (ordinary) differential equations.

By consolidating various COVID-19 epidemiological characteristics, hypotheses and com-
partmental models, Fig. 4 illustrates a typical COVID-19 state-space and evolution system
with major (thick) and minor (thin) states and state transition paths that can be sequentially
categorized into four phases:

∙ Susceptible (S): Individuals (𝑆) are susceptible to infection under free (uncontained or
unrestrained, 𝑆𝐹 at uncontained rate 𝜃𝐹 ) or contained (restrained, 𝑆𝐹 at containment
rate 𝜃𝐹 ) conditions at a respective transmission rate 𝛼𝐹 or 𝛼𝐹 ;

∙ Exposed (E): Free or contained susceptibles are exposed to infection from those who
are infected but in the incubation period (which could be as long as 14 days), and
may be noninfectious and free (𝐸𝐹 ) or infectious and contained (𝐸𝐹 ) at a respective
exposure rate 𝜀𝐹 or 𝜀𝐹 ;
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Table 3. Examples of COVID-19 Shallow and Deep Learning𝑎.

Objectives Approaches Data
Transmission
& external
factor impact

Shallow learners like SVM, ANN, decision tree, ran-
dom forest and ensemble methods [108], evolution-
ary computing methods such as particle swarm
optimization [161, 200, 224], DNN variants such
as LSTM, GRU, VAE, GAN and BiLSTM, etc.
[60, 65, 99, 116, 178, 206, 265]

Epidemic case numbers and
external data such as mete-
orological data, environmen-
tal data (e.g., humidity), so-
cial activity and mobility data,
etc.

Infection diag-
nosis

Shallow learners [25, 26, 43, 253], CNN and RNN
variants like LSTM and GRU, and pretrained CNN-
based image nets like ResNet, MobileNetV2 and
SqueezeNet, etc. [74, 104, 222, 225], text analysis
models [114]

Pathological and clinical
records, respiratory signals
(e.g. coughing and breathing
signals and patterns in ul-
trasound or thermal video),
computed tomography (CT)
and CXR images, etc.

Mortality and
survival analy-
sis

Shallow learners like SVM, ANN, decision tree, re-
gression tree, random forest and ensemble meth-
ods like XGBoost [41, 203, 203], CNNs, pretrained
CNN-based image nets, RNN variants like LSTM
and GRU [65, 206, 266]

Medical imaging including CT
and CXR images, clinical
records, patient demographics,
case numbers, external data,
etc.

Medical treat-
ment

Shallow machine learning methods and DNNs, etc.
[18, 254, 260, 274]

Health/medical records, phar-
maceutical treatments, ICU
data, etc.

Genomic
and protein
analysis,
drug/vaccine
development

Shallow classifiers like SVM and ensembles, frequent
pattern and sequence analysis methods, CNN vari-
ants, RNN variants, attention networks, GAN, au-
toencoders, reinforcement learning, NLP models like
Transformer, etc. [7, 18, 97, 111, 145, 146, 156, 270,
271]

Genomic data, proteomic
data, drug-target interactions,
molecular reactions, etc.

Resurgence
and mutation

Shallow learners like linear discriminant, SVM,
KNN and subspace discriminant, combining clas-
sifiers with compartmental models, DNN variants,
sequence analysis𝑏, etc. [12, 193]

Resurgence case numbers,
virus strain genome and pro-
tein sequences, NPI data, ex-
ternal data, etc.

NPI evaluation Various Bayesian models𝑐, combining compartmen-
tal models with classifiers or estimators, DNNs𝑏, etc.
[73, 80]

Case numbers, NPI policies,
external data, etc.

Sentiment
and emotion
impact

NLP models like LDA and topic models and DNN
variants like BERT and Transformer variants, etc.
[14, 67, 131, 131, 150, 158, 245]

Social media data, news feeds,
Q/A data, external factors,
etc.

Socioeconomic
influence

Relation (e.g., correlation and causality) analysis𝑏,
topic modeling by NLP models [269]

Social, economic and work-
force activities, case numbers,
etc.

Misinformation
analysis

Classic NLP models, correlation analysis, shallow
learners, outlier detectors, DNN variants like BERT
and Transformer mutations [126, 147, 208]

Social media, online texts,
Q/A data, news feeds, etc.

𝑎 See Table 5 for deep COVID-19 medical imaging analysis; 𝑏 such methods are applicable but not much
work is reported in the literature; 𝑐 See Table 2 for NPI effect modeling.

∙ Infective (I): Those exposed become infectious and may be detected (registered/documented
and known to medical authorities, 𝐼𝐾) or undetected (unreported/undocumented and
unknown to medical management, 𝐼�̄�); also, some initially undetected infectives may
be further detected and converted to detected infectives at rate 𝛽�̄�

𝐾 ; some documented
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Fig. 4. COVID-19 epidemiological compartmental modeling. The COVID-19 epidemiological process can
be categorized into four major phases: susceptible (S), exposed/incubating (E), infective (I) and removed
(R), and other optional states. A circle denotes the initial states, a diamond denotes the optional states,
and a double circle denotes the final states. Blue indicates the noninfectious states, red the infectious
states, and green the states with patients removed or to be removed from the infection. The thick lines
denote the main states and state transition paths while the thin lines are minor ones which may be
ignored in modeling.

infectives may be symptomatic and quarantined (𝑄) at quarantine rate 𝛽𝑄 while others
may be asymptomatic and unquarantined (�̄�) at unquarantined rate 𝛽�̄�; there may be
some rare cases (at rate 𝛽𝐶) who carry the virus and infection for a long time with or
without symptoms, called lasting carriers (𝐶); in addition, some initially asymptomatic
cases may transfer to symptomatic and quarantined at rate 𝛽�̄�

𝑄 ;
∙ Removed (R): Unquarantined infectives may recover at recovery rate 𝛾�̄�

𝑅 or die at
mortality rate 𝛾�̄�

𝐷 respectively, the same for quarantined infectives at rate 𝛾𝑄
𝑅 or 𝛾𝑄

𝐷

and unknown/undetected infectives at rate 𝛾�̄�
𝑅 or 𝛾�̄�

𝐷 ; some quarantined infectives
may present acute symptoms even with life threat, who are then hospitalized (H) at
rate 𝛾𝑄

𝐻 or even further ventilated (V) at rate 𝛾𝐻
𝑉 ; hospitalized infectives may recover

or die at rate 𝛾𝐻
𝑅 or 𝛾𝐻

𝐷 , the same for ventilated at rate 𝛾𝑉
𝑅 or 𝛾𝑉

𝐷 .

In practice, the above COVID-19 state-space may be too complicated to model and
not all states are characterizable by the available data. Accordingly, a focus is on those
main states and their transitions when the corresponding data is available, for example,
susceptible, exposed, infectious (which consists of both detected and undetected), recovered,
and diseased. Below, we illustrate the differential equations of the states S, E, I, Q, �̄�, R
and D which are the main states of a closed COVID-19 population. Here, (1) 𝑆, 𝐸, 𝐼, 𝑄, �̄�,
𝑅 and 𝐷 represent the fraction of the population at each state; (2) 𝑆 and 𝐸 are impacted
by containment measures at the containment rate 𝜃 and 𝐼 at 𝜃𝐼 who are contained and
recovered; and (3) the state transitions take place at the rates shown in Fig. 4.
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𝜕𝑡𝑆 = −𝛼𝑆𝐼 − 𝜃𝑆 (9a)
𝜕𝑡𝐸 = 𝛼𝑆𝐼 − 𝜖𝐸 − 𝜃𝐸 (9b)

𝜕𝑡𝐼 = 𝜖𝐸 − 𝛽𝑄𝐼 − 𝛽�̄�𝐼 − 𝜃𝐼𝐼 (9c)

𝜕𝑡𝑄 = 𝛽𝑄𝐼 𝛽
�̄�
𝑄�̄�− 𝛾𝑄

𝐷𝐷 − 𝛾𝑄
𝑅𝑅 (9d)

𝜕𝑡�̄� = 𝛽�̄�𝐼 − 𝛽�̄�
𝑄�̄�− 𝛾�̄�

𝑅 �̄�− 𝛾�̄�
𝐷�̄� (9e)

𝜕𝑡𝑅 = 𝛾𝑄
𝑅𝑅 𝛾�̄�

𝑅 �̄� 𝜃𝑆 𝜃𝐸 𝜃𝐼𝐼 (9f)

𝜕𝑡𝐷 = 𝛾𝑄
𝐷𝑄 𝛾�̄�

𝐷�̄� (9g)
𝑆 𝐸 𝐼 𝑄 �̄� 𝑅 𝐷 = 1 (9h)

6.1.2 COVID-19 epidemiological modeling. We summarize and discuss the related work
on the major tasks of COVID-19 epidemiological modeling, and highlight the work on
modeling COVID-19 epidemic transmission processes, dynamics, external factor influence,
and resurgence and mutation.

COVID-19 epidemiological modeling tasks. Epidemiological models dominate COVID-19
modeling (about 3.5k publications of the 22k reported in the WHO literature) by epidemic
researchers and computing scientists through the expansion or hybridization with other
models such as statistical models and machine learning methods. COVID-19 compartmental
modeling aims to answer several epidemiological problems: (1) the growth (spread) of
COVID-19 and its case number movements at different epidemiological states to forecast
case numbers in the next days or periods; (2) the basic reproduction rate 𝑅0 that informs the
contagion and transmission level and control strategies; (3) the sensitivity and effect of control
measures on infection containment and case movements; and (4) the sensitivity and effect
of strategies for herd immunity and mass vaccination. Accordingly, various compartmental
models are customized to cater for specific assumptions, settings and conditions of modeling
COVID-19, as discussed in Section 6.1.2. For (1), with historical case numbers of a country
or region and the initial settings of hyperparameters, we can estimate the parameters and
further predict the number over time, e.g., the number of infections and deaths in a country
or city. Regarding (2), with the state-space shown in Fig. 4, to resolve these differential
equations, we first obtain the population projection matrix 𝐴 corresponding to all states and
their transition probabilities. The projection matrix 𝐴 can be converted to a state transition
matrix 𝑇 (where each element 𝑇𝑖𝑗 is the probability of an individual transferring from state
𝑖 at time 𝑡 to state 𝑗 at time 𝑗 1) and a fertility (reproductive) matrix 𝐹 (where an element
𝐹𝑖𝑗 refers to the reproduced number of 𝑖-state offsprings of an individual at state 𝑗), i.e.,
𝐴 = 𝑇 𝐹 . Further, we can calculate the fundamental matrix 𝑁 : 𝑁 = 𝐼 − 𝑇−1 with identity
matrix 𝐼 to represent the expected time spent in each state and that to death. Then, we
can obtain another matrix 𝑅: 𝑅 = 𝐹𝑁 with each entry referring to the expected lifetime
production number of 𝑖-state offspring by an individual at stage 𝑗 [39, 211]. Its dominant
eigenvalue is the net reproduction rate 𝑅0. With regard to (3), since control measures such as
social distancing and lockdown may influence the growth of case numbers and reproduction
and transmission rates, we can analyze the sensitivity of adjusting related parameters on
the case numbers and rates. To explore the opportunities for herd immunity and mass
vaccination in (4), the herd immunity rate and vaccination rate are expected to be greater
than 1 − 1

𝑅0
to eradicate the disease.
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In addition to these major problems, below, we further discuss two applications of
epidemiological modeling in COVID-19: modeling its transmission (which is also the most
explored area) and resurgence and mutation (which is a recent challenge). More discussion
on modeling the NPI effect on COVID-19 transmission and epidemic is in Section 7.1.

