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Abstract 

In the era of open data, Poisson and other count regression models are increasingly 

important. Provided this, we develop a closed-form inference for an over-dispersed Poisson regression, 

especially for (over-dispersed) Bayesian Poisson wherein the exact inference is unobtainable. The 

approach is derived via mode-based log-Gaussian approximation. Unlike closed-form alternatives, it 

remains accurate even for zero-inflated count data. Besides, our approach has no arbitrary parameter 

that must be determined a priori. Monte Carlo experiments demonstrate that the estimation error of 

the proposed method is a considerably smaller estimation error than the closed-form alternatives and 

as small as the usual Poisson regressions. We obtained similar results in the case of Poisson additive 

mixed modeling considering spatial or group effects. The developed method was applied for analyzing 

COVID-19 data in Japan. This result suggests that influences of pedestrian density, age, and other 

factors on the number of cases change over periods.  
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Introduction 

Currently, a wide variety of count data are corrected through sensors and used for smart 

urban and regional management (see Soomro et al., 2019). For example, in 2020–2021 when the 

coronavirus disease (COVID-19) spread globally, the daily number of people infected with 

coronavirus was monitored worldwide, and countermeasures were considered based on the 

observations (Viner et al., 2020). 

Poisson and other regression models for count data have been used for analyzing the 

number of COVID-19 cases (e.g., Oztig and Askin, 2020; Vokó and Pitter, 2020) or other diseases 

(e.g., Wakefield, 2007; Lee and Neocleous, 2010). These regression models have also been used in 

ecology (e.g., Ver Hoef and Boveng, 2007; Lindén and Mäntyniemi, 2011), criminology (e.g., Osgood, 

2000; Piza, 2012), and other fields. 

Recently, Bayesian Poisson regression, which assumes Poisson distribution for the count 

data and Gaussian priors for latent variables describing spatial, group, and other effects, is widely used 

in applied studies. Owing to the lack of contiguity between the Poisson and Gaussian distributions, an 

approximate inference is necessary for the estimation. Unfortunately, the Markov Chain Monte Carlo 

method can be slow for large samples. Faster approximations have been developed for count data 

regression in a context of additive modeling (e.g., Wood, 2011; Rodríguez-Álvarez et al., 2015), mixed 

effects modeling (Pinheiro and Bates, 2011), and Gaussian process (e.g., Diggle et al., 1998; Rue et 

al., 2009). These approaches do not provide closed-form solutions. 

Exceptionally, Chan and Dong (2011) and Chan and Vasconcelos (2011) proposed closed-

form approximations for Poisson regression. Their approaches have the following advantages: 

(i) Easy to implement and extend. The Gaussian process model and other models for Gaussian data 

are readily transferred for count data modeling. 

(ii) Computationally efficient. Unlike alternatives, numerical optimization is not needed. 

(iii) Poisson regression estimates are unidentifiable or identifiable only weakly for certain data 

configuration (Silva and Tenreyro, 2010). As we will illustrate later, this property considerably 

worsen the accuracy of Poisson regression estimates especially for small samples with many 

zeros. The linear approximation is free from such difficulty and more stable. 

Breslow (1984) and El-Sayyad (1973) proposed relevant closed-form approximations, too. Given the 

current situation wherein a wide range of researchers and practitioners use count data, these fast, stable, 

and practical approaches will become increasingly important. Unfortunately, these approximations 

have the following disadvantages: 
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(iv) They have poor approximation accuracy for zero-inflated data (i.e., counts with many zeros) as 

we will demonstrate later. Zero-inflation is a special type of over-dispersion (Ver Hoef and 

Boveng, 2007). Thus, a closed-form approach accurately describing over-dispersion is needed. 

(v) An arbitrary parameter, which is used to avoid taking the logarithm of zero, must be determined 

a priori. The value is known to have substantial impact on the modeling result (Bellego and Pape, 

2019). A closed-form approach without such an arbitrary parameter is needed. 

Given that, we develop a closed-form approximation for the over-dispersed Poisson 

regression, especially (over-dispersed) Bayesian Poisson regression, that has (i)–(ii) and overcomes 

(iii)–(iv). 

