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Abstract

Mass antigen testing has been proposed as a possible cost-effective tool to contain

the Covid-19 pandemic. We test the impact of a voluntary mass testing campaign

implemented in the Italian region of South Tyrol on the spread of the virus in the

following months. We do so by using an innovative empirical approach which embeds

a semi-parametric growth model - where Covid-19 transmission dynamics are allowed

to vary across regions and to be impacted by the implementation of the mass testing

campaign - into a synthetic control framework which creates an appropriate control

group of other Italian regions. We find that the mass test campaign decreased the

growth rate of Covid-19 by 39% which corresponds to a reduction in the total additional

cases of 18%, 30% and 56% within ten, twenty and forty days from the intervention date,

respectively. Our results suggest that mass testing campaigns are useful instruments

for mitigating the pandemic.

Keywords: Mass testing; Covid-19; Growth model; Semi-parametric growth model; Syn-

thetic controls.
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1 Introduction

A wide variety of interventions have been used in an attempt to stop the spread of Covid-

19 across the globe (i.e. lockdown, quarantines, business closures, mobility restrictions,

school closures) (Haug et al., 2020; Tian et al., 2020). Many of these are also the main

candidate policies for stopping the spread of other large-scale epidemic outbreaks, such as

Ebola. One particularly low-cost intervention that has been tried in a few locations is mass

testing of a population in order to identify asymptomatic carriers (Holt, 2020; Atkeson et al.,

2021). Theoretical work suggests that mass testing could reduce daily infections by up to

30 percent (Bosetti et al., 2020), while Pavelka et al. (2021) evaluates the impact of a mass

testing campaign undertaken in Slovakia in late 2020 and finds that it temporarily decreased

the growth of Covid-19 by 70 percent. Importantly, many countries worldwide offer open

public testing indicating that frequent mass testing is a feasible intervention (Hasell et al.,

2020).

In this paper, we test the impact of a voluntary mass testing campaign implemented in

the Italian region of South Tyrol on the spread of the virus in the following months. We

do so by using an innovative empirical approach which embeds a semi-parametric growth

model into a synthetic control framework. Specifically, we first use the synthetic control

approach to create a control group which is a weighted-average of other Italian regions that

best follow the dynamics of Covid-19 transmission in South Tyrol prior to the mass testing

campaign (Abadie et al., 2010a; Abadie and Gardeazabal, 2003a).1 We then estimate on

appropriately weighted data a semi-parametric growth model where Covid-19 transmission

dynamics (i.e. growth rates) are allowed to vary across regions and to be impacted by the

implementation of the mass testing campaign. Importantly, this approach is in the spirit of

difference-in-difference models which compare changes in outcomes over time in a treated
1We use this approach because it uses the data to derive the optimal control region for the South Tyrol.

Mitze et al. (2020) and Cho (2020) use this method to evaluate the impact of masks and other nonpharmaceu-
tical interventions on the spread of Covid-19, however these papers implement it in a traditional framework
which does not account for the underlying growth dynamics of an epidemic like Covid-19.
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location to changes in outcomes over time in otherwise similar control locations and hence

can isolate the impact of the mass testing campaign from national level policies regarding

freedom of movement, business and school closures, hygienic measures, etc. since no other

policy changed at the same time in South Tyrol.

This approach has a number of benefits over what has so far been done in the literature

that attempts to estimate the impact of public health interventions on the spread of Covid-19,

as well as on other contagious diseases. Specifically, previous papers use either full parametric

models (Wu et al., 2020; Aviv-Sharon and Aharoni, 2020; Chénangnon et al., 2020; Pelinovsky

et al., 2020) or traditional synthetic control or difference-in-difference models (Hsiang et al.,

2020; Tian et al., 2020; Mangrum and Niekamp, 2020; Alexander et al., 2020; Dave et al.,

2021; Singh et al., 2021; Mitze et al., 2020; Cho, 2020). While fully parametric models

based on biological growth theory have proved very useful for assessing the dynamics of

disease outbreaks, their overly rigid a-priori parametric assumptions do not allow them to

fit the typical variation in short- and medium-run dynamics seen in the spread of Covid-19.

