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Abstract: The first known case of Coronavirus disease 2019 (COVID-19) was identified in 

December 2019. It has spread worldwide, leading to an ongoing pandemic, imposed 

restrictions and costs to many countries. Predicting the number of new cases and deaths 

during this period can be a useful step in predicting the costs and facilities required in the 

future. The purpose of this study is to predict new cases and deaths rate one, three and seven-

day ahead during the next 100 days. The motivation for predicting every n days (instead of 

just every day) is the investigation of the possibility of computational cost reduction and still 

achieving reasonable performance. Such a scenario may be encountered real-time forecasting 

of time series. Six different deep learning methods are examined on the data adopted from the 

WHO website. Three methods are LSTM, Convolutional LSTM, and GRU. The bidirectional 

extension is then considered for each method to forecast the rate of new cases and new deaths 

in Australia and Iran countries. 
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This study is novel as it carries out a comprehensive evaluation of the aforementioned three 

deep learning methods and their bidirectional extensions to perform prediction on COVID-19 

new cases and new death rate time series. To the best of our knowledge, this is the first time 

that Bi-GRU and Bi-Conv-LSTM models are used for prediction on COVID-19 new cases 

and new deaths time series. The evaluation of the methods is presented in the form of graphs 

and Friedman statistical test. The results show that the bidirectional models have lower errors 

than other models. Several error evaluation metrics are presented to compare all models, and 

finally, the superiority of bidirectional methods is determined. This research could be useful 

for organizations working against COVID-19 and determining their long-term plans.   

Keywords: Long Short Term Memory (LSTM); Convolutional Long Short Term Memory 

(Conv-LSTM); Gated Recurrent Unit (GRU); Bidirectional; New Cases of COVID-19; New 

Deaths of COVID-19; COVID-19 Prediction. 

1. Introduction 

Serious Intense Respiratory Disorder Coronavirus 2 (SARS-COV-2) is a novel zoonotic 

microorganism (1). It is liable for Coronavirus Disease 2019 (COVID-19) (2, 3). The World 

Health Organization (WHO) and the worldwide countries affirmed the Covid-19 to be very 

infectious (4, 5). The spread rate of Covid-19 has increased day by day in numerous nations, 

particularly in United States (6), Spain (7), Italy (8), Germany (9), United Kingdom (10), 

France (11), and Iran (12). Estimating the prevalence of coronavirus is useful for controlling 

this pandemic. Each day more than 800,000 persons are infected by COVID-19 worldwide 

(13). The foremost challenging aspect of its spread is that individuals may be infected 

without having any symptoms explicitly for several days (14-16).  

Machine Learning (ML) has demonstrated itself as a specific research field in recent 

decade by solving numerous exceptionally complex and advanced real-world problems (17, 

18). In this research, the number of new cases and new deaths are predicted using deep 

learning which is a subfield of ML. There are existing literature which have tried to predict 

mortality each day. In this article, the prediction of mortality rate and new cases are 

performed every day, every three and seven days using deep learning models such as Long 

Short Term Memory (LSTM), Bidirectional-LSTM (Bi-LSTM), Convolutional-LSTM 

(Conv-LSTM), Bidirectional-Conv-LSTM (Bi-Conv-LSTM) and Gated Recurrent Unit 

(GRU), and Bidirectional-GRU (Bi-GRU).  



The motivation of this research is preforming in-depth comparison of LSTM, Conv-

LSTM, GRU with their bidirectional extensions. Moreover, based on the existing literature, it 

seems that Bi-GRU and Bi-Conv-LSTM have not been used before as predictors of COVID-

19 time series data. During our experiments, we rely on Friedman test to compare the six 

deep learning methods statistically. Similar to the existing literature, we perform every day 

forecasting. Unlike the previous works, we also perform prediction every three and seven 

days which require one-third and one-seventh of every day prediction computational 

complexity. Investigation of prediction every three and seven days is done to determine 

whether it is possible to reduce computational complexity and still achieve reasonable 

performance. Computational complexity reduction matters in any application involving real-

time forecasting of time series. The rest of the paper is structured as follows: Section 2 

contains related research in this field, Section 3 reviews the background knowledge briefly, 

dataset description is provided in section 4, Section 5 is devoted to proposed method, Section 

6 gives the experimental results, Section 7 presents discussion and Section 8 renders the 

conclusion and future works. 