Modeling COVID-19 epidemic transmission process. Studies on modeling COVID-19 epi-
demic transmission mainly focus on evaluating the epidemiological attributes (e.g., infection
rate, recovery rate, mortality, reproduction number, etc.), predicting the infection and death
counts, and revealing the transmission, spread and outbreak trends under experimental or
real-world scenarios. As illustrated in Table 4, various compartmental models are available
to characterize COVID-19. For example, the SIDARTHE compartmental model considers
eight stages of infection: susceptible (𝑆), infected (𝐼), diagnosed (𝐷), ailing (𝐴), recognized
(𝑅), threatened (𝑇 ), healed (𝐻) and extinct (𝐸) to predict the course of the epidemic and
to plan an effective control strategy [81]. A new compartment is introduced to the classic
SIR model to quantify those who are symptomatic, quarantined infecteds [141]. Further,
a stochastic SHARUCD model framework contains seven compartments: susceptible (𝑆),
severe cases prone to hospitalization (𝐻), mild, sub-clinical or asymptomatic (𝐴), recovered
(𝑅), patients admitted to the intensive care units (𝑈), and the recorded cumulative positive
cases (𝐶), which include all new positive cases for each class of 𝐻, 𝐴, 𝑈 , 𝑅, and deceased
(𝐷) [5]. In addition, several models involve new compartments to represent asymptomatic
features to mild symptoms [5, 250] and undocumented cases [130].

Modeling COVID-19 epidemic dynamics, transmission and risk. Classic compartmental
models assume constant transmission and recovery rates between state transitions. This
assumption is taken in many SIR variants tailored for COVID-19, which cannot capture the
disease characteristics in Section 2.1. To cater for COVID-19-specific characteristics especially
when mitigation measures are involved, the classic susceptible-infectious-recovered (SIR) [110]
and susceptible-exposed-infectious-recovered (SEIR) models [13], which were applied to
modeling other epidemics like measles and Ebola, are tailored for COVID-19. Since COVID-
19 transmission contains more states, especially with interventions, SIR/SEIR models are
extended by adding customized compartments like quarantine, protected, asymptomatic and
immune [5, 57, 81, 141, 250]. Accordingly, to capture the evolving COVID-19 epidemiological
attributes including time-variant infection, mortality and recovery rates, time-dependent
compartmental models are proposed. For example, a time-dependent SIR model adapts the
change of infectious disease control and prevention laws as city lockdowns are imposed and
traffic halt with the control parameters infection rate 𝛽 and recovery rate 𝛾 modeled as
time-variant variables [49]. Dynamical modeling is also considered in temporal SIR models
with temporal susceptible, insusceptible, exposed, infectious, quarantined, recovered and
closed (or death) cases in [177]. An early-stage study of a dynamic SEIR model estimates the
epidemic peak and size, and an LSTM further forecasts its trend after taking into account
public monitoring and detection policies [261].

Modeling the influence of external factors on the COVID-19 epidemics. COVID-19 epidemic
dynamics reflect the time-varying states, state transition rates, and their vulnerability to
contextual and external factors such as a person’s ethnicity and public health conditions
and social contacts and networking [135]. To depict the influence of external factors, more
complex compartmental models involve the relevant side information (e.g., NPIs, demographic
features such as age stratification and heterogeneity, and social activities such as population
mobility) into their state transitions. Examples include an age-sensitive SIR model [51] which
integrates known age-interaction contact patterns into the examination of potential effects
of age-heterogeneous mitigations on an epidemic in a COVID-19-like parameter regime,
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an age-structured SIR model with social contact matrices and Bayesian imputation [212],
and an age-structured susceptible-exposed-infectious-recovered-dead (SEIRD) model that
identifies no significant susceptibility difference between age groups [165]. More about the
NPI influence on the COVID-19 epidemic is in Section 7.1. In addition, environmental factors,
especially humidity and temperature, may affect COVID-19 virus survival and the epidemic’s
transmission [27, 164, 242, 257] despite inconsistent conclusions. In [59], variational mode
decomposition decomposes COVID-19 case time series into multiple components and then
a Bayesian regression neural network, cubist regression, KNN, quantile random forest and
support vector regression (SVR) are combined to forecast six-day-ahead case movements by
involving climatic exogenous variables.

Modeling COVID-19 resurgence and mutation. Our current understanding of COVID-19
resurgence and mutation is very limited while the British, South African, Indian and other
newly-emergent mutations show higher contagion and complexities [85, 86]. COVID-19
may indeed become another epidemic disease which remains with humans for a long time.
Imperative research is expected to quantify the virus mutation and disease resurgence
conditions, forecast and control potential resurgences and future waves after lifting certain
mitigation restrictions and reactivating businesses and social activities [137, 174], distin-
guish the epidemiological characteristics, age sensitivity, and intervention and containment
measures between waves [8, 84], compare the epidemiological wave patterns between coun-
tries experiencing mutations and resurgences and compare COVID-19 wave patterns with
influenza wave patterns [72], predict resurgences and mutations (e.g., by estimating the daily
confirmed case growth when relaxing interstate movement, mobility and contact restrictions
and social distancing by SEIR-expanded modeling) and prepare for countermeasures on
future waves [12]. Limited research results are available in the literature on the above broad
issues. For example, a comparative analysis in [21] shows the differences in the second
COVID-19 wave in Europe in Italy and indicates the different causing strategies taken by
them in implementing facemasks, social distancing, business closures and reopenings. In [32],
building on fitting the first wave data, an epidemic renormalisation group approach further
simulates the dynamics of disease transmission and spreading across European countries
over weeks by modeling the European border control effects and social distancing in each
country. In [127], an SIR model estimates the scenarios of incurring a potential second wave
in China and the potential case fatality rate if containment measures such as travel ban
and viral reintroduction from overseas importation are relaxed for certain durations in a
population with a certain epidemic effect size and cumulative count after the first wave.
In [174], an SEIR model incorporates social distancing to model the mechanism (closure
releasing) of forming the second wave, the epidemiological conditions (ranges of transmission
rate and the inverse of the average infectious duration) for triggering the second and third
waves, and the socioeconomic (economic loss due to lockdown) and intervention (novel
social behavior spread) factors on case numbers. In [137], a revised stochastic SEIR model
estimates different resurgence scenarios reflected on infections when applying time-decaying
immunity, lockdown release, or increasing implementation of social distancing and other
individual NPIs.

Discussion. COVID-19 compartmental models excel at modeling epidemiological hypothe-
ses, processes and factors with domain knowledge and interpretation. Such models often
assume constant state-space transitions, capture average behaviors and the contagion of
a closed population, and are sensitive to initial states and parameters. Challenges and
opportunities exist in expanding its traditional frameworks to address the specific COVID-19
complexities and challenges in Section 2. Examples are time-varying, non-IID dynamics and
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complex couplings between interior and exterior factors related to COVID-19 populations,
management groups and contexts. Other important issues include understanding how vacci-
nation and specific vaccines affect coronavirus mutation and discovering the relationships
between interior and exterior factors and the resurgence and mutations.

Table 4. Examples of COVID-19 Epidemiological Modeling.

Objectives Factors and Settings Data
Epidemic
transition
and spread

SIR variants like SIDARTHE with eight phases: susceptible,
infected, diagnosed, ailing, recognized, threatened, healed and
extinct as well as severe symptoms [81], variational mode de-
composition with shallow regressors [59], etc.

Case numbers, external
data, etc.

Epidemic dy-
namics

Time-dependent compartment transmissions, time-varying
state transition rates [49, 177]

Case numbers, reporting
time information, etc.

Asymptomatic
transmission

Asymptomatic to mild symptoms [250], undocumented [130],
SHARUCD differing mild and asymptomatic from severe infec-
tions [5], undocumented cases [130], epidemiological interven-
tions with serological tests, age-dependent and asymptomatic
settings [250], etc.

Case numbers, reporting
information, symptoms,
demographics, etc.

External
factor’s
epidemic
influence

Age-sensitive SIR model [51], age-structured SIR model with
social contacts [212], age-structured SEIRD [165], public
monitoring and detection policies [261], ethnicity, public
health conditions and social contacts [135], environmental fac-
tors [27, 164, 242, 257]

Case numbers, demo-
graphics, health condi-
tions, social activities, en-
vironmental factors, etc.

NPI influ-
ence

Lockdown and social distancing [49], lockdown [5], quaran-
tine [57], symptomatic and quarantined infecteds [141], self-
protection and quarantine [177], etc.

Case numbers, NPIs,
health conditions, test
results, demographics,
etc.

Resurgence Second waves [12], wave difference [72, 84], reopening business
and social activities [174], time-decaying immunity and easing
lockdown and social distancing [137], age sensitivity [8], NPI
influence on future waves [12], travel ban and virus importation
[127]

Case numbers, multi-
wave data, NPI and ex-
ternal data, etc.

Herd immu-
nity

Compartmental model for simulating ‘shield immunity’ in a
population [250]

Case numbers, serologi-
cal tests, etc.

6.2 COVID-19 Medical and Biomedical Analyses
COVID-19 medical and biomedical analyses reveal the intrinsic and intricate characteristics,
patterns and outliernesses of SARS-CoV-2 virus and COVID-19 disease. A wide range of
research issues may benefit from such analyses, including but not limited to: COVID-19
infection diagnosis, prognosis and treatment, virology and pathogenesis analysis, potential
therapeutics development (e.g., drug repurposing and vaccine development), genomic simi-
larity analysis and sourcing, and contact tracing. In this section, we summarize the medical
and biomedical modeling of COVID-19 infection diagnosis and case identification, risk and
prognosis analysis, medical imaging analysis, pathological and treatment analysis and drug
development.

6.2.1 COVID-19 infection diagnosis, test and case identification. Given the high transmission
and reproduction rates, high contagion, and sophisticated and unclear transmission routes of
COVID-19 and its virus strains such as the Delta strain, it is crucial to immediately identify
and confirm exposed cases, test positive or negative infections, identify the infected virus
variant types, and trace their origins and contacts so as to timely and proactively implement
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appropriate quarantine measures and contain their potential spread and outbreak [159]. This
is particularly important during the varying incubation periods which are often asymptomatic
to mildly symptomatic yet highly contagious particularly for the virus variants. The SARS-
CoV-2 diagnosis and test methods include (1) chemical and clinical methods, typically nucleic
acid-based molecular diagnosis and antibody-based serological detection; (2) medical imaging-
driven analysis, such as symptom inspection from CXR and CT images; (3) clinical diagnoses
and tests like respiratory signal analysis, such as on the abnormal patterns of the lung’s
ultrasound waves and coughing and breathing signals; and (4) other noninvasive methods
such as by involving SARS-CoV-2 and its disease data and external data [45, 47]. Data-driven
discovery also plays an increasingly important role in improving COVID-19 diagnosis. Due
to the virus and disease complexities, alternative and complementary to the chemical and
clinical diagnosis approaches, COVID-19 identification [226] can benefit from analyzing
biomedical images, genomic analysis, symptom identification and discrimination, and external
data including social contacts, social activities, mobility and media communications, etc. by
data-driven discovery [36].