This is a potential concern with the findings of Pavelka et al. (2021), especially since the

testing campaign in Slovakia was a national level campaign and other policies were being

implemented at the same time to reduce transmission rates. On the other hand, traditional

difference-in-difference and synthetic control models, by assuming that treatment and control

regions would follow parallel trends in a counterfactual reality without any intervention, are

potentially biased because growth dynamics in different regions will depend on the prior

contagion rate.

Although there is a rich literature on estimating model-free growth curves in other fields,

the use of non-parametric or semi-parametric approaches has not been sufficiently explored

in the context of health policy analysis.2 We show that the estimated impact of the mass test

campaign in South Tyrol is sensitive to how one models Covid-19 transmission dynamics and
2Exceptions include Chénangnon et al. (2020) which fits a flexible growth model curve to reported positive

Covid-19 cases and Lee et al. (2020) which specifies dependence of the parameters in the Richards growth
model on covariates to assess country-level risk factors due to Covid-19 within a hierarchical Bayesian
framework. However, neither of these papers estimate the impact of a particular policy intervention.
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flexible models better fit the data and generate more robust estimates of the impact of the

mass testing campaign. Furthermore, our approach has the added benefit that it generates

estimates of the disease proliferation rate both with and without intervention, thus gaining

insight on the transmission pathways.

Overall, we find that the mass test campaign in the South Tyrol decreased the growth

rate of Covid-19 by 39% (95% confidence interval: 29-49%). This corresponds to a reduction

in the total additional cases of 14%, 18%, 30% and 56% within seven, ten, twenty and forty

days from the intervention date, respectively. Importantly, this large impact was achieved

even though the campaign was entirely voluntary with no incentives to participate.3 Our

results are in line with the predictions made in Bosetti et al. (2020) based on an epidemi-

ological model. We find a smaller impact than Pavelka et al. (2021) reports for the mass

testing campaign in Slovakia; however, the Slovakian intervention featured a multiple round

campaign in addition to concurrent interventions, including a one-week lockdown.4

2 The Mass Test

The population of South Tyrol was invited to take part in a mass testing campaign in late

November 2020 using rapid antigen tests, which involve a nasal and throat swab. Authorities

set up around 300 testing centers, where professional health care workers carried out the tests,

with the support of volunteers from the civil protection agency, the voluntary fire services

and other organizations for handling the logistics and the administration. All residents were

invited to participate, with the exception of children below the age of five, people with Covid-

19 symptoms, those on sick leave, those who had tested positive and isolated in the last three

months, and those who had recently tested positive or were in quarantine or self-isolating.

People with a prior appointment for a PCR test, those regularly tested for work reasons,
3In Slovakia, individuals who did not participate were required to quarantine for ten days, hence it was

not entirely a voluntary test.
4In line with our findings, a recent working paper by Kahanec et al. (2021) uses a different approach to

analyze the impact of the Slovakia campaign and finds that infections were reduced by about 25-30% in the
two weeks after individuals in some districts were tested a second time.
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and individuals in social care were also not tested.

Testing centers generally operated from 8am to 6pm from Friday, 20 November to Sunday,

22 November. During this period, people could show up at any of the centers throughout

the region. In some municipalities, it was possible to register online and some published

suggested centers and time slots based on the address of residence. It was also possible to be

tested at some pharmacies and GPs in the period 18 to 25 November. People only needed a

valid ID and a European Health Insurance card. They filled in a form with an email address,

where they would receive, generally within a day, an encrypted file with the outcome, and a

mobile number, where they would receive an SMS with the code to open the file. In case of

a negative result, people were advised to continue following prevention measures like social

distancing and mask wearing. In case of a positive result, people had to isolate for 10 days

if asymptomatic and contact their doctor if they developed symptoms.

Participation in the mass testing was voluntary and encouraged by a massive communi-

cation campaign, providing information (with material available also in Albanian, Arabic,

English, French and Urdu, as well as in simple language for kids), as well as endorsements

by public figures. The goal was to identify asymptomatic cases in the population and hence

reduce virus transmission. The headline of the campaign was “Together against coronavirus”,

using appeals like “Let’s break the infection wave together and pave the way towards a grad-

ual return to normality!”. In the end, 72 percent of eligible residents volunteered to be tested

(Stillman and Tonin, 2021). In comparison, 83 percent of the eligible population in Slovakia

decided to be tested when the alternative was to quarantine for 10 days.