 

Methods 

Improved log-Gaussian approximation 

The mode of a log-Gaussian distribution grows slower than the mean whereas the mode 

and mean of a Poisson distribution grow at the same rate. Therefore, mean-based log-Gaussian 

approximation, such as the Taylor approximation use in Chan and Dong (2011), can have poor 

approximation accuracy around the mode, which is the distribution center. Considering the success of 

Laplace or other mode-based approximations in previous studies, it is reasonable to accurately 

approximate Poisson distribution around the mode. This study first introduces a mode-based 

approximation achieving it. 

We first consider the following Poisson model for count variables 𝑌𝑖|𝑖 ∈ {1, … 𝑁}: 

𝑌𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖),      𝜆𝑖 = 𝑧𝑖  exp(𝜇𝑖), (1) 

where 𝜇𝑖  is represents the mean, which may be specified by a regression model with/without a 

Gaussian prior. 𝑧𝑖  is a given offset variable. 𝑌𝑖  is known to have two modes {𝜆𝑖 − 1, 𝜆𝑖} for 

integer-valued 𝜆𝑖. Later, we will use the center of the two modes 𝑀𝑜𝑑𝑒𝑐[𝑌𝑖] = 𝜆𝑖 − 0.5. 

 Our objective is to approximate Eq. (1) by using the following log-Gaussian model for 

variables 𝑦𝑖|𝑖 ∈ {1, … 𝑁}: 

𝑦𝑖 + 𝑐~𝑙𝑜𝑔𝑁 (𝜇𝑖(𝐺) ,   
1

𝑦𝑖 + 𝑐
)  (2) 

where 𝜇𝑖(𝐺) represents the mean, and c is a constant required to avoid taking the logarithm of zero. 

1

𝑦𝑖+𝑐
 is an approximate variance for a log-transformed Poisson random deviate (see El-Sayyad, 1973). 
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We approximate the Poisson model (Eq. (1)) using the log-Gaussian model (Eq. (2)) so 

that the mode 𝑀𝑜𝑑𝑒[𝑦𝑖] under Eq. (2) equals the mode center 𝑀𝑜𝑑𝑒𝑐[𝑌𝑖] of the Poisson model. The 

following condition is obtained from the mode matching 𝑀𝑜𝑑𝑒𝑐[𝑌𝑖] = 𝑀𝑜𝑑𝑒[𝑦𝑖]: 

𝑧𝑖 exp(𝜇𝑖) − 0.5 = exp (𝜇𝑖(𝐺) −
1

𝑦𝑖 + 𝑐
) − 𝑐. (3) 

Eq. (3) suggests that 𝜇𝑖 and 𝜇𝑖(𝐺) do not generally have a linear relationship. Exceptionally, they 

have the following linear relationship if 𝑐 = 0.5: 

𝜇𝑖(𝐺) = log(𝑧𝑖) + 𝜇𝑖 +
1

𝑦𝑖 + 0.5
. (4) 

While existing studies have determined 𝑐 somewhat arbitrary, 𝑐 = 0.5 is found to be a necessary 

for applying the linear approximation under our assumption. 

Let us substitute 𝑐 = 0.5 and Eq. (4) into Eq. (2). Then, we obtain the following log-

Gaussian model approximating the Poisson model: 

𝑦𝑖 + 0.5~𝐿𝑜𝑔𝑁 (log(𝑧𝑖) + 𝜇𝑖 +
1

𝑦𝑖 + 0.5
,   

1

𝑦𝑖 + 0.5
). (5) 

By organizing Eq. (5), we have the following model: 

log(𝑦𝑖
∗) ~𝑁 (𝜇𝑖 ,   

1

𝑦𝑖 + 0.5
), (6) 

where 𝑦𝑖
∗ =

𝑦𝑖+0.5

𝑧𝑖
exp (−

1

𝑦𝑖+0.5
). In short, the log-Gaussian distribution approximates the Poisson 

distribution around the mode center. 

Unfortunately, the mode-based approximation is available if only 𝜆𝑖 = 𝐸[𝑌𝑖] ≥ 0.5 , 

which assures the non-negativity of 𝑀𝑜𝑑𝑒𝑐[𝑌𝑖] . If 𝜆𝑖 < 0.5 , the mode of the Poisson and log-

Gaussian distributions behave somewhat differently: the Poisson mode is always zero while the mode 

of the log-Gaussian distribution gradually converges to zero as 𝜆𝑖  (or 𝜇𝑖 ) declines. Mode-based 

approximation is not suitable in this case. By contrast, the mean of the two distributions both converge 

to zero as 𝜆𝑖 (or 𝜇𝑖) approaches zero. 

