
An Efficient and Secure Location-based Alert Protocol using
Searchable Encryption and Huffman Codes

Sina Shaham

University of Southern California

Los Angeles, USA

sshaham@usc.edu

Gabriel Ghinita

University of Massachusetts

Boston, USA

gghinita@cs.umb.edu

Cyrus Shahabi

University of Southern California

Los Angeles, USA

shahabi@usc.edu

ABSTRACT
Location data are widely used in mobile apps, ranging from

location-based recommendations, to social media and naviga-

tion. A specific type of interaction is that of location-based alerts,
where mobile users subscribe to a service provider (SP) in order

to be notified when a certain event occurs nearby. Consider, for

instance, the ongoing COVID-19 pandemic, where contact trac-

ing has been singled out as an effective means to control the virus

spread. Users wish to be notified if they came in proximity to an

infected individual. However, serious privacy concerns arise if

the users share their location history with the SP in plaintext.

To address privacy, recent work proposed several protocols

that can securely implement location-based alerts. The users up-

load their encrypted locations to the SP, and the evaluation of

location predicates is done directly on ciphertexts. When a cer-

tain individual is reported as infected, all matching ciphertexts

are found (e.g., according to a predicate such as “10 feet prox-

imity to any of the locations visited by the infected patient in

the last week”), and the corresponding users notified. However,

there are significant performance issues associated with existing

protocols. The underlying searchable encryption primitives re-

quired to perform the matching on ciphertexts are expensive, and

without a proper encoding of locations and search predicates, the

performance can degrade a lot. In this paper, we propose a novel

method for variable-length location encoding based on Huffman

codes. By controlling the length required to represent encrypted

locations and the corresponding matching predicates, we are able

to significantly speed up performance. We provide a theoreti-

cal analysis of the gain achieved by using Huffman codes, and

we show through extensive experiments that the improvement

compared with fixed-length encoding methods is substantial.

1 INTRODUCTION
Location-based alerts are an emerging area of mobile apps that

are very relevant to domains such as public safety, healthcare

and transportation. For instance, users may want to subscribe to

services that notify them whether an imminent danger exists in

their close proximity (e.g., an active shooter situation). Or, in the

recent context of COVID-19, mobile users wish to be notified if

they came in close proximity to an individual who was diagnosed

with the disease. While the advantages of location-based alerts

are undeniable, they also introduce serious privacy concerns: in

order to benefit from such services, users periodically upload

their locations to a service provider (SP). The SP monitors large

number of individuals, and evaluates spatial predicates to deter-

mine which individuals should be alerted. Disclosing individual

locations can leak sensitive personal details to the SP, which

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

may in turn share the data with third parties. And even in cases

where the SP is fully trusted, it can be subject to cyber-attacks,

or subpoenas by governments, resulting in the users’ moving

history being exposed.

Movement data can disclose sensitive details about an individ-

ual’s health status, political orientation, alternative lifestyles, etc.

Therefore, it is crucial to support location-based alerts while at

the same time protecting user privacy. This problem has been

recently studied in literature, and formulated in the context of

secure alert zones [14, 21, 23], where users report their encrypted
locations to the SP, and the SP evaluates alert predicates on

encrypted data. These approaches require a special kind of en-

cryption that allows predicate evaluation on ciphertexts, namely

searchable encryption (SE) [5, 19, 24]. However, the SE primitives

are not specifically designed for geospatial queries, but rather

for arbitrary keyword or wildcard queries. As a result, a data

mapping step must transform spatial queries to the primitive

operations supported on ciphertexts. Due to this translation, the

performance overhead can be significant.

Some solutions use Symmetric Searchable Encryption (SSE)
[11, 19, 24], where a trusted entity knows the secret key of the

transformation, and collects the location of all users before en-

crypting them and sending the ciphertext to the service provider.

While the performance of SSE can be quite good, the system

model that requires mobile users to share their cleartext locations

with a trusted service is not adequate from a privacy perspective,

since it still incurs a significant amount of disclosure.

Prior work in secure alert zones [14, 21, 23] uses Hidden Vector
Encryption (HVE) [5], which is an asymmetric type of encryption
that allows direct evaluation of predicates on top of ciphertexts.

Each user encrypts her own location using the public key of the

transformation, and no trusted component that accesses locations

in clear is required. However, the performance overhead of HVE

in the spatial domain remains high.