2. Related works 

In this section, we briefly review the existing literatures that have similar scope with this 

paper. The differences between the reviewed works and our approach will be highlighted as 

well. Pinter et al. (19) predicted the number of infected people and the mortality rate by 

employing a hybrid ML approach. Their hybrid method consisted of a Multi-layered 

Perceptron (MLP) and Imperialist Competitive Calculation (MLP-ICA). The MLP was used 

as the predictor and ICA (an evolutionary optimization method) was used as the optimizer. 

The hybrid method was trained on Hungary dataset (20). The trained model was compared 

against adaptive network-based fuzzy inference system (ANFIS). The prediction horizon was 

chosen to be nine days. 

Burke et al. (6) illustrated the ML model capability to determine the number of persons 

influenced by COVID-19 and the number of deceased cases. Linear Regression (LR), Least 

Absolute Shrinkage and Selection Operator (Lasso), Support Vector Machine (SVM), and 

Exponential Smoothing (ES) were utilized in their study (6). They showed that their method 

had the best performance among other similar methods.  

Dowd et al. (21) investigated the effect of population age on the mortality rate of 

COVID-19 patients by utilizing numerical modeling. They reported that the infection is more 



life threatening to the older ages. Thus the approaches like social distancing and isolation can 

offer assistance to slow down and stop the spread of the virus. 

Arun and Iyer (22) examined the prevalence of COVID-19 infection and anticipated the 

scale of the pandemic and mortality rate. They utilized ML and numerical modelling methods 

such as Polynomial Regression, Bayesian Edge and LSTM. 

A study conducted by Zeroual et al. (23) proposed a deep learning system for prediction 

of COVID-19 time series. The main purpose of this study was to investigate deep learning 

methods for the number of deaths with limited information. The deep models can predict 

COVID-19 time series up to a specific horizon based on given time-variant inputs. The 

results showed that the Variational Auto Encoder (VAE) model outperformed other models.  

Babaei et al. (24) analyzed the impact of health-protective measures such as quarantine, 

wearing masks, and social distancing using a susceptible-exposed-infectious-recovered 

(SEIR) type model on a hypothetical population. To further improve the model, the 

environmental noise (present in the data) has been taken into account using Brownian motion 

process. In addition, the stability analysis of the proposed model has been discussed. The 

authors reported that health strategies play a major role to contain the virus threat. 

A mathematical model about the spread of COVID-19 was proposed in (25). The unique 

solvability of the proposed model was also proved. Additionally, the reproduction number of 

the proposed model was discussed. To survey the behavior of the considered model, some 

numerical simulations were conducted. Another research on the spread of COVID-19 has 

been conducted by Babaei et al. (26). The authors introduced a stochastic model considering 

several disease compartments related to different age groups. Their model was based on 

observing safety protocols, such as using mask and putting people into quarantine. The 

numerical results showed the effectiveness of safety protocols on COVID-19 containment. 

 

Danane et al. (27) investigated the dynamics of COVID-19 stochastic model with 

isolation strategy. The authors relied on a SIQR (28) model and made it stochastic to take into 

account the uncertainty of infection progress. To this end, in all compartments of the 

proposed model, the white noise and the Levy jump perturbations were added. The existence 

and uniqueness of a global positive solution were proven and the stochastic dynamic 

properties of the solution around the deterministic model were investigated. The theoretical 

results were verified by some numerical simulations. While the authors relied on COVID-19 

Morocco cases (29) to estimate the infection and the recovery rates of their simulations, we 

use Iran and Australia data (30) in our experiments. Another difference between the work 



(27) and ours is the modeling approach. Danane et al. (27) used a stochastic version of SIQR 

to simulate dynamic of the virus while we rely on deep learning to carry out our predictions. 