3 Methods

In this section, we first discuss how we create the optimal control group for evaluating

the mass testing campaign in the South Tyrol. We then discuss how we implement the

semi-parametric growth model, how it compares to parametric models and how we imbed a

5



difference-in-difference type framework in this model. Finally, we discuss statistical inference.

3.1 Defining the control group

As there is no obvious a priori control group, in order to evaluate the effect of the screening

intervention in South Tyrol, we constructed an optimal control group (Synthetic South Tyrol)

using the synthetic control methodology of Abadie et al. (2010b). This method constructs

a weighted combination of data from the control group to approximate the behavior of the

intervention group in terms of pre-intervention characteristics.

Suppose we observe new cases Yit in regions i = 1, . . . , N + 1 at times t = 1, . . . , T

and assume intervention occurs at time T0 + 1 so that 1, . . . , T0 are pre-intervention periods.

Without loss of generality the first region (i = 1) represents South Tyrol, which is exposed to

the intervention, so we have N remaining donor regions contributing to the synthetic control

(in our case, the other 20 Italian regions or autonomous provinces in the donor pool). Let

w = (w1, . . . , wN)> be a (N × 1) vector of non-negative weights such that
∑N

i=1wi = 1 and

wi ≥ 0 for all i = 1, . . . , N , where wi denotes the weight of region i in the synthetic South

Tyrol. Let ui = (xi1, . . . , xiT0 , zi1, . . . , ziT0)
> be a (2T0 × 1) vector containing pre-treatment

values for cumulative number of cases (xit) and number of tests (zit) for region i. Thus, the

vector u1 contains pre-treatment values for South Tyrol and the matrix (2T0 × N) matrix

U0 = (u2, . . . ,uN+1) with columns u2, . . . ,uN+1 contains pretreatment values for all the

remaining donor regions.

The synthetic control method selects the vector of weights ŵ that determines the best

control region by solving the following quadratic optimization problem:

minw (u1 −U0w)>V(u1 −U0w), subject to
N∑
i=1

wi = 1, (1)

where V is a 2T0×2T0 symmetric and positive semidefinite matrix to allow different weights

to the variables in U0 depending on their predictive power on the outcome. To stress depen-
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dence on V, we use the notation ŵ = ŵ(V) for the solution to (1). To select V, we minimize

the mean squared prediction error (MSPE) of the outcome variable over pre-intervention pe-

riods as described inAbadie and Gardeazabal (2003b) and Abadie et al. (2010b). Specifically,

if Y1 is the (T0 × 1) vector with the values of the outcome variable (new cases) for South

Tyrol and Y0 is the (T0 × N) analogous matrix for the control units, then V is selected

by minimizing the MSPE(V) = ‖Y1 − Y0ŵ(V)‖2 over all positive definite and diagonal

matrices V.

The above procedure is implemented in the function synth of the R package Synth which

uses the Nelder-Mead and BFGS algorithms as default options, and then picks the solution

with the lowest MSPE (Abadie et al., 2011). We then use the weights generated by this

procedure when estimating the model described in the next section.

3.2 Semi-parametric growth model

To analyze the dynamics of the Covid-19 epidemic over time, we develop a flexible semi-

parametric growth curve approach. Let xt denote the cumulative size of the detected infected

population at time t. In classic parametric growth curve analysis, the dynamics of xt is

represented by the derivative of xt, which is often assumed to have the form

∂xt
∂t

= ρ× xp × g(xt), (2)

where ρ is the intrinsic growth rate determining the time scale of the epidemic process,

p ∈ [0, 1] is the “deceleration of growth" parameter capturing different growth profiles and g

is a smooth non-increasing function of xt possibly depending on other model parameters.

A number of well-known growth models can be recovered from Equation (2) depending

on the choice of g; although the literature is too vast to be covered here, we provide a few

examples. A basic model is the exponential growth (EG) model corresponding to g(xt) = 1.

The EG model assumes that an epidemic continues to grow following the same process as in
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the past with the growth path completely specified by p: constant incidence (p = 0), sub-

exponential growth (0 < p < 1) and exponential growth (p = 1); see, e.g. Wu et al. (2020).