Thus, for 𝐸[𝑌𝑖] < 0.5, we rely on a mean-based approximation based on the following 

relationship, which is obtained from 𝐸[𝑦𝑖
∗] = exp (𝜇𝑖 +

0.5

𝑦𝑖+0.5
) (see Eq. 6): 

𝐸[𝑦𝑖
∗] exp (−

0.5

𝑦𝑖 + 0.5
) = 𝐸[𝑌𝑖]. (7) 
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Eq. (7) implies that, when approximating the Poisson mean using 𝑦𝑖
∗ , it should be rescaled by 

multiplying exp (−
0.5

𝑦𝑖+0.5
). By applying the rescaling for Eq. (6), we have the following mean-based 

approximation: 

log(𝑦𝑖
∗∗) ~𝑁 (𝜇𝑖 ,   

1

𝑦𝑖 + 0.5
), (8) 

where 𝑦𝑖
∗∗ =

𝑦𝑖+0.5

𝑧𝑖
exp (−

1+0.5

𝑦𝑖+0.5
). Because of the disadvantage of the mean-based approximation 

explained in the beginning of this section, we assume Eq .(6) as long as 𝐸[𝑌𝑖] ≥ 0.5 (i.e., the mode-

center is available) while Eq. (8) otherwise.  

Still, 𝐸[𝑌𝑖] = 𝜆𝑖  is unknown a priori. Considering the property that 𝑃(𝑌𝑖 < 0.5) =

𝑃(𝑌𝑖 = 0), we approximate 𝑃(𝐸[𝑌𝑖] < 0.5) using the ratio 𝑟 of zero counts in {𝑌1 , … , 𝑌𝑁}. Given 

the approximation, Eqs. (6) and (8) are applied with probabilities 𝑟 and 1 − 𝑟, respectively. By 

combining these equations using r, our proposed approximation is formulated as  

log(𝑦𝑖
+) ~𝑁 (𝜇𝑖 ,   

1

𝑦𝑖 + 0.5
), (9) 

where 𝑦𝑖
+ =

𝑦𝑖+0.5

𝑧𝑖
exp (−

1+0.5𝑟

𝑦𝑖+0.5
), which yields Eq. (6) if 𝑟 = 0 and Eq. (8) if 𝑟 = 1. If all counts 

are non-zero, the mode-based approximation is applied for all the samples. As the share of zero counts 

increases, the mean-based approximation is emphasized. 

 

Property of the proposed approximation 

Table 1 summarizes closed-form approximations for the Poisson regression models. These 

methods perform approximations through the estimation of a linear regression model using the log-

transformed explained variables and the inverse weight based on 𝑦𝑖. These practical methods will be 

useful for not only researchers but also practitioners. However, existing methods are accurate only for 

a moderate to large 𝜇𝑖 (Chan and Vasconcelos, 2011). In other words, they should not be used for 

counts with many zeros. Besides, the c parameter, which has a considerable impact on analysis result, 

must be determined a priori (see the Introduction section). These drawbacks inhibit the practical use 

of these approximations. 

 

 

 



 6 

Table 1: Closed-form approximations for the Poisson regression model Eq. (1). c is a tuning parameter 

that must be determined a priori. For the offset variable,  𝑧𝑖 = 1 is assumed. 

Method 
Explained variables 

(pseudo-data) 
Weight 

Value of the tuning 

parameter 𝑐 used 

Posterior approx. (EL-Sayyad, 1973) log(𝑦𝑖 + 𝑐) 
1

𝑦𝑖 + 𝑐
 0.0 

Taylor approx. (Chan and Dong, 2011) 

Log-Gamma approx.  

(Chan and Vasconcelos, 2011) 

log(𝑦𝑖 + 𝑐) −
𝑐

𝑦𝑖 + 𝑐
 

1

𝑦
𝑖

+ 𝑐
 1.0 

Our approximation log(𝑦𝑖 + 0.5) −
1 + 0.5𝑟

𝑦𝑖 + 0.5
 

1

𝑦𝑖 + 0.5
  

 

 

 

In contrast, our method does not have any unknown tuning parameters. Because of the 

mode matching, the proposed method accurately approximates the mode of the Poisson distribution 

irrespective of 𝜇𝑖 . As we will show later, this property dramatically improves the approximation 

accuracy for zero-inflated count data.  