∙ Nucleic acid-based diagnosis test (NAT) [3, 76, 263] refers to various molecular diagno-
sis test methods, including non-isothermal amplification (e.g., the real-time reverse
transcription polymerase chain reaction (RT-PCR) test, which is the golden standard of
COVID-19 diagnosis), isothermal amplification (e.g., CRISPR-based), and sequencing-
based tests. Such methods may benefit from modeling techniques including gene and
protein sequence analysis and drug-target and virus-host interaction analysis. It is
highly sensitive and usable for large-scale operations, but it is expensive as typically it
is done using specific test materials and in labs, and is less accurate as it is subject to
the varied quality and quantity of specimen collections. The challenges are to reduce
its false-negative and false-positive rates supplemented by other diagnosis tools and
develop scalable fast test tools.

∙ Antibody-based serological diagnosis [125, 132, 176] is to detect anti-SARS-CoV-2
immunoglobulins i.e. the antibodies produced in response to COVID-19 infections by
validating the specificity and sensitivity of chemiluminescent immunoassays, enzyme-
linked immunosorbent assays and lateral flow immunoassays against SARS-CoV-2. It
is an alternative or complement to NATs for acute infection diagnosis with easier and
cheaper operations at any time. It, however, may produce poor-performing results
which are unreliable for decision-making, it may take time to get the results, and it
might be difficult for early large-scale diagnosis. There is an urgent need to develop
more accurate serological test methods and tools. Machine learning methods such as
CNNs could improve test performance e.g. by analyzing the test results, involving
external data on patient demographics and clinical results, and integrating various test
results [144].

∙ Clinical diagnosis and analysis involves clinical reports, domain knowledge and clini-
cians in identifying COVID-19-specific symptoms, indications and infections, differ-
entiating them from other similar diseases such as influenza, and confirming positive,
negative, severe or fatal conditions. Such diagnoses are conducted by blood tests, cough
sound judgment, breathing pattern detection, and external factors by involving external
data, etc. AI, machine learning and analytics methods are increasingly being used to
classify COVID-19 from other diseases, predict infections, recovery and mortality rates,
numbers or timing, etc. [25, 26, 114]. For further discussion, see Section 5.2.
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∙ Clinical medical imaging analysis for COVID-19 inspection on COVID-19-sensitive
medical images, typically by DNN-based image analysis, can complement the afore-
mentioned chemical and medical methods by detecting abnormal and discriminative
symptoms and patterns sensitive to COVID-19 in patient’s CXR and CT images. Both
typical deep and shallow learning methods are widely applied, which also present
inconsistencies and biases in their applications, experiments, results and actionability
[197]. For further discussion, see Section 6.2.3.

∙ Data-driven prediction on COVID-19 related data such as blood test results, respiratory
signals, and external data that may indicate symptoms, patterns or anomalies of
COVID-19 infections. Shallow and deep learning and mathematical modeling methods
are applied to classify the symptom types, differentiate COVID-19 infections from
other diseases, or detect outliers that may indicate COVID-19 infections. For example,
in [253], a random forest algorithm-driven assistant discrimination tool extracts 11
top-ranking clinically available blood indices from 49 blood test samples to identify
COVID-19 infectives from suspected patients. In [202], computer audition is used to
recognize COVID-19 patients under different semantics such as breathing, dry/wet
coughing or sneezing, and speech during colds, etc. AI4COVID-19 [102] combines the
deep domain knowledge of medical experts with smart phones to record cough/sound
signals as the input data to identify suspect COVID-19 infections with 92.8% accuracy
reported. In [152], a shallow LSTM model combines medical information and local
weather data to predict the risk level of the country.

Discussion. A comparison of the diagnosis methods is shown in Table 6. As commented in
various reviews [20, 132, 148, 218, 231], COVID-19 diagnosis and tests still suffer from various
limitations and challenges. The issues include concerns about result quality, implementation
scalability, actionability for determining isolation and quarantine strategies, and trustfulness
of accepting medical findings as general clinical specifications. An increasing number of studies
appear promising by incorporating advanced data science and AI techniques to complement
medical and chemical test approaches and tools, to integratively enhance preanalytical and
postanalytical test results, and strengthen the interpretability and actionability of the results
for clinicians, microbiological staff and public health authorities.

6.2.2 COVID-19 patient risk and prognosis analysis. COVID-19 patient risk assessment
identifies the risk factors and parameters associated with patient infections, disease severity,
and recovery or fatality to support accurate and efficient prognosis, resource planning,
treatment planning, and intensive care prediction. This is crucial for early interventions
before patients progress to more severe illness stages. Moreover, risk and prognosis prediction
for patients can help with effective health and medical resource allocation when intense
monitoring, such as that involving ICU and ventilation and more urgent medical interventions
are needed and prioritized. Machine learning models and data-driven discovery can also play
a vital role in such risk factor analysis and scoring, prediction, prioritization and planning of
prognostic and hospitalization resources and facilities, treatment and discharge planning, and
the influence and relation analysis between COVID-19 infection and disease conditions and
the external environment and context (e.g., weather conditions and socioeconomic statuses).

Techniques including mathematical models, and shallow and deep learners are applicable
on health records, medical images, and external data. For example, LightGBM and Cox
proportional-hazard (CoxPH) regression models incorporate quantitative lung-lesion features
and clinical parameters (e.g., age, albumin, blood oxygen saturation, CRP) for prognosis
prediction [268], their results showing that lesion features are the most significant contributors
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Table 5. Examples of Deep COVID-19 Medical Imaging Analysis.

Method Task Data Performance
Domain extension
transfer learning with
pretrained CNN [17]

Diagnosis Italian Society of Medi-
cal Radiology and Interven-
tional (25 cases)𝑎; Radiopae-
dia.org (20 cases)𝑏; COVID-
19 images (180 cases) [55]; A
Spanish hospital (80 cases)𝑐

Overall accuracy 90.13% ± 0.14

Shallow CNN [152] Diagnosis COVID-19 images [55]
(321 cases); Kaggle non-
COVID-19 CXR images
(5856 cases)𝑑

Highest accuracy 99.69%, sensitivity 1.0,
AUC 0.9995

CNN-based truncated
InceptionNet [61]

Diagnosis COVID-19 images [55] (162
cases); Kaggle CXR images
(5863 cases); Tuberculosis
CXR images𝑒

Accuracy 99.96% (AUC of 1.0) in clas-
sifying COVID-19 cases from combined
pneumonia and healthy cases; accuracy
99.92% (AUC of 0.99) in classifying
COVID-19 cases from combined pneu-
monia, tuberculosis and healthy CXRs

DarkCovidNet [171]
built on Darknet-19

Diagnosis COVID-19 images [55] (127
cases); CXR images [246]

Accuracy 98.08% for binary classes and
87.02% for multi-class cases

CoroNet built on
Xception pre-trained
on ImageNet [113]

Diagnosis COVID-19 images [55]; Kag-
gle CXR images

Accuracy 89.6%, precision 93% and re-
call 98.2% for COVID vs pneumonia
bacterial, pneumonia viral and normal

COVID-CAPS based
on capsule network [2]

Diagnosis COVID-19 images [55], Kag-
gle CXR images

Accuracy 95.7%, sensitivity 90%, speci-
ficity 95.8%, and AUC 0.97

VGG16 and transfer
learning [163]

Diagnosis COVID-19 images [55],
RSNA Pneumonia Detec-
tion Challenge data𝑓

Accuracy 83.6% for COVID-19 pneumo-
nia vs non-COVID-19 pneumonia and
healthy; sensitivity 90% for COVID-19
pneumonia

COVID-Net [240] Diagnosis COVID-19 images [55],
COVID-19 CXR Dataset
Initiative𝑔, ActualMed
COVID-19 CXR Dataset
Initiativeℎ, RSNA data,
COVID-19 radiography
data𝑖

Accuracy 93.3%, sensitivity 91.0%, posi-
tive predictive value 98.9%

Inf-Net with decoder
and attention [55]

Segment COVID-19 CT
Segmentation𝑗 , COVID-19
CT Collection

Dice similarity coefficient 0.739, Sensi-
tivity 0.725, Specificity 0.960

DeepPneumonia built
on ResNet-50 [214]

Diagnosis Private data Sensitivity 0.93, AUC 0.99; AUC 0.95
and sensitivity 0.96 for COVID-19 vs.
bacteria pneumonia-infections

𝑎https://www.sirm.org/category/senza-categoria/covid-19/;
𝑏https://radiopaedia.org/search?utf8=%E2%9C%93&q=covid&scope=all&lang=us;

𝑐https://twitter.com/ChestImaging/status/1243928581983670272;
𝑑https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia;

𝑒https://ceb.nlm.nih.gov/tuberculosis-chest-X-ray-image-data-sets/;
𝑓 https://www.kaggle.com/c/rsna-pneumonia-detection-challenge;

𝑔https://github.com/agchung/Figure1-COVID-chest-xray-dataset;
ℎhttps://github.com/agchung/Actualmed-COVID-chest-xray-dataset;

𝑖https://www.kaggle.com/tawsifurrahman/covid19-radiography-database;
𝑗https://medicalsegmentation.com/covid19/.

in clinical prognosis estimation. Supervised classifiers like XGBoost are applied on electronic
health records to predict the survival and mortality rates of severe COVID-19 infectious
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Table 6. Comparison of COVID-19 Infection Diagnosis Methods.

Methods Pros Cons Data
Nucleic acid-
based diagno-
sis test [263]

High sensitivity, suitable for
large-scale operation

Preliminary assessment by tech-
nicians, professional data analy-
sis, expensive, less accurate, false-
negative or false-positive results

Nasal, nasopharyn-
geal or oropharyn-
geal swab, aspira-
tion, saliva or wash
specimens

Serological di-
agnosis [132]

Easy and cheap to implement,
no requirement of experts

Unstable performance, time-
inefficient, unscalable for early
diagnosis

Serum or plasma
samples

Clinical diag-
nosis analy-
sis [25]

Diagnosis from mixed clinical
reports and tests, on-demand,
verifiable by domain experts

Require professional tools and do-
main knowledge

Blood and respira-
tory test samples,
etc.

Medical
imaging in-
spection [197]

Fast and automated detection,
data-driven analysis

Need trained experts, costly in la-
beling and early detection, train
data scarcity

CT and CXR im-
ages

Data-driven
prediction [47]

Algorithmic prediction by
data-driven analytics and
learning on data relevant to
the COVID-19 diagnosis

Biases from data and predictors Any relevant data
including clinical
test results and
genomic/protein
sequences

patients [203, 259] for the detection, early intervention and potential reduction of mortality
of high-risk patients. In [189], logistic regression and random forest are used to model CT
radiomics on features extracted from pneumonia lesions to predict feasible and accurate
COVID-19 patient hospital stay, which can be treated as one of the prognostic indicators.
Further, shallow and deep machine learning methods are applied to screen COVID-19
infections on respiratory data including lung ultrasound waves, coughing and breathing
signals. For example, in [104], a bidirectional GRU network with attention differentiates
COVID-19 infections from normal on face-based videos captured by RGB-Infrared Sensors
with 83.69% accuracy. Lastly, external data can be involved for risk analysis; e.g., the work
in [142] analyzes the association between weather conditions and COVID-19 confirmed cases
and mortality.