Although this may be useful for representing the early stages of an epidemic, it is an upper

bound scenario since outbreaks often slow down and reach saturation capacity after initial

exponential growth. One popular extension is the generalized logistic growth (GLG) model

g(xt) = xpt (1 − xt/k), where k represents the total size of the epidemic, i.e. the asymptotic

number of infections over the whole epidemics (Wu et al., 2020). A slightly more flexible

model is the generalized Richards growth (GRG) model g(xt) = xpt [1 − (xt/k)a], where the

parameter a allows for deviations from the S-shaped dynamics of the classical GLG (Wu

et al., 2020; Chowell, 2017).

Despite the wide range of parametric growth models available, none of these rigid apriori

specifications do a good job at fitting the rich dynamics observed in real Covid-19 data,

which potentially leads to biased inferences. Instead, we estimate a more flexible model,

referred to as a semi-parametric growth (SPG) model, that includes additional flexibility in

two dimensions.

We first add flexibility by estimating the function g in the following semi-parametric

specification:

g(xt) = exp {h(xt)} = exp

{
q∑

j=1

ηjbj(xt)

}
, (3)

where the ηis are unknown coefficients and the bj(xt) are given basis functions, such basis

spline functions. The basis expansion h(xt) =
∑q

i=1 ηibj(xt)} allows us to approximate

an arbitrary smooth function, provided that q is large enough. Overall, this specification

requires fewer assumptions about the data and fits the data better in situations where the

true outbreak trajectory is hard to specify in advance, as is the case for the Italian Covid-19

data.

We also allow the growth rate parameter ρ to depend on other explanatory variables.

Since our main inferential interest is to assess the impact of the policy treatment on pre- and

post-treatment growth differences, we assume the growth rate follows a log-linear difference-
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in-differences type of specification:

log{ρit(θ)} = α + β Intt + γ Regi + δ Intt × Regi + ξ>zit, (4)

where Intt is a dummy variable for the policy intervention taking value 0 up to the inter-

vention date and 1 afterwards, Regi is a dummy variable taking value 1 for the geographical

region exposed to treatment (South Tyrol) and 0 otherwise, and zit is a q × 1 vector of

additional controls (such as the difference in the number of diagnostic tests compared to

the previous day, weekly seasonality effects, etc). The overall vector describing the growth

parameters is denoted by θ = (α, β, γ, δ, ξ>)>.

Our main inferential interest is in the coefficient δ for the interaction between the in-

tervention and the geographical area. This parameter measures the effect of the policy

intervention and is calculated in a similar way as in a traditional difference-in-differences

model by comparing the change over time in the outcome variable for the South Tyrol

compared to the change over time for the control region (Synthetic South Tyrol). We

also assess the impact of policy intervention by examining its impact on the transmission

growth rate. From equation (4), the relative change in the growth rate can be computed as

∆ρi(θ) = [ρi1(θ)−ρi0(θ)]/ρi0(θ) = exp {β + δ Regi}−1. Therefore, the relative change in the

treatment and control groups are ∆ρ1 = exp{β+ δ}−1 and ∆ρ0 = exp{β}−1, respectively.

3.3 Statistical inference

Let {Yit} denote new COVID-19 cases observed in region i at time t. We follow Chénangnon

et al. (2020) and estimate the model parameters by assigning to each Yit an appropriate

statistical distribution with mean E[Yit] = ∂xit/∂t = ρit(θ)x
p
itg(xit), where xit is the cumula-

tive number of cases observed in region i at time t and ρit(θ) is a region- and time- specific

growth rate parameter. For Yit we consider both the Poisson and negative binomial (NB)

distributions, which are appropriate models for count data. Using a log-link function to
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relate the expected new cases to other predictors, the working statistical model for inference

can be written as

log {E(Yit)} = log {∂xit/∂t} = log{ρit(θ)}+ p log(xit) + h(xit), (5)

i = 0, 1 and t = 1, . . . , T , where ρit(θ) is the time- and region-specific growth rate defined in

Equation 4.