Note that our mode-matching method is akin to the Laplace approximation, which is based 

on the mode-matching of a Gaussian distribution and the target distribution. Considering studies 

demonstrating the accuracy of the Laplace approximation, our mode-based approach is expected to be 

accurate as well. 

 

 

Results: Monte Carlo experiments 

Case 1: Basic over-dispersed Poisson regression model 

This section compares the estimation accuracy of the proposed approximation (Proposed) 

with standard Poisson regression (Poisson), over-dispersed Poisson regression (odPoisson), and 

negative binomial regression alternatives (NB). We also compare ours with the posterior 

approximation of EL-Sayyad (1973) (Posterior) and the Taylor approximation of Chan and 

Vasconcelos (2011) (Taylor). 
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The simulated count data 𝑦𝑖 is generated from the over-dispersed Poisson regression with 

mean 𝜆𝑖 and the overdispersion parameter 𝜎2: 

𝑦𝑖~𝑜𝑑𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖 , 𝜎2),      𝜆𝑖 = exp(𝛽0 + 𝑥𝑖,1𝛽1 + 𝑥𝑖,2𝛽2), (10) 

where 𝑥𝑖,1  and 𝑥𝑖,2  are generated from standard normal distributions N(0, 1), and {𝛽1 , 𝛽2} =

{2.0, 0.5}. We refer to 𝛽1 as a strong and 𝛽2 as a weak coefficient. 𝜎2 = 1 implies the standard 

Poisson regression without over-dispersion while 𝜎2 > 1 means over-dispersion. The 𝛽0 parameter 

implicitly controls the ratio of zero counts; a smaller 𝛽0 value yields more zero counts.  

The coefficient estimation accuracy is compared across models while varying 𝛽0 ∈

{−2, −1, 0, 1, 1}, 𝜎2 ∈ {1, 5}, and 𝑁 ∈ {50, 200}. In each case, the simulations were iterated 500 

times and the root mean squared error (RMSE) and the mean bias are evaluated: 

𝑅𝑀𝑆𝐸[𝛽𝑘] = √
1

𝑁
∑ (𝛽̂𝑘

(𝑖𝑡𝑒𝑟)
− 𝛽𝑘)2

500

𝑖𝑡𝑒𝑟=1
,            𝐵𝑖𝑎𝑠[𝛽𝑘] =

1

𝑁
∑ (𝛽̂𝑘

(𝑖𝑡𝑒𝑟)
− 𝛽𝑘)

500

𝑖𝑡𝑒𝑟=1

 (11) 

where 𝛽̂𝑘
(𝑖𝑡𝑒𝑟)

 is the estimated 𝛽𝑘  in the iter-th iteration. 

The evaluated RMSE and bias values are plotted in Figs 1 and 2 in a case without 

overdispersion 𝜎2 = 1.0 whereas Figs 3 and 4 in cases with overdispersion 𝜎2 = 5.0. Posterior and 

Taylor tend to have large RMSEs and biases across cases, and the errors inflate if 𝑦𝑖 has many zero 

values (i.e., small 𝛽0). These approximations do not work for zero-inflated count data. In contrast, the 

RMSE values for the proposed method are as small as the exact Poisson and odPoisson specifications 

across cases. Poisson, odPoisson, and NB have very large RMSE values if the counts are over-

dispersed (𝜎2 = 5.0) and have many zero values (small 𝛽0); this is attributable to the identification 

problem explained in the “Introduction” section. Proposed, which does not suffer from this problem, 

advantageous in terms of stability. Although the bias of the proposed method tends to be larger than 

that of Poisson and odPoisson, the value is still considerably smaller than that of Posterior and Taylor. 

It is suggested that the proposed method estimates regression coefficients accurately, especially for 

zero-inflated small data. Fig 5 shows the coefficient standard error (SE) estimates. If 𝑦𝑖 has less zero 

values (i.e., large 𝛽0), the SEs estimated from the proposed method are similar to those of odPoisson, 

especially in the over-dispersion case. In contrast, the proposed method indicated smaller SEs if 𝑦𝑖 

had many zero values (i.e., small 𝛽0). Considering the better estimation accuracy of the proposed 

method for small 𝛽0, the smaller SEs might suggest the stability of the proposed method. 
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Figure 1: RMSE of the regression coefficients in cases without overdispersion (𝜎2 = 1.0) 

 