Singh et al. (31) analyzed the evolution of COVID-19 spread in an assumed population 

by employing a fractional-order dynamical system. They proposed a stable computational 

method to solve the dynamical system numerically. The computational method is based on 

the discretization of the domain and the short memory principle. The implemented approach 

divided the population to five subgroups such as susceptible people, exposed people, infected 

people, etc. and analyzed how these subgroups behave over time. Gao et al. conducted 

another study to describe COVID-19 spread behavior based on fractional calculus (31, 32). 

They utilized fractional natural decomposition (FNDM) to understand the dynamical 

structure of COVID-19. The methods in (32) have analyzed COVID-19 spread behavior well 

but working with fractional-order systems involves more complex computation compared to 

neural networks. Gao et al. (33) have also employed fractional calculus to clearly describe the 

reported and unreported cases of COVID-19. To this end, a time-fractional model was 

parameterized using reported cases of the virus. The model solution was found by the q-

homotopy analysis transform method. The number of unreported cases of the virus was then 

identified. They were able to predict the exponential growth of the virus using their model. 

The three methods reviewed above ((31-33)) are based on fractional calculus and have well-

established mathematical foundations; however, they are not easy to grasp and implement for 

the general readers. Our method on the other hand is based on neural networks which is more 

intuitive and easier to work with. 

Boudaoui et al. (34) have relied on Caputo–Fabrizio fractional derivative to extend the 

transmission model of COVID-19 proposed by Tang et al. (35).  The existence and 

uniqueness of solution for the extended model has been discussed and the solution has been 

obtained using a numerical approach. Based on the conducted simulations using the model, 

the authors reported that the infective population peak decreases as the contact rate is 

decreased and isolation/hospitalization of infected individuals is increased. Despite 

presenting interesting results, the method proposed by Boudaoui et al. is based on a fixed 

mathematical model which may bias the simulation results. On the contrary, we rely on the 

data collected from the population in a dynamic manner and use them during training and 

prediction of our neural network-based model. Therefore, our model is able to adapt to the 

changing dynamics of the population on the fly which reduces the bias in its prediction.  

Zamir et al. (36) took a Non Pharmaceutical Intervention (NPI) approach to reduce the 

outbreak of COVID-19. To this end, the population concerned with the disease was divided 



to six compartments based on which a mathematical model consisting of coupled differential 

equations was proposed. Analyzing the model, they were able to determine NPIs critical to 

the virus containment. The important NPIs were isolation, sanitizers, infection side effects 

treatment, and wearing face mask. While Zamir et al. focused on devising strategies to flatten 

COVID-19 infection curve, we focus on forecasting the mortality and spread of the virus. 

Facing COVID-19 without having an effective vaccine, many governments panicked and 

adopted lock down strategy to prevent the virus spread. However, such a strategy hurts the 

global economy. Sahoo et al. (37) investigated the possibility of containing the virus without 

lock down. To this end, mathematical models based on partial differential equations were 

considered to inspect the effect of proper quarantine with no lock down on the virus spread. 

The authors reported that social distancing and proper quarantine of citizens prior to entering 

their native countries or native states are the best preventive measures in the absence of 

vaccine. While Sahoo et al. tried to determine general measures to prevent the virus spread; 

we aim to predict the trend of the virus spread and mortality. 

Gao et al. (38) investigated the numerical distributions of COVID-19 according to time. 

To this end, the authors found the optimal values for the mathematical model Bats-Hosts-

Reservoir-People coronavirus (BHRPC) of the virus transfer from the reservoir to people. 

The Variational Iteration Method (VIM) was employed for numerical investigation of 

BHRPC model. To reach realistic results, the model parameters were chosen according to the 

values reported by experts in Wuhan area of China. The authors reported that presence of 

susceptible people in the population accelerates the virus spread. While Gao et al. (38) 

focused on the virus transfer from the reservoir to people, we focus on prediction on mortality 

rate and the spread of the virus based on observed data. 

3. Deep Learning and its variations 

Deep learning (DL) is a machine learning algorithm which is based on artificial neural 

networks (ANNs). This research introduces a DL system for the prediction of the COVID-19 

time series. The following is an introduction to some of the DL methods used to predict time 

series namely LSTM, Bi-LSTM, Conv-LSTM and GRU.  