In existing HVE work for geospatial data [14], [21], the data

domain is partitioned into a hierarchical data structure, and each

node in this structure is assigned a binary string identifier. The

binary representation of each node plays an important part in

query encoding, and it influences the amount of computation that

needs to be executed when evaluating predicates on ciphertexts.

In [14], the earliest solution for secure alert zones, the impact

of the specific encoding is not evaluated in-depth. In [23], the

geospatial data domain is embedded to a high-dimensional hy-

percube, and then graph embedding [7] is applied to reduce the

computation overhead in the predicate evaluation step.

However, all previous solutions use fixed-length encoding of

locations and alert zones, meaning that the same number of bits

is used to represent each location. In cases where the distribution

of alert zones and/or locations is not uniform, using fixed-length

encoding can introduce unnecessary overhead. Motivated by

this fact, we propose techniques to reduce the computational

overhead of HVE by using variable-length encoding. Specifically,

ar
X

iv
:2

10
5.

00
61

8v
1

 [
cs

.C
R

]
 3

 M
ay

 2
02

1

Figure 1: Location-based alert system.

(a) Match (b) Nonmatch

Figure 2: HVE evaluation
we use Huffman compression codes to represent both user lo-

cations and alert predicates. Areas of the domain that are more

popular, or more likely to result in a secure alert being triggered,

are encoded with fewer bits than less popular areas. This allows

us to perform spatial query execution on ciphertexts in a less

computationally-intensive manner.

Our specific contributions are:

• We consider for the first time the use of variable-length

encoding, specifically Huffman compression codes, for the

problem of secure alert zones on encrypted location data;

• We devise specialized domain encoding techniques for

both user locations and alert zones that take into account

location popularity;

• We provide algorithms to evaluate the secure alert zone en-

closure predicates directly on ciphertexts when both user

locations and alert zones are represented using variable-

length encoding;

• We perform an extensive experimental evaluation which

shows that the proposed approach reduces considerably

the performance overhead of secure alert zones compared

to fixed-length encoding approaches.

The rest of the paper is organized as follows: Section 2 intro-

duces necessary background and the system model. Section 3

provides the details of the proposed variable-length encoding

techniques for user locations and alert zones. Section 4 general-

izes our solution to non-binary identifiers. Section 5 analyzes the

overhead of variable-length encoding on ciphertext size. Section

6 provides a security discussion, followed by evaluation of the

proposed approach on both real and synthetic datasets in Section

7. We survey related work in Section 8 and conclude in Section 9.

2 BACKGROUND
Consider a map divided into a set of 𝑛 non-overlapping partitions

V = {𝑣1, , 𝑣2, ..., 𝑣𝑛}. (1)

Each partition 𝑣𝑖 represents a spatial area on the map referred to

as cell. Cells are identified by a unique binary code called index,
and can have arbitrary shapes and sizes (although equal-size

square cells are most likely in practice). We refer to the parti-

tioning as a grid. The assignment of indexes to cells is referred

to as grid encoding. All indexes must have the same length for

security purposes (to prevent an adversary from distinguishing

cells based on length). Fig. 1 shows a sample grid with five cells,

each associated with an index of length three.

When an event of interest occurs, an alert zone is created,
which spans a number of grid cells. We refer to such cells inter-

changeably as alert cells or alerted cells. In Fig. 1, cells 𝑣3 and 𝑣2
associated with the indexes 100 and 000 (shown highlighted) are

alert cells. We denote the likelihood of cell 𝑣𝑖 being alerted by

𝑝 (𝑣𝑖), or alternatively 𝑝𝑖 . Our goal is to exploit alert cell likeli-

hoods in order to choose an encoding that reduces the computa-

tional complexity of HVE.

2.1 Hidden Vector Encryption
Hidden Vector Encryption (HVE) [5] is a searchable encryption sys-
tem that supports predicates in the form of conjunctive equality,

range and subset queries. Search on ciphertexts can be performed

with respect to a number of index attributes. HVE represents an

attribute as a bit vector (each element has value 0 or 1), and the

search predicate as a pattern vector where each element can be

0, 1 or ’*’ that signifies a wildcard (or “don’t care”) value. Let 𝑙

denote the HVEwidth, which is the bit length of the attribute, and
consequently that of the search predicate. A predicate evaluates

to𝑇𝑟𝑢𝑒 for a ciphertext𝐶 if the attribute vector 𝐼 used to encrypt

𝐶 has the same values as the pattern vector of the predicate in

all positions that are not ’*’ in the latter. Fig. 2 illustrates the two

cases of Match and Non-Match for HVE.