Figure 2: Bias of the regression coefficients in cases without overdispersion (𝜎2 = 1.0) 
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Figure 3: RMSE of the regression coefficients in cases with overdispersion (𝜎2 = 5.0) 

 

 

Figure 4: Bias of the regression coefficients in cases with overdispersion (𝜎2 = 5.0) 
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Figure 5: Means of the coefficient standard errors (𝑁 = 200) 

 

Case 2: Model with spatial effects 

To verify the expandability of the proposed model, this section applies the proposed method 

to estimate a spatial regression model, which has been widely used to analyze spatial phenomena in 

the environment, economy, and epidemic. We consider the following model:  

𝑦𝑖~𝑜𝑑𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖 , 𝜎2),      𝜆𝑖 = exp(𝛽0 + 𝑥𝑖,1𝛽1 + 𝑥𝑖,2𝛽2 + 𝑠𝑖), (12) 

where {𝛽1 , 𝛽2} = {2, 0.5} and 𝜎2 = 5. 𝑠𝑖  is a process capturing a spatially dependent pattern of the 

data. Following Murakami and Griffith (2015), it is modeled by assuming random effects whose 

spatial dependence exponentially decays relative to the Euclidean distance between the geometric 

centers of the two zones. Equation (11) is an over-dispersed Poisson mixed-effects model (MEM) that 

considers spatial dependence. The model is estimated by applying the maximum likelihood (ML) 

estimation for the Poisson MEM (Poisson), an over-dispersed Poisson MEM (odPoisson), the Taylor 

approximate Poisson MEM (Taylor), and our specification (Proposed). Taylor and Proposed fitted 

linear MEMs using the transforming explained variables and weight variables (see Table 1). All 

models were estimated using the R package mgcv (https://cran.r-

project.org/web/packages/mgcv/index.html). 

We assumed 𝛽0 ∈ {−2, −1, 0, 1, 1} and 𝑁 ∈ {50, 200}. In each case, the models were 

estimated 500 times, and the estimation accuracies were compared. Figs 6 and 7 display the estimated 

https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/mgcv/index.html
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RMSEs and biases, respectively. When N = 50, odPoisson took extremely large RMSEs due to its 

singular estimation. Poisson and Taylor also had large RMSEs. In contrast, the proposed method tends 

to have smaller RMSE values. The proposed method may be a better choice for small samples. Even 

for N = 200, the RMSEs and biases of Proposed were as small as those of Poisson and odPoisson. The 

estimation accuracy of the proposed method was verified in the case of spatial regression. 

Fig 8 compares the coefficient standard errors. For a large 𝛽0, the SEs obtained from the 

proposed method are similar to odPoisson, which proposes approximates. While odPoisson has larger 

SEs for small 𝛽0, it is attributable to the singular fit. The proposed method stabilizes it and make the 

SEs small. Finally, Fig 9 compares the estimation accuracy for the spatially dependent process 𝑠𝑖 . 

This figure shows that the proposed method tends to estimate the process more accurately than 

alternatives.  

Note that we performed another Monte Carlo experiment assuming group effects, which 

model heterogeneity across groups instead of the spatially dependent effects. As summarized in 

Appendix S1, the RMSEs and biases are as small as Poisson and odPoisson for N = 200 and smaller 

for N = 50. The SEs are similar to odPoisson for large 𝛽0 and smaller for small 𝛽0. 

In short, the proposed method provides an accurate and stable approximation for an over-

dispersed Poisson MEM. 

 

 

Figure 6: RMSE of the regression coefficients (model with spatial effects) 
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Figure 7: Bias of the regression coefficients (model with spatial effects) 

 

 

Figure 8: Means of the coefficient standard errors (𝑁 = 200) 

 

 

Figure 9: RMSE of the estimated spatial effects 
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Results: COVID-19 analysis 

Outline 

This section employs the developed approximation to an analysis of the COVID-19 

(coronavirus disease 2019) pandemic. Since the first case was detected in Wuhan, China, in December 

2019, the coronavirus spread. As of February 1, 2021, the cumulative number of confirmed cases is 

103.41 million, while the confirmed death toll is 2.25 million. To achieve effective infection control 

for not only COVID-19 but also pandemics/endemics in the future, it is important to investigate the 

determinants behind the disaster. 