LSTM is a special type of Recurrent Neural Network (RNN) which relies on its repeating 

module called cell to remember sequence of information. Each cell contains three gates 

namely input, output, and forget gates. The forget gate decides how much information of the 

cell state must be thrown away. The input gate specifies the new information that must be 



stored in the cell state. The output gate decides the parts of the cell state that must be sent to 

the cell output. 

A Bi-LSTM network is an extension of traditional LSTM which trains two LSTMs. One of 

the LSTMs is trained on the input sequence. The other LSTM is trained on the input sequence 

but in reversed order. Bi-LSTM can achieve faster learning compared to traditional LSTM. 

Traditional LSTM has been designed to work with one-dimensional data so it cannot cope 

with multi-dimensional data such as images. Conv-LSTM replaces the associated gate layers 

of the LSTM with convolutional layers to address this issue. Conv-LSTM can encode Spatio-

temporal data in its memory cell (39). Subsequently, by supplanting the convolution 

operators with an LSTM memory cell, the Conv-LSTM can know which data should be 

‘remembered’ or ‘forgotten’ from the past cell state.  

GRU (40) is a special version of RNN. GRU is similar to LSTM but instead of three, the 

number of gates in GRU is two: upgrade and reset gates. The upgrade gate determines how 

the past information should be passed along to the future. The reset gate determines how 

much of the past information must be discarded (41). 

4. Dataset Description 

This research aims to predict COVID-19 prevalence in the future, focusing on the new cases 

and the new deaths rate. The dataset used in this research contains the statistical reports of 

COVID-19 cases and the mortality rate of different countries. It has been obtained from the 

WHO website (42). The dataset includes eight different columns such as “Date Reported”, 

“Country Code”, “Country”, “WHO Region”, “Cumulative Cases”, and “Cumulative 

Deaths”. In this research, “New Cases”, “Cumulative Cases”, “New Deaths”, and 

“Cumulative Deaths” columns are used as time series to forecast future rate of new cases and 

deaths in Australia and Iran. The rest of the features are presented in Table 1. In the presented 

study, data from two countries Australia and Iran are used.  

Table 1: Data Description 

Date Reported Country Code Country WHO Region 

1/25/2020 – 8/19/2020 AU Australia Western Pacific Regional Office (WPRO) 

1/3/2020 – 10/6/2020 IR Iran Eastern Mediterranean Regional Office (EMRO) 

5. Proposed Method 



In this research, a DL-based approach was used to forecast the rate of new cases and new 

deaths every one, three and seven days. We experimented with six neural network models as 

our predictor. Each model consists of an input layer, an output layer and three hidden layers. 

The first three models were LSTM, Conv-LSTM, and GRU. The next three models were the 

bidirectional version of the first three ones i.e. Bi-LSTM, Bi-Conv-LSTM and Bi-GRU. The 

number of neurons in the hidden layers was 50. In all layers, the Rectified Linear Unit 

(ReLU) was used as the activation function. The training was performed with respect to MSE 

loss function using Adam optimiser. The hyper-parameters of Adam were set to 𝛽1=0.9 and 

𝛽2 = 0.999. The learning rate was set to 0.001. The model was trained for 200 epochs. In 

Table 2, additional details of the implemented models are shown.  

For the training data, the time series of Australia and Iran have been chosen from WHO 

website’s database which reports new cases and new deaths rates. Approximately 70% of the 

data were used for training and the rest were kept for testing. About 20% of the training data 

were used for validation.  

During the training for the first time, the time series were fed to the model based on which 

the model predicted the next day. The model training was repeated for the second time such 

that its output predicted the next three days. Finally, the model was trained for the third time 

to achieve predictions for the next seven days. As the forcasting horizon increases from one 

to three and to seven, the error rate of the model icreases which makes sense since forecasting 

for a longer horizon is harder than forecasting for a shorter horizon. The training process was 

implemented for both the time series of new cases and new deaths. Figure 1 illustrates the 

high leve steps of the proposed method. 