6.2.3 COVID-19 medical imaging analysis. A rapidly growing body of research literature
on COVID-19 medical image processing is available, which involves both shallow and deep
learning methods especially pretrained CNN-based image nets in learning tasks such as
feature extraction, region of interest (ROI) segmentation, infection region/object detection,
and disease/symptom diagnosis and classification, etc. Typical COVID-19 medical imaging
data includes CXR and CT images of lung (lobes or segments), lesion, trachea and bronchus.
The most commonly used DNNs are pretrained or customized CNN, GAN, VGG, Inception,
Xception, ResNet, DenseNet and their variants [103, 209].

Further, CNN-based transfer learning models, deep transfer learning and GAN are applied
on CXR images to detect COVID-19 pneumonia and its segmentation and severity [54, 112,
149]. On chest CT images, CNNs like ResNet, DenseNet and VGG16 and the inception
transfer model are applied to classify COVID-19 infected patients and detect and localize
COVID-19 pneumonia and infection regions [11, 184, 214, 244, 272].

The application of DNNs in COVID-19 medical imaging analysis show significant per-
formance advantages. For example, several references report close-to-perfect prediction
performance of pretrained DNNs on CXR images (e.g., achieving accuracy and F-score 100
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[136], AUC 100 [188] and 99.97 [140], and accuracy and F-score 98 [155]), in contrast to the
lower performance of customized networks on CT images (e.g., with accuracy 99.68 [90],
AUC 99.4 [74] and F-score 94 [74, 214]). The highly promising medical imaging analysis
results provide strong evidence and support to further case confirmation, medical treatment,
hospitalization resource planning, and quarantine, etc.

Table 5 illustrates various DNNs applied on medical imaging for COVID-19 screening and
abnormal infection region segmentation, etc. For example, various CNNs such as shallow
CNN, truncated InceptionNet, VGG19, MobileNet v2, Xception, ResNet18, ResNet50,
SqueezeNet, DenseNet-121, COVIDX-Net with seven different architectures of deep CNN
models, GoogleNet, AlexNet and capsule networks [2, 17, 61, 92, 152, 240] are applied to
analyze CXR images for screening COVID-19 patients, assisting in their diagnosis, quarantine
and treatments, and differentiating COVID-19 infections from normal, pneumonia-bacterial
and pneumonia-viral infections.

6.2.4 COVID-19 pathological and treatment analysis and drug development. The modeling
of COVID-19 pathology and treatment aims to characterize virus origin and spread, infec-
tion sources, pathological findings, immune responses, and drug and vaccine development,
etc. The formulation of molecular mechanisms and pathological characteristics underlying
viral infection can inform the development of specific anti-coronavirus therapeutics and
prophylactics, which disclose the structures, functions and antigenicity of SARS-CoV-2 spike
glycoprotein [237]. The pathological findings pave the way to design vaccines against the
coronavirus and its mutations. For example, the higher capacity of membrane fusion of
SARS-CoV-2 compared with SARS-CoV is shown in [256], suggesting the fusion machinery
of SARS-CoV-2 as an important target of developing coronavirus fusion inhibitors. Further,
human angiotensin coverting enzyme 2 (hACE2) may be the receptor for SARS-CoV-2 [169]
informing drug and vaccine development for SARS-Cov-2. In [238], a structural framework
for understanding coronavirus neutralization by human antibodies can help understand the
human immune response upon coronavirus infection and activate coronavirus membrane
fusion. The kinetics of immune responses to mild-to-moderate COVID-19 discloses clinical
and virological features [220]. Data-driven analytics are applied in COVID-19 virology, patho-
genesis, genomics and proteomics and collecting pathological testing results, gene sequences,
protein sequences, physical and chemical properties of SARS-CoV-2, drug information and its
effect, together with their domain knowledge. This plays an important role in discovering and
exploring feasible drugs and treatments, drug discovery, drug repurposing, and correlating
drugs with protein structures for COVID-19 drug selection and development. For example,
a pre-trained MT-DTI (molecule transformer-drug target interaction) deep learning model
based on the self-attention mechanism identifies commercially available antiviral drugs
by finding useful information in drug-target interaction tasks [18]. The GAN-based drug
discovery pipeline generates novel potential compounds targeting the SARS-CoV-2 main
protease in [271]. In [270], 28 machine learning methods including generative autoencoders,
generative adversarial networks, genetic algorithms, and language models generate molecular
structures and representations on top of generative chemistry pipelines and optimize them
with reinforcement learning to design novel drug-like inhibitors of SARS-CoV-2. Further,
multitask DNN screens candidate biological products [97]. In [145, 146], CNN-enabled
CRISPR-based surveillance supports a rapid design of nucleic acid detection assays.

For genome and protein analysis, frequent sequential pattern mining identifies frequent
patterns of nucleotide bases, predicts nucleotide base(s) from their previous ones, and
identifies the genome sequence locations where nucleotide bases are changed [156]. In [7], a
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bidirectional RNN classifies and predicts the interactions between COVID-19 non-structural
proteins and between the SARS-COV-2 virus proteins and other human proteins with an
accuracy of 97.76%.

Classic and deep machine learning methods such as classifiers SVM and XGBoost, sequence
analysis, multi-task learning, deep RNNs, reinforcement learning such as deep Q-learning
network, and NLP models are applied to SARS-COV-2 therapy discovery, drug discovery,
and vaccine discovery [111]. Examples are the rule-based filtering and selection of COVID-19
molecular mechanisms and targets; virtual screening of protein-based repurposed drug
combinations; identifying the links between human proteins and SARS-COV-2 proteins;
developing new broad-spectrum antivirals, and molecular docking; identifying functional
RNA structural elements; discovering vaccines such as predicting potential epitopes for
SARS-COV-2 and vaccine peptides by LSTM and RNNs, and analyzing protein interactions,
molecular reactions by neural NLP models such as Transformer variants. Table 7 briefly
illustrates the applications of modeling in supporting COVID-19 treatments and drug and
vaccine development.

Discussion. Most of the literature on COVID-19 medical and biomedical analytics directly
applies existing mathematical models, shallow and pretrained deep models. There are gaps
and opportunities in characterizing COVID-19-specific characteristics and domain knowledge
into tailored modeling and training deep neural networks on usually small and quality-limited
COVID-19 data and involving multimodal COVID-19 data to discover more informative
medical and biomedical insights.

Table 7. Examples of Modeling for COVID-19 Treatment and Drug/Vaccine Development.

Objective Approaches Data
Treatment Data-driven diagnosis-informed treatment e.g. pathological analysis,

medical imaging analysis, immune reaction, genomic and proteomic
analysis [103, 103, 209, 268]

Pathological, clin-
ical, virological,
genomic, proteomic
data

Drug
develop-
ment

Correlating drugs with protein structures and molecule transformer for
drug-target interactions [18], DNNs like GANs and multitask DNNs
for drug discovery [97, 271], machine learning and language models to
generate molecular structures and drug-like inhibitors [270]

Virological, ge-
nomic, proteomic
data

Vaccine
develop-
ment

Sequence analysis and sequential modeling like LSTM and RNN
variants and NLP models like Transformer variants for functional
RNA structures, vaccine epitopes and peptides, protein interactions
and molecular reactions [111]

Genomic and pro-
teomic data

7 COVID-19 INFLUENCE AND IMPACT MODELING
COVID-19 has had an unprecedented and overwhelming influence and impact on all aspects
of our life, society and economy, posing significant health, economic, environmental and
social challenges to the entire world and human population [40]. Over 3k references of the 22k
literature involve the topic of influence and impact modeling. In this section, we review and
summarize the modeling and analysis methods and results on many broad areas affected by
SARS-CoV-2 and COVID-19. These include the modeling of the effect of COVID-19-sensitive
NPIs and the COVID-19 healthcare, psychological, economic and social influence and impact.
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7.1 Modeling COVID-19 Intervention and Policy Effect
On one hand, pharmaceutical measures, drug and vaccine development play fundamental roles
[274]. On the other, to control the outbreaks of COVID-19 and its further influence on various
aspects of life, governments adopt various NPIs such as travel restrictions, border control,
business and school shutdown, public and private gathering restrictions, mask-wearing, and
social distancing. For example, travel bans and lockdown are issued to decrease cross-boarder
population movement; social distancing and shutdowns minimize contacts and community
spread; schooling closures and teleworking reduce indoor gatherings and workplace infections.
Although these control measures flatten the curve, they also undoubtedly change the regular
mobility and activities of the population, normal business and economic operations, and the
usual practices of our daily businesses.

A critical modeling issue is to characterize, estimate and predict how such NPIs influence
COVID-19 epidemic dynamics, infection spread, case development, and population structure
including deceased, medical resource and treatment allocation, and human, economic and
business activities. Accordingly, various modeling tasks involve epidemiological, statistical and
social science modeling methods and their hybridization (typically stochastic compartmental
models) to evaluate and estimate the effects, typically by aligning the NPIs with case
numbers for correlation and dependency modeling. Below, we summarize a few aspects of
NPI influence.

Modeling the effect of NPIs on COVID-19 epidemic dynamics. This typically models the
correlations between COVID-19 cases and NPIs, the NPI influence on COVID-19 epidemic
factors including transmission rate and case numbers, and the NPI influence on improving
recovery rates and lowering death rates. Various SIR and statistical modeling variants
evaluate the effects of such control measures and their combinations on containing the virus
spread and controlling infection transmission (e.g., per transmission rate) and estimate
the corresponding scenarios (distributions) of case number development [24, 63, 221]. For
example, in [177], a generalized SEIR model includes the self-protection and quarantine
measures to interpret the publicly released case numbers and forecast their trend in China.
The effect of control measures, including city lockdowns and travel bans implemented in the
first 50 days in Wuhan and their effect on controlling its outbreak across China in terms
of infection case numbers estimated by an SEIR model before and after the controls is
described in [221].

Often, various NPIs are jointly implemented to contain a COVID-19 epidemic. It may be
reasonable that multiple NPIs cooperatively reduce the epidemic effective reproduction num-
ber [24, 77, 121, 185]. In [24], a temporal Bayesian hierarchical model incorporates auxiliary
variables describing the temporal implementation of NPIs, which infers the effectiveness of
individually (estimated 13% to 42% reduction of reproduction number) and conjunctionally
(77% reduction of reproduction number) implementing NPIs such as staying-at-home, busi-
ness closures, shutting down educational institutions and limiting gathering sizes in terms of
their influence on the reproduction number. In [77], a hierarchical Bayesian model infers
the impact and effectiveness of NPI (including case isolation, school closure, mass gathering
ban, social distancing) on the infections, reproduction number 𝑅0, effect sizes of population,
and death tolls in 11 European countries and suggests continued interventions to keep the
epidemic under control.