Equation 5 represents a generalized additive model (GAM); e.g., see Hastie and Tibshirani

(1990); Wood (2017) for an introduction on GAMs. Estimates for the growth rate parameters

θ̂ = (α̂, β̂, γ̂, δ̂, ξ̂
>

)>, growth deceleration p̂ and for the smooth function ĥ(·) are obtained by

running a penalized likelihood estimator with penalty depending on a smoothing parameter

for the non-parametric part of the model. We use thin-plate radial basis spline functions for

the terms bi(xt) and smoothing parameter tuned via maximum likelihood estimation.

Estimates are obtained using the function gam in the R package mgcv (Wood and Wood,

2015). See Wood (2017) and references therein for details on the estimation procedure

and implementation. Approximate variances and covariances for the estimated parameters

are extracted using the function vcov.gam in the R package mgcv. An estimate of ∆̂ρi,

the relative growth change due to intervention as described in Section 3.2, is obtained by

plugging-in the parameter estimates β̂ and δ̂ into the expression ∆ρi(θ). Since the parameter

estimates are asymptotically normal, the standard errors for ∆̂ρi can be derived using the

Delta method (e.g., see Van der Vaart (2000)), obtaining SE(∆̂ρ0) = exp{β̂} × SE(β̂) and

SE(∆̂ρ1) = exp{β̂ + δ̂}×
√
SE(β̂)2 + SE(δ̂)2 + Ĉov(β̂, δ̂), where SE(β̂) and SE(δ̂) are the

standard errors for β̂ and δ̂ and Ĉov(β̂, δ̂) is an estimate of the covariance between β̂ and δ̂.
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4 Data and Results

4.1 Data

The analysis in this paper focuses on the second COVID-19 outbreak wave that occurred in

Italy in late 2020. Daily data on cumulative cases and number of tests from 1 September

2020 to 31 December 2020 on 19 Italian regions and 2 autonomous provinces were obtained

from the online repository of the Italian Civil Protection Department https://github.

com/pcm-dpc/COVID-19. The autonomous province of Bozen/Bolzano - South Tyrol is the

intervention group of our study as it was the only Italian territory that implemented mass

screening in this time period. Residents of South Tyrol were invited to take a COVID-19

antigen rapid tests from Friday, 20 November through Sunday, 22 November; see Section 2

for details. 361,781 out of 500,607 (72.3 percent) eligible residents volunteered to take a test.

4.2 Constructing the control group

The first step of our estimation process is to construct the control group of regions against

which we will evaluate the impact of the mass testing in South Tyrol. Figure 1 shows the

estimated synthetic control weights for the 20 donor regions using the approach described in

Section 2. The regions Valle d’Aosta, Friuli Venezia Giulia and Veneto are by far the major

contributors in the synthetic control with percent weights equal to 71.0%, 20.0% and 7.5%,

respectively. Valle d’Aosta is, like South Tyrol, a small mountain region in the North of

Italy, but is not contiguous with South Tyrol. To assess the goodness-of-fit of this selection,

we computed the R-squared type statistic R2 = 1−‖Y1−Y0ŵ‖2/‖Y1− Ȳ‖2 = 0.871, with

Ȳ1 denoting the arithmetic average of the elements of vector Y1. Moreover, we found a

Pearson correlation coefficient between Y1 and Y0ŵ equal to 0.936. Both the R2 statistic

and correlation coefficient show a very good match between South Tyrol and the synthetic

control region in the pre-intervention period.
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4.3 Results

Table 1 shows the estimates for the semiparametric growth models (SPGs) described in

Section 3.3 using Poisson (Pois) and negative binomial (NBin) response functions. Each

model includes an indicator for being in the treatment region (Reg), an indicator for being

in the time-period after the mass-testing intervention (Int), and interaction between the

two, and an intrinsic growth parameter (p). We also estimate a second specification of each

model that includes additional (unreported) controls (+Ctrl) that could impact short term

(daily) movements of the outbreak trajectory, specifically i) difference in the number of new

tests carried out, ii) day of the week fixed effects and iii) interactions between the number

of new tests and day of the week fixed effects.

Thus, overall we estimate four SPG models: Pois, Pois + Ctrl, NBin, and NBin + Ctrl.

For each SPG model, we report chi-squared statistics for the non-parametric component

of our model corresponding to null hypothesis H0 : h(x) = 0. For comparison purposes,

Table 1 also shows in the lower part analogous setups for pure exponential growth models

obtained by setting h(xit) = 0 in the semi-parametric models. For all the considered models,

we compute the adjusted R-squared and explained deviance statistics as well as the Akaike

information criterion (AIC) and Bayesian information criterion (BIC) for model selection.