HVE is built on top of a symmetrical bilinear map of composite

order [5], which is a function 𝑒 : G×G→ G𝑇 such that ∀𝑎, 𝑏 ∈ 𝐺
and ∀𝑢, 𝑣 ∈ Z it holds that 𝑒 (𝑎𝑢 , 𝑏𝑣) = 𝑒 (𝑎, 𝑏)𝑢𝑣 . G and G𝑇 are

cyclic multiplicative groups of composite order 𝑁 = 𝑃 ·𝑄 where

𝑃 and 𝑄 are large primes of equal bit length. We denote by G𝑝 ,
G𝑞 the subgroups of G of orders 𝑃 and 𝑄 , respectively. Let 𝑙

denote the HVE width, which is the bit length of the attribute,

and consequently that of the search predicate. HVE consists of

the following phases:

Setup. The public/private (𝑃𝐾/𝑆𝐾) key pair has the form:

𝑆𝐾 = (𝑔𝑞 ∈ G𝑞, 𝑎 ∈ Z𝑝 , ∀𝑖 ∈ [1..𝑙] : 𝑢𝑖 , ℎ𝑖 ,𝑤𝑖 , 𝑔, 𝑣 ∈ G𝑝)

To generate 𝑃𝐾 , we first choose at random elements 𝑅𝑢,𝑖 , 𝑅ℎ,𝑖 ,

𝑅𝑤,𝑖 ∈ G𝑞,∀𝑖 ∈ [1..𝑙] and 𝑅𝑣 ∈ G𝑞 . Next, 𝑃𝐾 is determined as:

𝑃𝐾 = (𝑔𝑞, 𝑉 = 𝑣𝑅𝑣, 𝐴 = 𝑒 (𝑔, 𝑣)𝑎,

∀𝑖 ∈ [1..𝑙] : 𝑈𝑖 = 𝑢𝑖𝑅𝑢,𝑖 , 𝐻𝑖 = ℎ𝑖𝑅ℎ,𝑖 , 𝑊𝑖 = 𝑤𝑖𝑅𝑤,𝑖)
Encryption uses 𝑃𝐾 and takes as parameters index attribute

𝐼 and message 𝑀 ∈ G𝑇 . The following random elements are

generated: 𝑍, 𝑍𝑖,1, 𝑍𝑖,2 ∈ G𝑞 and 𝑠 ∈ Z𝑛 . Then, the ciphertext is:

𝐶 = (𝐶
′
= 𝑀𝐴𝑠 , 𝐶0 = 𝑉

𝑠𝑍,

∀𝑖 ∈ [1..𝑙] : 𝐶𝑖,1 = (𝑈 𝐼𝑖
𝑖
𝐻𝑖)𝑠𝑍𝑖,1, 𝐶𝑖,2 =𝑊

𝑠
𝑖 𝑍𝑖,2)

Token Generation. Using 𝑆𝐾 , and given a search predicate

encoded as pattern vector 𝐼∗, a search token 𝑇𝐾 is generated

as follows: let 𝐽 be the set of all indexes 𝑖 where 𝐼∗ [𝑖] ≠ ∗. We

randomly generate 𝑟𝑖,1 and 𝑟𝑖,2 ∈ Z𝑝 ,∀𝑖 ∈ 𝐽 . Then

𝑇𝐾 = (𝐼∗, 𝐾0 = 𝑔𝑎
∏
𝑖∈𝐽
(𝑢𝐼∗ [𝑖]

𝑖
ℎ𝑖)𝑟𝑖,1𝑤𝑟𝑖,2

𝑖
,

∀𝑖 ∈ [1..𝑙] : 𝐾𝑖,1 = 𝑣𝑟𝑖 ,1, 𝐾𝑖,2 = 𝑣
𝑟𝑖 ,2)

Query is executed at the service provider, and evaluates if the

predicate represented by 𝑇𝐾 holds for ciphertext 𝐶 . The server

attempts to determine the value of𝑀 as

𝑀 = 𝐶
′
/(𝑒 (𝐶0, 𝐾0)/

∏
𝑖∈𝐽

𝑒 (𝐶𝑖,1, 𝐾𝑖,1)𝑒 (𝐶𝑖,2, 𝐾𝑖,2) (2)

If the index 𝐼 based on which 𝐶 was computed satisfies 𝑇𝐾 , then

the actual value of 𝑀 is returned, otherwise a special number

which is not in the valid message domain (denoted by ⊥) is
obtained.