Modeling NPI influence on public resources including healthcare systems. The imple-
mentation of NPIs affects the demand, priority and effectiveness of anti-pandemic public
health resources and the planning and operations of healthcare systems. For example, in
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[73], an SEIR model and a polynomial regressor simulates the effect of early detection,
isolation, treatment, adequate medical supplies, hospitalization and therapeutic strategy on
COVID-19 transmission, in addition to estimating the reproductive number and confirmed
case dynamics. The SIDARTHE model [81] simulates possible scenarios and the necessity
of implementing countermeasures such as lockdowns and social distancing together with
population-wide testing and contact tracing to rapidly control the pandemic. The SHARUCD
model [5] predicts the COVID-19 transmission response (in terms of infection cases, growth
rate and reproduction number) to the control measures including partial lockdown, social
distancing and home quarantining and differentiates asymptomatic and mild-symptomatic
from severe infections, which could inform the prioritization of healthcare supplies and
resources.

Modeling NPI influence on human activities. This explores the relations between COVID-
19 NPIs and human mobility, travel, and social and online activities. For example, in [118],
the alignment between human mobility and case number development in Wuhan and China
presents the effect of travel restrictions on case reduction and COVID-19 spread. In [109], a
simple SEIR model analyzes the tracing contacts in UK social network data, estimates the sce-
narios of COVID-19 infection control and subsequent untraced cases and infections, and shows
the efficacy of close contact tracing in identifying secondary infections. In [80], MCMC param-
eter estimation and a metacommunity Susceptible–Exposed–Infected–Recovered (SEIR)-like
disease transmission model shows the need for planning emergency containment measures
such as restrictions on human mobility and interactions to control COVID-19 outbreak (by
42% to 49% transmission reduction). In [83], mobile phone data is collected and analyzed to
inform COVID-19 epidemiologically relevant behaviors and response to interventions. Weitz
et al. [250] develop and analyze an epidemiological intervention model that leverages sero-
logical tests to identify and deploy recovered individuals as focal points for sustaining safer
interactions by interaction substitution, developing the so-called ‘shield immunity’ at the
population scale. It is shown that the change of contact patterns could dramatically decrease
the probability of infections and reduce the transmission rate of COVID-19 [75, 123, 267].

Discussion. The many diverse applications of SIR-based modeling of COVID-19 invention
and policy effects enable an epidemiological explanation. Such methods assume each NPI
independently acts on case movement. This leaves open issues including characterizing
the effectiveness of individual NPIs by assuming they are coupled with each other and
cooperatively contribute to flatten the curves; and exploring the interactions between NPIs,
case development, and external factors including people’s behaviors and environmental
factors without disentangling them (opposite to the method of DNNs-based decoupled,
homogeneous and independent representations and learning).

7.2 Modeling COVID-19 Psychological Impact
A common concern is the influence of COVID-19 on individual and public psychological
and mental health [258]. Typical tasks are to characterize, classify and predict social-media-
based individual and public emotion and sentiment and their mental health. These may
be sensitive to the COVID-19 outbreak, health and medical mitigation, NPI measures,
government governance, public healthcare system performance, vaccine, resurgence and
coronavirus mutations, and the ‘new normal’ including working from home and online
education, etc. The data involved are from social media and networks such as Twitter,
Facebook, Wechat, Weibo, YouTube, Instagram and Reddit; online news feeds, discussion
boards, blogs and Q/A; and instant messaging such as mobile messaging and apps.
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Negative sentiments [158, 245], opinion and topic trends, online hate speech [233], psycho-
logical stress, men’s and women’s worries [230], responsive emotions [95] and behaviors and
events [14] can be characterized, clustered or classified on short and long texts by simply
applying NLP processing techniques. Examples are extracting TF-IDF and part-of-speech
features, shallow NLP and text analysis models including BOW and latent Dirichlet alloca-
tion (LDA), and neural text modelers including DNN variants such as BioBERT, SciBERT
and Transformer variants on the word, sentence or corpus level. For example, in [258], the
preferred reporting items for systematic reviews and meta-analyses guidelines are used to
review the COVID-19 impact on public mental health, disclosing the extent of symptoms
and risk factors associated with anxiety (6.33% to 50.9%), depression (14.6% to 48.3%),
posttraumatic stress disorder (7% to 53.8%), psychological distress (34.43% to 38%) and
stress (8.1% to 81.9%) in the surveyed population of 8 countries.

Discussion. The existing modeling of COVID-sensitive psychological influence often misses
psychological knowledge because it is purely driven by data; the analytical results are based
on a cohort of infected people owing to its anonymous nature; no work is reported on fusing
various sources of data including online misinformation to infer the predominant drivers of
specific mental stress such as vaccination hesitation; and the targeted analysis of specific
mental issues in vulnerable groups, such as COVID-driven teenage suicide and racism.

7.3 Modeling COVID-19 Economic Impact
The COVID-19 pandemic has incurred overwhelming and devastating impact on regional and
global economy and business activities including trade, tourism, education exchange, logistics,
supply chain, workforce and employment. It seems that no economy on the interconnected
globe is immune from the negative consequences of COVID-19 [52]. A critical modeling task
is to quantify how COVID-19 influences various aspects of the economy and businesses,
how to manage and balance COVID-19 control measures (including NPIs and vaccination
rollouts) and government relief and recovery programs, and how to sustain and recover
business and economic activities without seriously suffering from uncontrollable outbreaks
and resurgences for better sustainability in the COVID new normal.

Modeling the COVID-19 impact on economic growth. A rapidly growing body of research
investigates the heterogeneous, non-linear and uncertain macroeconomic effects of COVID-
19 across regions and sectors in individual countries, as well as on a global scale. It is
estimated that COVID-19 and SARS-CoV-2 may cause over 2% monthly GDP loss and a
50% to 70% decline in tourism [40]. In [181], a sectoral macroeconomic model analyzes the
short-term effects of intervention measures such as lockdown, social distancing and business
reopening on economic outcomes such as production network, supply and demand, inventory
dynamics, unemployment and consumption and estimates their influence on the relations
between reproduction number and GDP. The study in [236] illustrates the relations between
a country’s income levels, public healthcare availability and capacity and the COVID-19
infected patient’s demography and social patterns in low- to middle-income countries.

Modeling the COVID-19 impact on workforce and sustainability. COVID-19 drives the
new normal of working, including a hybrid work mode, cloud-based enterprise operations,
the shift from centralized infrastructures (including IT) to cloud-based ICT and home-based
workplaces, and new ways of ensuring sustainability including engaging and supporting clients
through online operations and services and AI-enabled cost-effective planning, production,
logistics and services. In [15], the descriptive statistics of the daily activities of Baidu
developers show the positive and negative impacts of working from home on developer
productivity, particularly on large and collaborative projects. The survey conducted in [154]
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shows the various impacts of COVID-19-driven work from home on the scientific workforce,
including the time spent on work, parenting distraction, and impact on laboratory-based
projects. The analysis in [129] in Australia shows the impact of government welfare support
responses to COVID-19-infected people and businesses on mitigating potential unemployment,
poverty and income inequality and the sustainability of such support measures.

Discussion. The existing modeling objectives, tasks and methods are highly preliminary,
specific and limited. Expectations include macro-, meso- and micro-level modeling of economic
impact by involving their economic-financial variables and activities, contrastive analysis with
similar historical events and periods, and data-driven discovery of insights for a sustainable
tradeoff between mitigation and economic growth in the new normal, to name a few.

7.4 Modeling COVID-19 Social Impact
The COVID-19 pandemic has had significant impact on public health, welfare, social, political
and cultural systems, including restricting human activities, affecting people’s well-being,
causing an overwhelming burden on public health systems, reshaping sociopolitical systems,
and disturbing social regularity such as incurring online information disorder. This section
reviews the relevant modeling work on such social impacts.

Modeling the COVID-19 influence on human behaviors. In addition to the COVID-19-
sensitive NPI influence on human activities as discussed in Section 7.1, SARS-CoV-2 and
COVID-19 have fundamentally reshaped people’s social activities and habits. For example,
Baidu-based daily transportation behaviors and simple statistics were collected which show
high-level mobility patterns such as visiting venues, origins, destinations, distances, and
transport time during the COVID-19 epidemic in China [100]. In [83], large-scale mobile
phone data such as call detail records, GPS locations, Bluetooth data and contact tracing
apps are collected and analyzed by off-the-shelf tools to extract statistic metrics and patterns
of behaviors, mobility and interactions. The results may inform population behaviors,
individual contacts, movement paths and mobility patterns, and networking, in addition
to evaluating the effectiveness of NPIs and informing COVID-19 responses such as contact
tracing. In [95], social media data from Sina Weibo, the Baidu search engine, and 29 Ali e-
commerce marketplaces were collected and analyzed using keyword-based linguistic inquiries
and statistics like word frequencies and Spearman’s rank correlation coefficient analysis.
Keywords are extracted to show people’s behavioral responses to COVID-19 outbreaks, public
awareness and attention to COVID-19 protection measures, concerns about misinformation
and rumors about ineffective treatments, and the correlation between risk perception and
negative emotions.

Modeling the COVID-19 influence on public health systems. The sudden COVID-19 endemic
or pandemic and its mysterious resurgence has resulted in the imperative, nonscheduled and
overwhelming rationing demand on healthcare and medical professionals, public health and
medical resources and supplies including oxygen, hospital beds and facilities, ICU facilities
and ventilators, medical waste processing equipment, hygiene protection equipment such as
medical masks and sanitization chemicals, and intervention materials and devices. How to
plan, prioritize, ration and manage these resources, assess their supply/demand and effects
to prioritized hotspots and regions and optimize their reorganization per local and global
needs and population-wide well-being are some challenging issues to model and optimize.
In [69], recommendations are made to allocate medical resources to both COVID-19 and
non-COVID-19 patients to maximize benefits, prioritize health workers, avoid a first-come,
first-served approach, in a way that is evidence-based and involves science and research.
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Modeling the COVID-19 influence on sociopolitical systems. The COVID-19 influence on
social and political systems is unprecedented. This influence extends to the confidence and
trust in existing sociopolitical systems such as public and moral values, national interests,
social welfare systems, human services, political relations, globalization, scientific exchange
and collaborations, science-driven epidemic mitigation policies and strategies, and the impact
on social governance and disaster management. For example, in [29], an identity fusion theory-
based online sampling and a moral foundations theory-based computer simulation show the
correlations between nationalism, religiosity, and anti-immigrant sentiment from a socio-
cognitive perspective during the COVID-19 pandemic in Europe. The surveys undertaken in
[119] show that the scientific uncertainty of COVID-19-oriented modeling and findings affect
the public and political trust in science-based policy making in the US and suggest more
careful science communications. The work in [210] evaluates the impact of COVID-19 on
globalization and global health, in particular, mobility, trade, travel, event management, food
and agriculture, and a pandemic vulnerability index quantitatively measures the potential
impact on global health and the countries most impacted.