Based on both AIC and BIC model selection criteria, the best fitting model is NBin+Ctrl

(negative binomial response with additional controls), which has an adjusted R-squared of

88.8% and percent of explained deviance of 93.9%. Overall, all the SPG models fit the data

well with adjusted R-squared always exceeding 83%. The standard EG models perform worse

in terms of the goodness-of-fit metrics and for all the combinations of response distribution

and predictors compared to the SPG models. The appropriateness of the semi-parametric

models is also confirmed by the statistically significant chi-squared statistics for the non-

parametric function h in all considered cases.

Figure 2 plots the estimated number of new cases ŷit over time along with the actual

observed data for both South Tyrol and the synthetic control region. The plots show the
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results from the Poisson and negative binomial models with and without the included addi-

tional short-term controls. Regardless of whether additional controls are included, the fitted

models show a sizable and sudden decrease in the estimated new cases after intervention

date. The models with additional covariates fit the short- and long-term data trajectories

for both control and treatment regions remarkably well.

In each of the SPG models, we find that the difference-in-differences interaction Int×Reg,

which indicates the impact of the mass testing campaign on Covid-19 growth in South Tyrol,

is negative and highly significant. The estimated coefficient from our preferred SPG model

NBin+Ctrl is -0.512 which implies a decrease of growth rate of 39% (with 95% confidence

interval 29-49%). These results are robust to both the response function used and whether

controls are included with the estimated growth rate in these alternative specifications rang-

ing from 38% to 51%. If instead one uses standard EG models, the estimated impacts are

generally smaller, are less robust to model choice, and are less precisely estimated.

We next run a placebo test to gauge the possibility that our estimated impact of the mass

testing campaign occurs by chance. We do this by matching each of the other 20 regions

of Italy to synthetic versions of themselves and then estimating the SPG model (NBin +

Ctrl) assuming there was an intervention at the same time as the real intervention in the

South Tyrol. Figure 3 compares the estimated impact in South Tyrol with the distribution

of the estimates for the other regions. Further, we examine the distribution of the estimated

interaction effect δ̂ for across placebo models. The estimated effect for the model with

South Tyrol as treatment region is δ̂ = −0.512 while a 95% confidence interval based on

the estimates for the other regions is (−0.312, 0.160). The estimate for South Tyrol clearly

stands out, with none of the other regions having large changes in transmission rates around

the time of the intervention.

Finally, to evaluate the overall impact of the mass testing campaign, we compute the

number of cases in South Tyrol over time by summing the predicted number of cases each

day after the intervention assuming that the post-intervention transmission growth rate
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remained constant. Based on the estimates from our preferred model (SPG NBin+Ctrl),

there were 1,743, 2,312, 5,754 and 10,533 fewer cumulative Covid-19 cases in South Tyrol

compared to a scenario of unmitigated growth 7, 10, 20 and 40 days after the intervention,

respectively. This corresponds to an overall reduction in cases of 14%, 18%, 30% and 56%).

Our findings are in line with the predictions by Bosetti et al. (2020) which uses a SEIR

dynamic ordinary differential equations model to predict outbreak dynamics under various

contagion scenarios. When they consider the scenario where 75% of the population is tested

– which is close to the 72% observed in South Tyrol – the predicted reduction in prevalence

in the population within 10 days of mass testing is between 10% and 30% where we estimate

a reduction of 14% under the same time horizon.

5 Conclusions

In this paper, we employ an innovative empirical approach to study the impact of mass testing

on Covid-19. In particular, we combine a synthetic control methodology to define a control

group and a semi-parametric growth model to model the epidemiological developments.

We show that using a semi-parametric approach rather than more standard parametric

exponential growth models makes a difference in the evaluation of the impact of the mass

testing that took place in the Italian region of South-Tyrol in November 2020 on Covid-19

growth.

In our preferred specification, we find that mass testing reduced the growth rate of Covid-

19 by 39%. This suggests that mass testing can be an useful tool to contain the pandemic.