 

Figure 1: The proposed method high level steps 

Table 2: Additional implementation details of the six models 

Model 
Number of Hidden 

Layers 

Number of 

Units 

Number of Convolution 

Filters 

Size of Convolution 

Kernels 

LSTM 3 50 - - 

Bi-LSTM 3 50 - - 

Conv-LSTM 3 - 64 1×2 

Bi-Conv-LSTM 3 - 64 1×2 

GRU 3 50 - - 

Bi-GRU 3 50 - - 

6. Experimental Results and Analysis 

In this section, the experimental results for LSTM, Conv-LSTM and GRU as well as their 

bidirectional counterparts are reported. To the best of our knowledge, we are the first to use 



Bi-Conv-LSTM and Bi-GRU for prediction of COVID-19 new cases and deaths based on 

time series data. 

To have a fair comparison, we tried to implement all methods with relatively similar 

conditions. The prediction error was calculated based on critieria (14) such as Mean Squared 

Log Error (MSLE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Log Error 

(RMSLE), and Explained Variance (EV). These evaluation criteria are computed as 

below(41): 

𝑀𝑆𝐿𝐸 =
1

𝑛
∑ (log(𝑦𝑖) − log( 𝑦̂𝑖))2𝑛

𝑖=1 ,                   (1)                 

MAPE = 
100

𝑛
 ∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1 ,                       (2)             

RMSLE = √
1

𝑛
∑ (log(𝑦𝑖) − log( 𝑦̂𝑖))2𝑛

𝑖=1 ,           (3)   

EV = 1 −
Var(𝑦̂𝑖 −yi)

 Var(yi)
,                             (4)                      

where  𝑦𝑖 is the actual values, 𝑦̂𝑖 is the corresponding estimated values, and n is the number 

of samples. 

6.1. Forecasting performance 

For each of the mentioned methods, the error of 1, 3, and 7-day ahead predictions for new 

cases/deaths in a 100-day period were calculated in Australia and Iran. To this end, the 

predicted values were compared with the actual values, and the error rate was calculated 

based on evaluation criteria (Equations 1-4). The results of calculating the errors in the 100-

day period for each of Australia’s models are given in Figure 2 and Figure 3. As it is apperant 

from MAPE values in Figure 2, Bi-GRU and LSTM have the best performance in the 1-day 

perdiction, Conv-LSTM is the best method in the 3-day prediction, and Bi-Conv-LSTM has 

the best performance in the 7-day prediction. All of the evaluated methods in Figure 2 have 

approximately similar explained variance. Figure 3 illustrates the evaluation results for new 

deaths prediction for the 100-day period in Australia. An interesting observation in Figure 3 

is how LSTM significantly outperforms GRU in the 7-day ahead prediciton. The reason lies 

in the fact that GRU has a simpler structure (less parameters) consisting of only two gates. 

However, the more complex structure of LSTM seems to prevail sometimes as it is the case 

in the 7-day prediciton of new deaths in Figure 3. 



The evaluation results of the models for prediction of Iran new cases and new deaths are 

presented in Figures 4 and 5, respectively. The main observation based on MAPE criterion in 

these figures is that most of the time LSTM and its variations outperform GRU especially for 

the longer horizons (3 and 7-day) scenarios.  

Figure 2: Evaluation metrics for new cases forecasting in Australia 

Figure 3: Evaluation metrics for new deaths forecasting in Australia 



Figure 4: Evaluation metrics for new cases forecasting in Iran 

Figure 5: Evaluation metrics for new deaths forecasting in Iran 

The predictions of new cases and new deaths in Australia and Iran for 1, 3, and 7-day ahead 

are compared with actual data in Figures 6-9. The prevalent pattern observed in these figures 

is that longer prediction horizon often leads to larger prediction errors. Of course such pattern 

is violated in Figure 8.a where Bi-Conv-LSTM has deviated from the actual data badly. 
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Figure 6: New cases forecasting a) every day, b) every 3 days and c) every 7 days in 

Australia 
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Figure 7: New deaths forecasting a) every day, b) every 3 days and c) every 7 days in 

Australia 
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Figure 8: New cases forecasting a) every day, b) every 3 days and c) every 7 days in Iran 
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Figure 9: New deaths forecasting a) every day, b) every 3 days and c) every 7 days in Iran 