Modeling misinformation and disorder in the COVID-19 infodemic. The COVID-19 in-
fodemic has been accompanied by a large volume of misinformation (partially or entirely
inaccurate or misleading information), biased (polarized), questionable or unverified infor-
mation, rumor and propaganda. Such information is harmful for correctly understanding,
recognizing, intervening, and preventing the COVID-19 pandemic. Its diffusion is usually
fast, its spread is often wide, and its impact is typically devastating. Modeling the COVID-
19 misinformation and information disorder involves tasks such as detecting and ranking
misinformation, classifying them, undertaking fact checks and cross-references, tracing their
sources and transmission paths, discovering their diffusion and propagation networks and
paths, and estimating their effects on the COVID-19 epidemic spread and control. For
example, in [53], skip-gram is used to represent the words collected from Twitter, Instagram,
YouTube, Reddit and Gab; the converted vector representations are then clustered by parti-
tioning them around medoids and cosine distance-based similarity analysis to extract the
topics of concern. An SIR model is then applied to estimate the basic reproduction number
of the social media-based COVID-19 infodemic. A comparative analysis then estimates and
compares the platform-dependent interaction patterns, information spread (w.r.t. reproduc-
tion rate), questionable and reliable information sourcing and differentiation, and rumor
amplification across the above platforms. In [248], SVM classifies credible and misinformation
from Twitter texts and a correlation analysis shows the predominant credible information
on wearing masks and social distancing can lead their misinformation with a time lag. In [4],
bivariate (ANOVA) and multivariate logistic regression identifies similar belief profiles of
political orientation, religious commitment, and trust in science in survey-based narratives
and compares the profiles of those who are disinformed or conspiratorial with scientific
narratives. Further, the statistics on Weibo tweets show the COVID-19 misinformation
evolution related to topics and events such as city lockdowns, cures, preventive measures,
school reopening and foreign countries, the bias involving cures and preventive methods, and
sentiment evolution such as fear of specific topics [126]. The work in [147] applies SVM, logis-
tic regression and BERT to classify COVID-19 misinformation and counter-misinformation
tweets, characterizes the type, spread and textual properties of counter-misinformation, and
extracts the user characteristics of the citizens involved.

Discussion. Typical research on COVID-19 influence and impact modeling only involves
local and regional COVID-19 data and their affected objects, hence the resultant conclusions
are limited in the ability to indicate their applicability to general practice and broad pandemic
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control. More robust results are expected to inform medical and public health policy-making
on medication, business and society. No-to-rare outcomes are available on how NPIs influence
the threshold and effects of COVID-19 vaccinations and herd immunity and on how to
balance NPIs and economic and social revivification. It is difficult to find actionable evidence
and guidelines on what policies should be implemented and what tradeoff is appropriate
in balancing a COVID-19 outbreak and containing resurgence with economic and social
business recovery.

Table 8. Examples of COVID-19 Influence and Impact Modeling.

Aspects Objectives Approaches Data

NPI effect
on epidemic
dynamics

SIR variants, statistical models, Bayesian
hierarchical models, etc. [24, 63, 77, 121,
177, 185, 221]

COVID-19 case data, NPIs

on public re-
sources

SIR variants, statistical models, polynomial
regressors, etc. [5, 73, 81]

Case data, NPIs, public re-
source (incl. healthcare) data

on human be-
haviors

SIR variants, statistical models e.g. MCMC,
relation modeling, etc. [75, 80, 83, 109, 118,
123, 250, 267]

Case data, NPIs, human activ-
ities (incl. mobile phone data
and mobility), etc.

Psychological
influence

on individual
mental health

Psychology, systematic reviews, classic and
neural NLP models e.g. BOW, LDA, SciB-
ERT, Transformer variants, etc. [14, 158,
230, 245, 258]

Identity, social media data,
news feeds, Q/A, surveys, in-
stant messaging, behaviors,
NPIs, etc.

on public men-
tal health

Psychology, systematic reviews, classic and
neural NLP models e.g. BOW, LDA, SciB-
ERT, Transformer variants, etc. [95, 158,
233, 245, 258]

Social media data, news feeds,
Q/A, surveys, instant messag-
ing, public emotion, activities
and events, NPIs, etc.

on mental
health

Psychology, systematic reviews and meta-
analyses, classic and neural NLP models,
statistics, etc. [258]

Social media data, question-
naires, instant messaging, be-
havior and events, NPIs, etc.

Economic
impact

on economic
growth

Time series analysis, descriptive analytics,
macroeconomic modes, relational models,
etc. [40, 181, 236]

Economic data, case data,
NPIs, etc.

on workforce
and sustain-
ability

Descriptive analytics, time-series analysis,
relational models, etc. [15, 129, 154]

Work and sustainability-
related data, performance,
employment, surveys, social
welfare data, etc.

Social impact

on human be-
haviors

Descriptive analytics, pattern analysis, so-
cial media/network analysis, NLP models,
etc. [83, 95, 100]

Public, online and household
activities, gathering, mobility
data, mobile phone data, so-
cial media data, etc.

on public
health systems

Descriptive analytics, relational models, etc.
[69]

Public health and medical
data, public hygiene data, case
data, etc.

on misinforma-
tion

Classifiers, classic and neural NLP mod-
els, social media/network analysis, senti-
ment/topic modeling, time-series analysis,
outlier detection, etc. [4, 53, 126, 147, 248]

Social media data, news feeds,
Q/A, cross/fact-check, etc.

on socio-
political
systems

Descriptive analytics, sociopolitical meth-
ods, survey analysis, etc. [29, 119, 210]

Social and political data, case
data, surveys, questionnaires,
sociopolitical events, etc.
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8 COVID-19 SIMULATION MODELING
Despite being a small focus (over 1.5k of the 22k publications on modeling), simulation
is an essential means to understand, imitate, replicate and test the working mechanisms,
the epidemic transmission processes, the evolution and mutation of COVID-19 and its
virus SARS-CoV-2, the interactions and self-organization between factors, the effect of
mitigation measures and various interior and contextual factors, and resource planning and
optimization such as healthcare resource allocation. Typical simulation methods include
dynamic systems, state-space modeling, discrete event simulation, agent-based modeling,
reinforcement learning, Monte-Carlo simulation, and hybrid simulation [58]. Below, we
summarize the relevant work on simulating the COVID-19 epidemic evolution and the effect
of interventions and policies on COVID-19 epidemic development.

Simulating the COVID-19 epidemic evolution. One important but unclear question is
how does the COVID-19 evolve over time in the community. What-if analyses can be
applied to estimate infection case numbers and their evolution under various hypotheses
tests [275]. Typical methods include SIR variants, statistical and mathematical models, e.g.,
introducing control measure-sensitive variables into such models to estimate their effects on
infections, reproduction number, transmission rate, and outbreak control after implementing
or relaxing certain interventions. For example, in [78], composite Monte Carlo simulation
conducts the what-if analysis of future COVID-19 epidemic development possibilities on
top of the estimation made by a polynomial neural network on COVID-19 cases, then fuzzy
rule induction outputs decision rules to inform epidemic growth and control. In [82], an
agent-based simulation system simulates a COVID-19 patient’s demographic, mobility and
infectious disease state (susceptible, exposed, seriously-infected, critically-infected, recovered,
immune and dead) information and their dynamic interactions between each other (agents,
i.e., people in epidemiology) in certain environments (home, public transport stations, and
other places of interest), and evaluates the effect of adjusting individual and social distancing
(separation) on epidemics (e.g., numbers in each state).

Simulating the policy effects on the COVID-19 epidemic. Another important task is to
simulate how interventions, interior and external factors, and other policies and control
measures of interest influence the dynamics of the COVID-19 epidemic. For example, a
discrete-time and stochastic agent-based simulation system (Australian Census-based Epi-
demic Model) [44] incorporates 24 million software agents, where each agent mimics an
Australian individual in terms of their demographics, occupation, immunity and suscep-
tibility to COVID-19, contact rates in their social contexts, interactions, commuting and
mobility patterns, and other aspects, which are informed by census data from the Australian
government. The system evaluates various scenarios by adjusting the level of restrictions
on case isolation, home quarantine, international air travel, social distancing and school
closures and their effects on COVID-19 pandemic consequences in terms of the reproductive
number, the generation period, the growth rate of cumulative cases, and the infection rate
for children. The simulation provides evidence to help the Government understand how
COVID-19 is transmitted and what policies should be implemented to control COVID-19 in
Australia. In [141], an SIR model is extended by adding variables reflecting symptomatic
infections and the quarantine of susceptibles, which then estimates the case development
distribution as subexponential after implementing the quarantine. In [262], an attributed
heterogeneous information network incorporates the representations of external information
about the COVID-19 disease features, the population’s demographic features, mobility and
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public perception of sentiment into a GAN model, which then assesses the hierarchical
community-level risks of COVID-19 to inform interventions and minimize disruptions.

Discussion. Although we mention many aspects and questions that could be (better)
addressed by simulation, very limited research is available in this direction. In addition to
the above two aspects closely relevant to COVID-19 epidemic dynamics, other important
topics include simulating the mutation and resurgence of the coronavirus and COVID-19 in
communities with different social, ethnic and economic conditions; the influence of individual
and compound COVID-19-sensitive policies on social, economic and psychological aspects;
and the tradeoff between the strength and width of mitigation strategies and their impact
on society and the economy.

9 COVID-19 HYBRID MODELING
Hybrid COVID-19 modeling can be categorized into the following families: (1) multi-objective
modeling: to address multiple problems and multiple business and modeling objectives
at the same time, such as jointly understanding COVID-19 epidemic dynamics and the
corresponding effective NPI policies; (2) multi-task modeling: to handle multiple modeling
tasks, e.g., simultaneously forecasting daily confirmed, death and recovered case numbers;
(3) multisource (multimodal etc.) COVID-19 data modeling: to involve multiple sources of
internal and external data for modeling, e.g., supplementing environmental and demographic
data with case numbers and complementing case numbers with medical imaging and social
mobility data; (4) hybrid methods for COVID-19 modeling: typically by sequentializing (i.e.,
multi-phase) or parallelizing multiple tasks or methods from different disciplines and areas,
e.g., integrating statistical methods, shallow or deep learning methods, and evolutionary
computing methods into compartmental models; and (5) hybrid modeling with multi-methods
from various disciplines on multisource COVID-19 data for multi-objective or multi-task
modeling.

COVID-19 multi-objective modeling is commonly seen in COVID-19 modeling, as shown in
Sections 4-8, where, multiple business problems and learning objectives are involved in one
research or case study. Examples are forecasting COVID-19 transmission and its sensitivity
to external factors such as the patients’ age groups, hygiene habits and environmental
factors; modeling the influence of NPIs and people’s ethnic conditions on case movements;
modeling the influence of NPIs on both case trends and public psychological health; and
survival/mortality rate estimation and the influence analysis of dependent factors such as
the patients’ health conditions. Typical methods include multivariate analysis, probabilistic
compartmental models, simulation systems, multi-objective evolutionary learning methods,
and DNN variants. For example, in [183], a regression model estimates the relations between
reproduction number and environment factors and human movements. In [63], Bayesian
inference of an SIR model infers the effect of various interventions on new infections. In [174],
an SEIR models the relations between case trends and epidemic conditions, socioeconomic
effect, and interventions. In [258], systematic reviews and meta-analyses review the work on
the relations between COVID-19 symptom severity, risk factors and public emotions.