The HVE query, or matching, is the most important operation

in a location-based alert system, because it is executed every time

an alert occurs, and it requires processing of a large number of

ciphertexts. Our goal is to reduce the overhead of matching, and
the most direct way to do so is by reducing the number of non-star
bits in a token, since the number of expensive bilinear maps is
proportional to the count of non-star bits.

2.2 System Model
The architecture of location-based alert systems is shown in Fig. 1.

There are three types of entities: mobile users, a service provider

(SP) and a trusted authority (TA).

Mobile users subscribe to the location-based alert system and

periodically submit their encrypted location updates. Users want

to be notified when they are in an alert cell, without their privacy

being compromised. They the public key (PK) of the HVE cryp-

tosystem to encrypt their locations before sending them to the

SP. For example, users A and B on the grid encrypt their indexes

110 and 000, generating two ciphertexts 𝐶𝐴 and 𝐶𝐵 , respectively.

The Trusted Authority (TA) has the secret key (SK) of the

HVE cryptosystem. In practice, the TA role could be played by

a reputable organization such as a law enforcement agency, or

the center for disease control, who issue HVE search tokens corre-
sponding to alerts. The TA does not have access to user locations,
and is assumed not to collude with the SP. The TA is acting in the

interest of the general public, but does not have the infrastructure

to run a complex alert system, which is why this service is out-

sourced to the SP. One important aspect when generating tokens

is to minimize the number of non-star bits in a token, in order

to reduce the computational overhead of matching. A common

approach is to use binary minimization on the cell identifiers.

For example, the two alerted indexes 100 and 000 are combined

using binary expression minimization to obtain *00, then, the

new index is encrypted using the SK to create a token with two

non-star bits, instead of two tokens with three non-star bits each.

The overhead is reduced from six sets of bilinear pairings to two.

The SP implements the alert service. It receives encrypted

updates from users and tokens from the TA, and performs the

matching to decide whether encrypted location 𝐶𝑖 of user 𝑖 falls

within alert zone 𝑗 represented by token 𝑇𝐾𝑗 . If the matching
outcome is positive, the SP learns that the user is inside the alert

zone, and notifies the user. For a matching process to result in

a positive outcome, all the token’s non-star bits should exactly

match the user index. Star bits (’don’t care’ bits), as the name

suggests, match with either a zero or one bit in the user index.

Note that all received information from users and the TA is

Table 1: Summary of notations.

Symbol Description

𝑛 Number of cells

V = {⋃ 𝑣𝑖 } Set of all cells

𝑝 (𝑣𝑖) Probability of cell 𝑣𝑖 becoming alerted

𝐶 𝑗 Encrypted location of user 𝑗

𝑇𝐾𝑗 Token 𝑗

𝑀𝑗 Message of user 𝑗

RL Depth of prefix tree (reference length)

𝑟𝑖 𝑖th internal node of tree

Pois(𝜆) Poisson distribution; occurrence rate 𝜆

Σ Identifier symbol alphabet

𝛾 Euler-Mascheroni constant
𝜙 Golden ratio

𝑎[𝑖 : 𝑗] Returns elements 𝑖 to 𝑗 − 1 of array 𝑎
𝑥1𝑥2 ...𝑥𝑙 Concatenation of symbols 𝑥1 to 𝑥𝑙

encrypted in the matching process, and the search happens over

encrypted data only.

Revisiting the example in Fig. 1, the outcome of matching

between token *00 and user B’s ciphertext corresponding to index

000 is positive (all the non-star bits match); however, thematching

outcome between *00 and 110 (user A) is negative as the second

bits do not match. From the mathematical derivation of HVE (2.1),

the HVE system’s computation complexity is proportional to the

number of non-star bits in the tokens. Therefore, a good grid

encoding reduces the overall number of non-star bits in tokens

to minimize the HVE computational overhead.