For better comparison of the six methods performance, histograms of their absolute error are also 

presented in Figures 10-13. The horizontal axes of the histograms represent the absolute error which 

is the difference between the models predictions and the actual data. Recall that predictions are 

performed for 100 days. The height of each histogram bin shows the number of predictions which 

absolute error falls within the interval dictated by that bin. For better clarity, in Figures 10-13, the 

histograms of different methods are drawn with different colours and line widths. At first glance, the 

maximum absolute error observed in Figures 10-13 seems to be too high. However, it should be noted 

that the number of new cases/deaths in each day are cumulative values. In other words, the actual new 

cases/deaths reported for i-th day is the total number of new cases/deaths reported from first day until 

i-th day across the whole country (such as Iran). Considering that data are reported as cumulative 

values, it comes as no surprise that they are usually large values. The absolute error of prediction is 

directly influenced by the magnitude of the actual data. For example in one day prediction of new 

cases for Iran (Figure 12.a), GRU has predicted 354000 while true value was 345000. The absolute 

error in this case is |345000 − 354000| = 9000 which is 2.6% of the true value. Therefore, at first 

9000 seems to be a large error but it is indeed tolerable compared the magnitude of the true value 



(345000). For the seven days ahead prediction (Figure 12.c), the same method has predicted 404000 

while the true value was 345000. The absolute error is |345000 − 404000| = 59000 which is 

17.10% of the true value. Obviously, the absolute error of the seven days ahead prediction is higher 

than that of one day ahead prediction. However, 59000 is still a reasonable value compared to the true 

value. 
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Figure 10: Absolute error histogram of forecasting new cases in Australia a) every day, b) 

every 3 days and c) every 7 days 
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Figure 11: Absolute error histogram of forecasting new deaths in Australia a) every day, b) 

every 3 days and c) every 7 days 
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Figure 12: Absolute error histogram of forecasting new cases in Iran a) every day, b) every 3 

days and c) every 7 days 
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Figure 13: Absolute error histogram of forecasting new deaths in Iran a) every day, b) every 

3 days and c) every 7 days 

6.2. Statistical Analysis 

Friedman (43, 44) proposed a non-parametric statistical test known as the Friedman test 

which is widely used by researchers to analyse their methods (45). In this subsection, 

Friedman test was used to compare the algorithms. To this end, the average of error 

evaluation criteria (EV, MAPE, MSLE, RMSLE) in Figures 2-5 were computed and listed in 

Table 3 based on which the algorithms were ranked as shown in Table 4. The methods with 

lower ranks are better than the ones with higher ranks. 

To carry out Friedman test, the rankings from Table 4 are required. Suppose the rank of the j-

th classifier on the i-th dataset is denoted by ri
j so the average rank of the algorithms can be 

computed by 𝑅𝑗 =
1

𝑁
𝛴𝑟𝑖

𝑗
. The Friedman test is then computed by the following formula: 

𝑋𝐹
2 =

12𝑁

𝑘(𝑘+1)
 [∑ 𝑅𝑗

2
𝑗 −  

𝑘(𝑘+1)2

4
]   (5) 



where k is the number of algorithms and N is the number of datasets. Motivated by Friedman 

test, Iman and Davenport (46) proposed another statistical test as follows: 

𝐹𝑓 =
(𝑁−1)𝑋𝐹

2

𝑁(𝑘−1)−𝑋𝐹
2,                   (6) 

which has F-distribution with ((k − 1),(k − 1)(N − 1)) degrees of freedom. According to the 

results of Table 4, χ2
F  and Ff  are computed as follows: 

𝑋𝐹
2 =

12 × 12

6(6 + 1)
 [(3)2 + (3.25)2 + (4.83)2 + (4.08)2 + (2.33)2 + (3.42)2 −

6(6 + 1)2

4
] = 10.84 

𝐹𝑓 =
(12 − 1) × 10.84

12(6 − 1) − 10.84
= 2.43 

According to six algorithms and 12 datasets (New cases 1-day AU, …), 𝐹𝑓 is governed by the 

F-distribution with ((k − 1), (k − 1)(N − 1)) = (5,55) degree of freedom. The critical value of 

F(5,55) is 2.38 for significance level α = 0.05. As it is clear in Table 4, Bi-GRU algorithm has 

the best average rank among all the algorithms followed by LSTM, GRU, Bi-Conv-LSTM, 

Bi-LSTM, and Conv-LSTM. 