COVID-19 multisource data modeling serves various purposes such as predicting COVID-
19 epidemic spread and transmission, medical diagnosis and treatment, and government
and community interventions by combining data from respective modalities, sources or
views. Examples of multisource data are combining COVID-19 case numbers with NPI
data; people’s demographics, health conditions, mobility, social and business activities,
social networking and media information; health and medical records, diagnosis information,
treatments, pharmaceutical interventions, and pathological tests; social and public activities
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and events, economic data, and sociopolitical data; and online, social media and mobile
apps-based messaging, news, Q/A, and discussion groups. Typical methods include data
fusion-based learning, mixed representations-based learning, clustering and classification
on mixed data types, DNN variants, etc. [107]. For example, a novel variational-LSTM
autoencoder model in [101] predicts the coronavirus spread in various countries by integrating
historical confirmed case numbers with urban factors (about location, urban population,
population density, and fertility rate) and governmental measures and responses (school,
workplace and public transport closures, public events cancellation, contact tracing, public
information campaigns, international travel controls, fiscal measures, and investment in
health care and vaccines). In [142], COVID-19 case numbers and weather data are combined
to analyze the correlation between COVID-19 confirmed cases and mortality and weather
factors. NLP methods can extract and analyze related news, which are then input to LSTM
networks to update the infection rate in a susceptible–infected epidemic model [273], which
shows to beat the susceptible–infected epidemic model and its combination with LSTM.
In [216], coupling LSTM with an epidemic model forecasts COVID-19 spread on case data,
population density and mobility.

COVID-19 hybrid methods integrate various methods for single or multiple-objective/task/source
learning. In addition to ensemble learning by integrating the results from multiple learners
such as ensemble trees and XGBoost, often multiple methods are sequentially involved to
learn specific tasks or data over phases; other common tasks are to integrate compartmental
models with other methods such as statistical models, classifiers and DNNs for the im-
proved forecasting of COVID-19 epidemic dynamics and attributes. For example, in [266], a
hybrid model predicts the infected and death cases by integrating a genetic algorithm to
optimize infection rates and integrating LSTM for parameter optimization into a modified
susceptible-infected-quarantined-recovered (SIQR) epidemic model. In [41], a regression
tree combined with wavelet transform predicts COVID-19 outbreak and assesses its risk
on case numbers. In [16], a baseline method generates a granular ranking (discrimination)
of severe respiratory infection or sepsis on the medical records of the general population,
then a decision-tree-based gradient boosting model adjusts the former predicted results in
subpopulations by aligning it with the published aggregate fatality rates. In addition to the
aforementioned methods, other methods and tasks e.g. for innovative pandemic responses
are available in the literature. Examples are automated primary care tools to alleviate the
shortage of healthcare workers [219], expert systems and chatbots for symptom detection
and lessening the mental health burden [150], IoT and smart connecting tools to prevent
outbreaks, remotely monitoring patients, and prompting enforcement of guidelines and
administrative orders to contain future outbreaks [88].

Discussion. Though various methods of hybridization have been summarized in this section,
the relevant research is not systematic, comprehensive, or substantial. This observation
applies to hybrid data, hybrid tasks, and hybrid methods. The complex characteristics
and challenges of both the virus and disease and of modeling their problems and data,
as discussed in Sections 2.2, 2.1 and 2.3 , are substantial. Though overwhelming efforts
have been made in modeling COVID-19, the above complexities require significant novel
developments through synergizing problems, data, and modeling techniques.

10 DISCUSSION AND OPPORTUNITIES
In the above review of each category of COVID-19 modeling techniques, a brief discussion
has been provided on the main limitations, gaps and opportunities in those areas. Here, we
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expand this specific discussion to broad major gaps in the research on modeling COVID-19.
Further, we discuss various open issues and opportunities for future research.

10.1 Modeling Gap Analyses
Two major aspects of modeling gaps include: the gaps in understanding the virus and disease
nature, and the gaps in modeling their complexities.

10.1.1 Gaps in understanding the problem nature. Since the virus is new and unique,
we have limited knowledge on all aspects of the SARS-CoV-2 virus and COVID-19, such
as virus characteristics, epidemiological attributes and dynamics, socioeconomic influence,
and virus mutations, and so on. Specifically, our poor understanding of the intrinsic and
intricate pathological, biomedical and epidemiological attributes of the evolving SARS-CoV-2
and COVID-19 systems limits the modeling attempts and contributions. As a result, our
understanding of the virus and disease is still insufficient without substantial knowledge and
comprehensive evidence on the system complexities; it is biased to specific data, conditions or
settings; it is shallow without deep insights into the virus and disease nature; and it is partial
without a full picture of the SARS-CoV-2 and COVID-19 complexities, in understanding
the COVID complex systems and their data complexities [35, 247].

To address these issues, the modeling has to start with building a comprehensive under-
standing of the virus nature and the fundamental complexities of the COVID-19 complex
systems. Of the many questions to explore, we highlight the following important unknowns,
which require cross-disciplinary scientific explorations by integrating medical science, virology,
bio-medicine, and data-driven discovery.

∙ The hidden nature of SARS-CoV-2 and COVID-19 : How does the virus interact with
human and animal hosts? How does the virus genetic system look like? What are the
epidemiological attributes of the virus and the disease characteristics after infections
under different contexts, e.g., demographics, community (population) scenarios, ethnics,
seasonality, and weather conditions? What are the high risk factors or high risk
factor combinations of infection and mortality? What causes the different levels of
symptom onset and differs asymptomatic and mild symptomatic infections from severe
symptomatic infections?

∙ The mysterious mutation mechanisms of SARS-CoV-2 : What genomic and pathological
factors determine the virus transform from one generation to another and over time?
What genomic and pathological mechanisms drive the variations? Why the genetic
variants differ from regions to regions and between population ethnics?

∙ The influence of external factors on virus spread and evolution: How does the virus
evolve under different ethnic, environmental and intervention (including pharmaceutical
and non-pharmaceutical) contexts? How do external factors such as demographics,
ethnics, environment, and healthcare quality influence the virus transformation? How
do personal hygiene, public health systems, public activities, population mobility and
daily commuting affect the virus spread and evolution?

∙ The virus adaption to vaccine and drug: What are the relations between key factors
such as the various vaccines and drugs available for treating COVID-19, the increasing
virus mutants and their more contagious new strains, the widespread delta strain
outbreaks, and unpredictable resurgence? How do the virus variants adapt to the
vaccines and drugs? How does the vaccination affect the virus evolution?

∙ The herd immunity vs. zero tolerance for the virus: What is the new COVID normalcy,
i.e., should a ‘zero tolerance for the virus’ be the target and eventually remove the
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SARS-COV-2 like we did for SARS or shall ‘quotidian existence’ be the new normal
such that humans live with the virus as influenza? For the former, what is the herd
immunity threshold for a manageable normal of living with the virus? Where is the
manageable risk level of balancing the vaccination rate, public health system capacity,
ethnic and community conditions, and acceptable daily numbers of infections and
deaths? How does the regional inequality of vaccinations and public health systems
affect the global recovery?

10.1.2 Gaps in modeling the system complexities. The modeling gaps come from both a
poor understanding of the virus and disease nature and the limitations in modeling their
characteristics and complexities. On one hand, even though massive efforts have been made
in modeling COVID-19, the existing modeling work is still in its early stage. The weaknesses
and limitations of the existing work lie in

∙ an average description of the population-wise coronavirus and the disease’s epidemio-
logical characteristics and observations after applying mitigation and control measures,
no fine-grained and microlevel analysis and findings are available;

∙ a direct application of existing (even very simple and classic) modeling methods without
COVID-specific and optimal modeling mechanisms, typically by applying overparam-
eterized or independently pretrained deep neural models or complex statistical and
compartment models on low-quality and often small COVID data;

∙ simple data-driven modeling purely motivated by applying advanced models (typically
deep models) on COVID-19 data without a deep incorporation of domain and external
knowledge and factors; and

∙ a purposeful design without a comprehensive design or exploration of the multi-faceted
COVID-19 characteristics and challenges in one framework or system.

On the other hand, the general applications of existing methods also present unsuitability
and incapability in tackling the complexities of the complex virus and disease. Table 9
compares the major modeling methods and their pros and cons in modeling COVID-19.
Consequently, it is common that the existing models and their modeling results

∙ often only reflect a specific population or cohort-based average estimation or hypothesis
of epidemic transmission, losing a personalized applicability to individual cases or
scenarios, making it difficult to undertake personalized treatment;

∙ are too specific to expand to other countries and scenarios, hard to reproduce and
transfer to other regions without (significant) changes, making it unsuitable for broad
applications;

∙ over- or under-fit the given data and hypothesis settings, they are difficult to validate
in a fine-grained way and have weak robustness or generalization for a general but
deep understanding of the problems; and

∙ lack the ability and capacity to disclose the intrinsic nature and general insights about
the SARS-CoV-2 virus, COVID-19 disease, and their interventions.

10.2 Opportunities for AI and Data Science
There are enormous opportunities and future directions in modeling COVID-19, including
(1) fundamentally characterizing the system complexities, (2) addressing the aforementioned
limitations of existing work, and (3) exploring new directions and alternatives. These are
particularly valid for AI, data science and machine learning, which play a dominating role
in the data-driven COVID-19 modeling.
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Table 9. Comparison of COVID-19 Modeling Methods.

Methods Pros Cons
Time-series
analysis

Temporal representations and interac-
tion modelings of periodic and aperi-
odic components, relations and trends
of COVID-19 cases at different states
(e.g., new, susceptible, infected, recov-
ered and death) and external temporal
factors

Weak modeling power involving other
rich factors (e.g., demographics and
clinical attributes) and complex data
characteristics (e.g., nonstationarity)
and discovering the insight of COVID-
19 driving forces and interventions

General ma-
chine learning

Multifaceted factor and relation analy-
sis, outlier detection, profiling, classifi-
cation, prediction and impact analysis
for disease diagnosis and case detection
on small and poor-quality COVID-19
data, etc.