 Fig 10 plots the number of daily cases in Japan between February 1, 2020, and January 29, 

2021. The number peaked around April 2020, August 2020, and January 2021, respectively. Based on 

the time trend, we refer to February 1 – May 31 as the first wave, June 1 – September 30 as the second 

wave, and October 1 – January 29, 2021, as the third wave. Fig 11 displays the spatial plots of the 

daily new cases by prefecture. This figure shows the tendency of the number of infected people to 

become large near Tokyo and Osaka, which are major urban areas. 

 

 

Figure 10: Daily number of cases across Japan 

 

Feb 1 Jun 1 Oct 1 Jan 29

2020 2021

First
wave

Second
wave

Third
wave

(Apr) (Aug)
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Figure 11: Number of cases by prefecture 

 

 We performed a regression analysis exploring the determinants of the increase/decrease in 

each wave. The explained variables are the number of daily cases by prefecture by generation every 

decade. The sample sizes were 51,336, 50,508, and 50,094 for the three waves respectively. 

Unfortunately, the counts were zero-inflated; 89.0 % (45,696 samples), 77.1 % (38,954 samples), and 

49.7 % (24,873 samples) of samples are zeros. 

For the zero-inflated COVID-19 data, we fit Eq. (13) approximating an over-dispersed 

Poisson additive mixed model: 

log(𝑦𝑖
∗) = 𝛽0 + 𝑥𝑖𝛽1 + ∑ 𝑔𝑖,𝑙

4

𝑙=1

+ 𝑠𝑖 + 𝜀𝑖 , 𝜀𝑖~𝑁 (0,
𝜎2

𝑦𝑖 + 0.5
), (13) 

where 𝑦𝑖
∗ =

𝑦𝑖+0.5

𝑧𝑖
exp (−

1.5

𝑦𝑖+0.5
) , where 𝑦𝑖  is the number of daily new cases. 𝛽0  and 𝛽1  are 

regression coefficients. To scale the mean function according to the population, the offset variable 𝑧𝑖  

is given by the prefectural population. The explanatory variable 𝑥𝑖  is the prefectural pedestrian 

density by day, which is relative to January 13, 2020 (source: Apple Mobility Trends: 

https://covid19.apple.com/mobility). The density is estimated based on the number of route searches 

by Apple map users. For further detail, see the source page. 𝑔𝑖,𝑙  represents the l-th group-wise random 

effect. We consider the effects by week (𝑔𝑖,1), days of the week (𝑔𝑖,2), generation (𝑔𝑖,3), and prefecture 

August 15 October 15                   December 15

Number of 
Infected people

February 15                   April 15                         July 15

2000

1500

1000

500

0

Tokyo

Osaka

https://covid19.apple.com/mobility
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(𝑔𝑖,4). In addition, a Moran coefficient-based spatial random effect 𝑠𝑖  is included to eliminate residual 

spatial dependence (Murakami and Griffith, 2015).  

The model was estimated using the R package spmoran (Version 0.2.1; https://cran.r-

project.org/web/packages/spmoran/index.html). 

 

Results 

Table 1 summarizes the estimated parameters. The estimated coefficients of pedestrian 

density become positively significant in the second and third waves. Self-restraint was estimated to 

reduce the number of cases after June. Based on the estimated residual standard error (𝜎2), the residual 

variance was over-dispersed, and the tendency became stronger over time. 

 

 

Table 1: Parameter estimates. See Figure 12 for the fitting on the number of cases. 

 
First wave Second wave Third wave 

Est. t value Est. t value Est. t value 

Const (𝛽0) -16.60  -220.24  *** -16.68  -114.03  *** -14.88  -115.94  *** 

Pedestrian density (𝛽1) -0.38  -7.68  *** 0.23  3.48  *** 0.15  3.34  *** 

Residual S.E. (𝜎2) 1.40  1.67  1.91  

Log-Likelihood -71375  -100418  -93152  

 

 

 

Figure 12: Comparison of the observed and predicted number of cases 

 

 

 

Number of cases Number of cases Number of cases

Pred. 
value

Pred. 
value

Pred. 
value

1st wave 2nd wave 3rd wave

https://cran.r-project.org/web/packages/spmoran/index.html
https://cran.r-project.org/web/packages/spmoran/index.html
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Figure 13: Estimated group effects (week, days of the week, generation) 

 

 

Fig 13 plots the estimated group effects by week, days of the week, and generation. The 

estimated week-wise effects show that the increase in cases lasts longer in later waves. Control of the 

infection spread might be getting more difficult over waves. Regarding the days of the week, Monday 

has the lowest while Thursday, Friday, and Saturday have higher values. The difference is attributable 

to some business reasons such as the closing of hospitals and PCR test sites. The estimated generation 

effects have considerable differences across waves. In the first wave, people who are in the working 

generation (the 20s - 50s) tend to be infected. Commuting and/or meeting in the office might trigger 

the infection. In the second wave, the 20’s group has a strong tendency of being infected as compared 

to the elders, therefore, more self-restriction is needed. In the third wave, not only the 20s but also the 

30s – 50s have high chances of being infected. Infection might spread again across the working 

generation. 