Table 3: Average of error evaluation metrics 

Dataset LSTM GRU Conv-LSTM Bi-LSTM Bi-GRU Bi-Conv-LSTM 

New Cases 1-day AU 0.49265 0.494675 0.71 0.49435 0.4927 0.548825 

New Cases 3-day AU 0.723475 0.732625 0.66365 0.72595 0.71915 1.19685 

New Cases 7-day AU 1.170475 2.074175 1.691325 1.18285 1.1824 1.0894 

New Deaths 1-day AU 0.941625 0.9237 3.38425 1.191925 0.699025 2.862275 

New Deaths 3-day AU 1.900225 1.2567 3.971975 2.14865 1.7409 2.3506 

New Deaths 7-day AU 0.33295 1.947175 3.420925 2.317075 2.025875 3.186675 

New Cases 1-day IR 0.6287 0.7975 1.594025 1.083375 0.6021 0.93275 

New Cases 3-day IR 1.136925 1.135425 1.8335 2.269875 1.088375 1.476 

New Cases 7-day IR 2.275075 2.24805 1.8335 2.269875 2.124775 1.476 

New Deaths 1-day IR 1.0377 0.852075 2.3332 1.088225 0.848625 0.955325 

New Deaths 3-day IR 1.181725 1.179825 1.6878 1.01305 1.1625 0.815625 

New Deaths 7-day IR 2.230575 2.3831 2.56875 2.0219 2.50665 1.22895 

 

Table 4: Rank of the algorithms on datasets. 

Dataset LSTM GRU Conv-LSTM Bi-LSTM Bi-GRU Bi-Conv-LSTM 



New Cases 1-day AU 1 4 6 3 2 5 

New Cases 3-day AU 3 5 1 4 2 6 

New Cases 7-day AU 2 6 3 5 4 1 

New Deaths 1-day AU 3 2 6 4 1 5 

New Deaths 3-day AU 3 1 6 4 2 5 

New Deaths 7-day AU 1 2 6 4 3 5 

New Cases 1-day IR 2 3 5 5 1 4 

New Cases 3-day IR 3 2 1 6 1 4 

New Cases 7-day IR 6 4 6 5 3 1 

New Deaths 1-day IR 4 2 6 5 1 3 

New Deaths 3-day IR 5 4 6 2 3 1 

New Deaths 7-day IR 3 4 6 2 5 1 

Average Rank 3 3.25 4.83 4.08 2.33 3.42 

7. Discussion 

Time series prediction is an important topic in finance, economics, and business. Recent 

advancement in computers’ computational power, ML methods and new perspectives such as 

DL has led to the emergence of new algorithms for times series analysis and prediction. Some 

of these algorithms are LSTM, GRU, Conv-LSTM, Bi-LSTM, Bi-GRU and Bi-Conv-LSTM. 

Each algorithm has its advantages and disadvantages. Our investigation about the forecasting 

ability of these methods on COVID-19 time series led to the following contributions: 

 Based on the literature review, it seems that Bi-GRU and Bi-Conv-LSTM models 

have never been used before for prediction on COVID-19 new cases and new deaths 

rate time series. 

  No research was found which predicts new cases and new deaths every three or seven 

days. The motivation behind attempting to predict every n days (instead of every day) 

was to investigate whether it is possible to reduce computational complexity and still 

achieve reasonable performance. Such a scenario gains importance in any application 

involving real-time forecasting of time series. Whether the incurred error due to 

prediction every n days is acceptable or not, fully depends on the application 

requirements. Therefore, it is the designer who decides whether it is worth to sacrifice 

performance to gain better computation efficiency. In our experiments, inspection of 

RMSLE metric in figures 2-5 shows that predicting every three days approximately 



doubles the prediction error. The incurred error of predicting every seven days is more 

than four times of error when prediction is done every day. 

 Comprehensive evaluation of LSTM, Conv-LSTM, GRU and their bidirectional 

extensions. 