Poor modeling of weak but complex in-
teractions, couplings, high-dimensional
dependencies, heterogeneity, nonsta-
tionarity and other data challenges in
multisource COVID-19 data

Statistical
modeling

Modeling distributional dynamics, un-
certainty and dependency with analyti-
cal explanation and parameter settings

Requires informative prior knowledge,
high modeling and computation com-
plexity on poor-quality COVID data

Epidemiological
modeling

Built on epidemic knowledge, straight-
forward but domain-friendly and ex-
plainable hypothesis test, strong char-
acterization of infection processes, state
transitions, and parameter selection

Captures complex epidemic transmis-
sion characteristics, factors, causal rela-
tions and processes in COVID-19 devel-
opments; hypothesis of homogeneous
disease transmissions

Deep learning Performs well with large and com-
plex COVID-19 data (e.g., medical
imaging)-based case and disease pre-
diction and identification with anno-
tated samples; pretrained model easily
adaptable to new tasks

Requires annotated ground-truth of
COVID-19 learning targets, easy to
overfit small COVID-19 data, vulnera-
ble results, poor interpretability, high
computational cost

Simulation Imitates and replicates complex
COVID-19 mechanisms and processes,
cost-effective, reproducible and risk-
averse, manually controllable for
purposeful test and optimization

Proper knowledge and hypotheses
about COVID-19 transmission and
factor interactions, high experimental
complexity, inactionable for evolving
and random real-life scenarios

Hybrid meth-
ods

Flexible and powerful in selecting
and combining small COVID-19 mul-
tisource data and relevant multi-
methods on demand for combined
COVID-19 learning tasks and data

Understands constituents for their best
ensemble to address specific COVID-
19 challenges with appropriate design
complexity, less flexible in combination
optimization and explanability

10.2.1 Characterizing the system complexities. To discover the mysteries of the COVID
virus and disease, the most important opportunities come from understanding their nature
and system characteristics and complexities, as discussed in Sections 2.1 and 10.1.1. Combin-
ing the domain-driven and data-driven thinking and techniques, there are various directions
in characterizing the problem nature and system complexities:

∙ extracting, representing and distinguishing observable and latent factors and metrics to
describe the epidemiological, biological (genomic), medical (clinical and pathological)
and social attributes, liveliness and dynamic processes of the virus, virus mutations,
the disease and its variants from other similar viruses and diseases;
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∙ identifying and characterizing external entities and factors (e.g., drugs, vaccines, ethnics,
environment) and how they interact with the virus and disease and influence their
evolution;

∙ characterizing and simulating the diversified (e.g., explicit vs. implicit, global vs. local,
domain-specific vs. general) interactions and relations between the above-extracted
explicit and implicit internal and external factors and their dynamics;

∙ quantifying and simulating the virus and disease’s system dynamics and genetic
mechanisms (e.g., self-organization, genomic expression, genetic crossover and mutation,
interaction and adaptation with external environment) in terms of temporal, dependent
variables and major transformations;

∙ simulating and quantifying the virus parasitism, interactions, adaptation and evolution
with human, animal and living hosts in a large scale.

10.2.2 Enhancing COVID-19 modeling. To address the modeling gaps in Section 10.1.2
and those rarely and poorly explored areas and challenges in Section 2.2, we here highlight
the following major directions.

Rarely to poorly addressed areas. First, opportunities to focus on the areas rarely or
poorly addressed in the existing COVID-19 modeling include: (1) characterizing the effective
NPIS on the variants of the SARS-CoV-2 virus and comparing them with those on the
original strains; (2) quantifying the effects of COVID-19 vaccines, pharmaceutical and NPI
interventions on the infection control, mobility, mental health, society and the economy,
e.g., the efficacy of vaccinated population percentage on herd immunity, and the effect
of variable close-contact interactions and individual actions on epidemic de-escalating; (3)
balancing the NPI strength and the socioeconomic recovery, e.g., modeling the effect of full
vs partial business close-downs and border control on virus confinement at different stages
and for different sectors, and characterizing the effect of increasing daily commuting and
workforce movement vs working-from-home and telecommuting on the virus confinement;
(4) capturing the temporally evolving interplay and interactions between virus propagation
and external interventions; and (5) modeling target problems by systemically coupling
relevant multisource data and multiple modeling techniques, e.g., by involving pathogen-
related, societal, environmental and racist factors and the disparities between developing
and developed countries, age groups, and races.

Hybrid modeling. Second, the hybridization of relevant data and techniques offers significant
opportunities to improve and expand the existing modeling capacity and results. Examples
include integrating (1) coarse-grained and fine-grained modeling, e.g., epidemic modeling by
SIR variants to inform further specific NPI’s effect analysis; (2) static and dynamic modeling,
e.g., from population-based static epidemic modeling to specific NPI-varying and time-varying
case forecasting; (3) observable and hidden factors and relations, e.g., multisource-based
attributed modeling with deep abstraction and representation of interactions between the
multisource factors; (4) local-to-micro-level and global-to-macro-level factors, e.g., involving
patient clinical and demographic records with their environmental and socioeconomic
context in survival and mortality prediction and medical resource planning; and (5) domain,
data and models for domain-specific, interpretable, evidence-based and actionable findings.
These typically involve compound modeling objectives, multisource data, and multi-method
ensembles.

Enhanced COVID-19 modeling. Third, another set of new opportunities is to undertake
sequential or multi-phase modeling, such as (1) from coarse-grained to fine-grained modeling:
e.g., applying epidemic models like SIR and SEIR on COVID-19 in the initial stage and
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then modeling the impact of NPIs, the mobility and behaviour change of a population on
epidemic dynamics; (2) from static to dynamic modeling: e.g., testing constant epidemic
parameters and then time-varying settings such as NPI-sensitive varying parameters; and
(3) from core to contextual factors: e.g., modeling epidemic processes on case data and
then involving pathogen-related, societal and environment (like temperature and humidity)
variables to model their influence on epidemic movements.

Lastly, alternative opportunities exist by (1) developing COVID-19-specific modeling
methods, benchmarks and evaluation measures to address the virus and disease’s challenges
and their data challenges for an intrinsic interpretation of the virus and disease nature and
dynamics; (2) trans-disciplinarily integrating the relevant domain knowledge and hypotheses
from biomedical science, pathology, epidemiology, statistics and computing science to address
multifaceted challenges in the virus, disease, data and modeling and to form a comprehensive
understanding of the virus and disease; (3) defining multifaceted modeling objectives and
tasks to directly address comprehensive epidemiological, clinical, social, economic or political
concerns and their challenges in one framework; and (4) ethical and explainable COVID-19
modeling with privacy-preserving and distributed heterogeneous information integration,
augmentation, representation and learning by utilizing personal computing devices (e.g.,
smart phones) and cloud analytics.

10.2.3 Exploring new opportunities. In addition to many specific perspectives, such as
hybridizing modeling objectives, data and methods in Section 10.2.2 and addressing the short-
comings in Section 10.1.2, we here highlight some other opportunities that may particularly
benefit (from) AI, data science and machine learning advances.

Quantifying the virus nature and complexities. An imperative yet challenging task for
the AI, data science and machine learning communities is to ‘quantify’ the nature and
complexities of the virus and disease and address the fundamental questions on the virus
nature and complexities raised in Section 10.1.1. Building on multi-disciplinary knowledge
such as on epidemiology, genetic computing and theories of complex systems, large-scale
agent-based epidemic simulation systems are demanding to test and improve genetic, clinical
and epidemiological hypotheses and knowledge about the virus and characterize the virus’
genetic evolution mechanisms.

∙ Large-scale COVID epidemiological dynamics: to obtain quantitative results and verifi-
cation on questions in Section 10.1.1, such as how does a virus evolve, cross-over and
mutate; how do billions of coronaviruses interact, compete, and transform over time;
and how do environmental factors affect the virus life and genetic evolution.

∙ Large-scale human-virus interactions: to characterize the experiments in relation to
questions such as how does the full population of a country interact with the virus
under their varied demographic profiles, hygiene protection habits, health conditions,
vaccination conditions, mobility settings, etc. by mimicking their physical census data
and circumstances in the real world; what is the vaccination threshold to build the herd
immunity for a country by considering their specific circumstances; and to compare the
simulation results with the reality of various waves of COVID-19 epidemic occurred in
the country.

∙ Large-scale intervention influence on human-virus interactions: to quantify and evaluate
how does the residents in a country respond to various intervention policies and
restrictions on public and household activities over time; how does enforcing or relaxing
interventions and restrictions affect the virus spread, infection numbers, and public
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heath system quality; and what vaccination and intervention preconditions make
business reopening possible, etc.

Data-driven discovery of COVID mysteries. There is increasing and comprehensive sources
of COVID-19 data available publicly and through private providers. Data-driven discovery
on this COVID-19 data can substantially leverage other domain-specific research on COVID
to disclose the mysteries of COVID.

∙ COVID data genomics: forming the data genomics of COVID for a person, country,
community or task by automatically extracting and fusing all possibly relevant data,
e.g., contacts, personal health, mobility, clinical reports, exposure to infected people,
and household and public activities in a privacy-preserving manner.

∙ COVID data augmentation: developing new techniques to address the various data
quality issues embedded in the data, as discussed in Section 2.2 and novel augmented
analytics and learning methods to directly learn from poor quality COVID data.

∙ All-purpose representation of COVID attributes: learning the representations on all-
relevant COVID data that can be used to describe the full profile of COVID and
support diverse learning objectives and tasks in an ethical and privacy-preserving
manner.

∙ Automated COVID screening and diagnosis: developing techniques and systems to
automatically detect, screen, predict and alert potential infection of the virus and
disease on the COVID data genomics.

∙ Virus detection and interaction modeling: developing personal IoT assistants and
sensors to detect the virus, trace its movement and its origin and visualize the ’COVID
net’ showing its propagation paths, interactions and networking with other viruses and
hosts.

∙ COVID knowledge graph: generating knowledge graph showing the ontology about
the virus; ontological connections between concepts on the virus; relations between
knowledge on the virus and its protection, intervention, treatment and influence; and
important highlights such as new knowledge discovered and misinformation detected.

∙ COVID safety and risk management: developing systems and tools (including mobile
apps) for personal and organizational daily management of their COVID safety and
risk, e.g., COVID-safe physical and emotional health management, mobility planning,
risk estimation and alerting, infection tests, immunity estimation, and compliance
management.

∙ Metasynthetic COVID decision-support systems: developing evidence-based decision
support systems to fuse real-time and relevant big data, simulate and replay the
outbreaks, estimate NPI effects, discover evidence from data and modeling, engage
domain experts in the modeling and optimization processes, generate recommendations
for decision-making, and support the data-driven analytics and management of severe
disasters and emergencies.

11 CONCLUDING REMARKS
The COVID-19 pandemic’s short-to-long-term influence and impact on public health (both
physical and mental health), human daily life, global society, economy and politics is un-
precedented, lasting, evolving yet quantified and verified. This review paints a comprehensive
picture of the field of COVID-19 modeling. The multidisciplinary methods including mathe-
matical modeling, AI, data science and deep learning on COVID-19 data have deepened
our understanding of the SARS-CoV-2 virus and its COVID-19 disease’s complexities and

, Vol. 1, No. 1, Article . Publication date: August 2021.



:58 Cao, et al.

nature; contributed to characterizing their propagation, evaluating and assisting in the
effect of preventive and control measures, detecting COVID-19 infections, predicting next
outbreaks, and estimating the COVID-19 influence and impact on psychological, economic
and social aspects.

The review also highlights the important demands and significant gaps in deeply and
systemically characterizing COVID-19-related problems and complexities; and developing
effective, interpretable and actionable models to characterize, measure, imitate, evaluate and
predict broad-based challenges and problems and to proactively and effectively intervene
in them. Such COVID-19 modeling research proposes many significant challenges and
opportunities to the multidisciplinary modeling communities in the next decade. These
include not only immediately gaining intrinsic knowledge and proactive insight about
the evolving coronavirus and its disease outbreak, infection, transmission, influence and
intervention; but also preparing to tackle future global health, financial, economic, security-
related and other black-swan events and disasters.
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