 Fig 14 plots the estimated prefecture-wise independent effects and spatially dependent 

effects. The former estimates local hotspots while the latter, global hotspots. The estimated prefecture-

wise effects suggest that prefectures including major cities (Tokyo, Osaka, Fukuoka) and Hokkaido 

are local hotspots. More countermeasures might be required in these prefectures. On the other hand, 

based on the estimated spatially dependent effects, there is a global hotspot around Tokyo, and the 

influences grow over waves. Control of the infection spread from Tokyo might have been important 

to mitigate the third wave. 
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Figure 14: Estimated group effects by prefecture (top) and spatially dependent effects (bottom). 

 

Discussion 

This study develops a practical log-Gaussian approximation for Poisson regression models. 

Considering its simplicity, computational efficiency, and applicability to zero-inflated data, it will be 

useful for researchers as well as practitioners. 

Exploring the expandability of our approach is an important future task. For example, our 

approach might be useful for spatial and spatiotemporal interpolation of count data by combining it 

with Gaussian process models without additional computation and implementation costs. Our 

approach might also be useful for fast count data assimilation by combining it with a state-space model. 

Improving approximation accuracy would also be an interesting research endeavor. If a closed-form 

approximation comparable with non-closed-form alternatives regarding not only RMSE but also bias 

is developed, it will be extremely useful in practice. 
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Supporting information 

Appendix S1: Monte Carlo experiments assuming group-wise 

random effects 

This section examines the estimation accuracy of the proposed model, assuming a Poisson 

MEM with group-wise random effects. The synthetic data is generated by an over-dispersed Poisson 

MEM defined as 

𝑦𝑖~𝑜𝑑𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖 , 𝜎2),      𝜆𝑖 = exp(𝛽0 + 𝑥𝑖,1𝛽1 + 𝑥𝑖,2𝛽2 + 𝑔𝑖), (A-1) 

where {𝛽1 , 𝛽2} = {2, 0.5} and 𝜎2 = 5. 𝑔𝑖  represents the group-wise random intercept. Samples 

were randomly assigned to three groups for N = 50 (16.7 samples per group) and 10 groups for N = 

200 (20 samples per group). The value of 𝑔𝑖 was sampled from a standard normal distribution. 

Following the Monte Carlo experiments section, the Poisson MEM (Poisson), an over-

dispersed Poisson MEM (odPoisson), the Taylor approximate Poisson MEM (Tayor), and our 

specification (Proposed) are estimated by the likelihood maximum, and their estimation accuracies are 

compared while varying 𝛽0 ∈ {−2, −1, 0, 1, 1} and 𝑁 ∈ {50, 200}. In each case, the models were 

estimated 500 times. 

Figs A-1 and A-2 summarize the estimated RMSEs ansd biases. Proposed tends to have 

smaller RMSEs than Poisson, odPoisson, and Taylor in cases with small samples (N = 50) while as 

small as Poisson and odPoisson in cases with N = 200. Although Bias tends to be larger than Poisson 
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and odPoisson, they are much smaller than Taylor. Fig A-3 compares SEs. The result is consistent 

with another simulation assuming spatial dependence (see the Monte Carlo experiment section); the 

SEs estimated from Proposed are similar for odPoisson for large 𝛽0  and smaller for small 𝛽0 . 

Regarding the group effects estimates, the accuracy of Proposed is as same as odPoisson and better 

than Taylor and Poisson. 

Overall, the results suggest that the proposed method accurately approximates the over-

dispersed Poisson MEM with group effects. 

 

Figure A-1: RMSE of the regression coefficients (model with group effects) 
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Figure A-2: Bias of the regression coefficients (model with group effects) 

 

Figure A-3: Means of the coefficient standard errors (𝑵 = 𝟐𝟎𝟎) 

 

 

Figure A-4: RMSE of the estimated group effects 