 Statistical comparison of the investigated methods using Friedman test. 

Recall that in Figures 2-5, the error rate of the new cases and new deaths in Iran and Australia 

were determined by methods LSTM, GRU, Conv-LSTM, Bi-LSTM, Bi-GRU and Bi-Conv-

LSTM. Overall, it was observed that in most of the conducted experiments (Figures 2-5) the 

bidirectional methods achieved better results than the other methods. 

Based on data in Table 4, the key observations can be summarized as below: 

 For prediction of new deaths in the next day in Australia and Iran, Bi-GRU had the 

best performance. For 3-day ahead prediction of new deaths in Australia, GRU was 

the best method while Bi-Conv-LSTM did the best prediction in Iran. Finally, in the 

7-day ahead case, LSTM performed better than other methods on Australia data and 

Bi-Conv-LSTM outperformed other methods on Iran data. 

 On the other hand, for 1-day ahead predictions of new cases in Australia, LSTM and 

Bi-GRU gained the best performance. For 3 and 7-day ahead predictions, Conv-

LSTM and Bi-Conv-LSTM showed better performance, respectively. In Iran, Bi-GRU 

was better for 1 and 3-day ahead predictions and Bi-Conv-LSTM was better for 7-day 

ahead prediction. 

The proposed method can provide the health crisis management centers with valuable 

forecasting based on the observed data. Having an estimate of what awaits us in the near 

future might help with the appropriate preparation to minimize the inevitable damage. The 

forecasting ability of the six models is due to their memorizing capability. The limitation of 

the proposed method is that the characteristics of the time series data might change as time 

passes. Therefore, to keep the models accurate, we are forced to incur the cost of training the 

models on the newly observed data. 

8. Conclusion 



In this research, six different models were compared for predicting the number of new cases 

and deaths in the next 100 days. The prediction was done for each day, every 3 days and 

every 7 days. The conducted experiments showed that most of the time, the bidirectional 

models outperform their non-bidirectional counterparts.  

In the future, the plan is to use a combination of other machine learning and deep learning 

methods to achieve better results. In particular, experimenting with non-parametric models 

such as Gaussian Process (GP) to perform time series forecasting seems interesting since GP 

can provide uncertainty about its predictions. We might be able to determine the appropriate 

prediction horizon based on the uncertainty provided by GP. 

 

List of Abbreviations 

ANFIS   Adaptive Network-based Fuzzy Inference System 

ANN   Artificial Neural Network 

AU   Australia 

Bi-GRU  Bidirectional Gated Recurrent Unit 

Bi-Conv-LSTM Bidirectional Convolutional Long Short Term Memory 

Bi-LSTM  Bidirectional Long Short-Term Memory 

Conv-LSTM  Convolutional Long Short Term Memory 

COVID-19  Coronavirus Disease 2019  

DL   Deep Learning 

DLSTM  Delayed Long Short-Term Memory 

EMRO   Eastern Mediterranean Regional Office 

ES   Exponential Smoothing 

EV   Explained Variance 

GRU   Gated Recurrent Unit 

IR   Iran 



Lasso   Least Absolute Shrinkage and Selection Operator 

LR   Linear Regression 

LSTM   Long Short-Term Memory 

MAE   Mean Absolute Error 

MAPE   Mean Absolute Percentage Error 

MSE   Mean Square Error  

MERS    Middle East Respiratory Syndrome 

ML   Machine Learning 

MLP-ICA   Multi-layered Perceptron-Imperialist Competitive Calculation 

MSLE   Mean Squared Log Error 

PRISMA  Preferred Reporting Items for Precise Surveys and Meta-Analyses 

ReLU   Rectified Linear Unit 

RMSE   Root Mean Square Error 

RMSLE  Root Mean Squared Log Error 

RNN   Repetitive Neural Network 

SARS   Serious Intense Respiratory Disorder 

SARS-COV  SARS coronavirus 

SARS-COV-2  Serious Intense Respiratory Disorder Coronavirus 2 

SVM   Support Vector Machine  

VAE   Variational Auto Encoder 

WHO   World Health Organization 

WPRO   Western Pacific Regional Office 
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