Importantly, the mass testing campaign in South Tyrol was entirely voluntary and still

managed to attract 72 percent of eligible residents to participate. This likely occurred

because it was underlined that participating would help reduce the spread of Covid-19 and

it could potentially lead to fewer restrictions in other dimensions. In many countries, public

testing is openly available, suggesting that supply constraints are less and less binding. We
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find that a more organized approach to testing can make a big difference in reducing the

spread of Covid-19.
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Figure 1: Synthetic control weights used to construct the synthetic control region.
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Figure 2: Fitted semi-parametric growth models against actual data on new cases for South
Tyrol and synthetic control.The first and second row correspond, respectively, to Poisson
(Pois) and negative binomial (NBin) models for new cases. The first column corresponds to
models without short-term control factors, while the second column shows models with the
additional controls included (+Ctrl).
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Figure 3: Differences between new cases in treatment and synthetic control regions over
time, obtained by running the synthetic control method for each of the 21 Italian regions.
The solid line corresponds to South Tyrol, the dashed line represents point-wise average
difference for the remaining regions, the shaded area represents points within 1.96 standard
deviations from the point-wise average difference.
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Semi-parametric growth (SPG) models:
Pois Pois + Ctrl NBin NBin + Ctrl

Parameter estimate (SE)
Int -0.322 (0.034)* -0.038 (0.035) -0.277 (0.278) -0.078 (0.201)
Reg 0.072 (0.011)* 0.085 (0.011)* 0.011 (0.063) 0.014 (0.047)
Int × Reg -0.754 (0.018)* -0.569 (0.021)* -0.745 (0.118)* -0.512 (0.094)*
p 0.189 (0.026)* 0.234 (0.027)* 0.084 (0.047) 0.106 ( 0.039)*

χ2 statistic (approx df)*
h(x) 3413 (9)* 2669 (9)* 267.7 (9)* 339.8 (9)*

Estimated growth change ∆̂ρ× 100% (SE)
South Tyrol -49.47 (0.47) -38.38 (1.09) -52.01 (4.82) -39.22 (5.12)
Synth Control 7.43 (1.16) 8.85 (1.21) 1.13 (6.36) 1.44 (4.78)

Goodness-of-fit metrics
Adjusted-R2 (%) 83.9 92.2 82.9 88.8
Dev. Explained (%) 88.9 94.5 88.1 93.9
AIC 7209.8 4436.1 2637.9 2507.7
BIC 7258.7 4530.3 2689.3 2604.8

Exponential growth (EG) models:
Pois Pois + Ctrl NBin NBin + Ctrl

Parameter estimate (SE)
Int -0.830 (0.013)* -0.704 (0.013)* -0.561 (0.128)* -0.426 (0.104)*
Reg 0.063 (0.011)* 0.072 (0.011)* -0.001 (0.088) 0.004 (0.070)
Int × Reg -0.643 (0.017)* -0.413 (0.018)* -0.586 (0.151)* -0.178 (0.126)
p 0.748 (0.005)* 0.701 (0.005)* 0.653 (0.025)* 0.609 (0.023)*

Estimated growth change ∆̂ρ× 100% (SE)
South Tyrol -44.05 (0.73) -28.87 (1.06) -44.42 (6.79) -15.96 (9.15)
Synth Control 6.46 (1.14) 7.51 (1.19) -0.15 (8.81) 0.39 (7.05)

Goodness-of-fit metrics
Adjusted-R2 (%) 76.5 85.5 74.5 56.8
Dev. Explained (%) 82.2 89.3 72.5 83.8
AIC 10560.7 7013.6 2830.4 2726.5
BIC 10578.2 7076.4 2851.3 2792.8

Table 1: Fitted semi-parametric growth (SPG) and exponential growth (EG) models. us-
ing Poisson (Pois) and negative binomial (NBin) response with additional control variables
(+Ctrl) and without additional controls. For the parametric terms estimates are reported
with standard errors in parenthesis. For the SPG models the χ2 statistics corresponding to
null hypothesis “H0 : h(x) = 0" are given with the approximate degrees of freedom (df).
Significant results (p-value<0.01) are marked by “*". For all the models we report estimated
percent relative growth change ∆̂ρ× 100% for South Tyrol and synthetic control groups as
well as goodness-of-fit statistics.
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