2.3 Motivation and Scope
While prior work made important steps toward secure and scal-

able location-based alert systems, important performance issues

still need to be addressed. The pioneering work in [14] was the

first to use searchable HVE encryption in the context of locations,

but assumed that all data domain regions are equally likely to be

part of an alert zone. Later in [23], it was shown that if there are

significant differences in likelihood of distinct regions to be part

of an alert zone, then performance can be significantly boosted.

However, both [14] and [23] use fixed-length encoding, i.e., the

same number of bits are used to represent each cell. Hence, their

performance overhead depends entirely on their ability to aggre-

gate search tokens. When alert zones consist of a relatively large

number of co-located alert cells, fixed-length encoding methods

are able to perform effectively binary minimization of identifiers,

and reduce overhead. This may be sufficient in some scenarios

such as an active shooter, or a gas leak, where there is an epicen-

ter of the event, and a range around the epicenter (often circular)

within which users must be alerted. The range can be large, for

instance in the order of hundreds of meters.

However, in other applications, alert zones may be compact

and sparse. For instance, consider the case of contact tracing –

an important task in controlling pandemics, such as COVID-19.

In this case, there will be a number of distinct alert zones, corre-

sponding to the set of locations visited by a COVID-19 patient.

For each individual site, the range of the query is relatively small,

for instance, several meters around the patient location for direct

spread. Or, in the case of surface spread or aerosol transmission,

the query may be restricted to a room, or a store, which may be

in the order of 10 − 20 meters in size. There are insufficient cells

in the alert zones to allow for effective token aggregation with

fixed encoding, and the performance obtained may be poor.

Our goal is to address this latter case, and we do so by using a

novel variable-length encoding approach. In this case, it is impor-

tant to use fewer representation bits for high-probability regions.

While our advantage is greatest for small, sparse alert zones,

we show in our empirical evaluation in Section 7 that variable-

length encoding can outperform fixed-length approaches for a

wide choice of alert zone sizes, and mixed-size workloads.

Normalizing the cell probability values over the domain space

reveals how likely a cell is to be alerted compared to others. A

typical stochastic distribution used to model sporadic events is

Poisson distribution, characterized as follows.

Theorem 1. If a random variable 𝑌 represents the number of
alert cells on the grid, then, it approximately follows Poisson distri-
bution (Pois(𝜆)) with the occurrence rate of one (𝜆 = 1).

Proof. An alert zone event on the map is a subset of cells

𝑣1, , 𝑣2, ..., 𝑣𝑛 , where 𝑛 is a large value and each probability 𝑝 (𝑣𝑖)
is relatively small. Moreover, the events are either independent

or weakly dependent of each other. Let

𝑌 =

𝑛∑︁
𝑖=1

𝐼 (𝑣𝑖) (3)

count howmany of the cells are alerted, in which 𝐼 is an indicator

random variable having a value of one when the cell is alerted and

zero otherwise. Based on the Poisson distribution, the random

variable 𝑌 can be approximated with rate 𝜆 =
∑𝑛
𝑖=1 𝑝 (𝑣𝑖) = 1.

Therefore, the probability of having 𝑘 alert cells is given by

𝑝 (𝑌 = 𝑘) = 𝑒−1

𝑘!
. (4)

□

One can see from the Poisson distribution that the likelihood

of having a large number of alert cells is low. The maximum

probability corresponds to having only a single alert cell in a

zone, and then it drops significantly. This motivates our technique

for dealing effectively with cases where alert zones are compact.

3 LOCATION-BASED ALERTS WITH
VARIABLE-LENGTH ENCODING

In Section 3.1 we provide an overview of Huffman codes; Sec-

tion 3.2 presents the proposed location encoding scheme; Sec-

tion 3.3 introduces the token minimization process.

3.1 Prefix and Huffman Codes
Generally, any uniquely-decodable representation used to trans-

mit information is a prefix code, i.e., it follows the prefix property,
which requires that no whole code can be part of any other code.

For example, [000, 001, 01, 10, 11] is a prefix code as no code starts
with any other code in the set. A well-known theorem based on

Kraft inequality [10] states that any prefix over an alphabet of

size two with string lengths of 𝑙1 to 𝑙𝑛 must satisfy the inequality

𝑛∑︁
𝑖=1

1

2
𝑙𝑖
− 1 ≤ 0, (5)

and conversely, given a set of string lengths that satisfies the Kraft

inequality, there exists a prefix code with these string lengths.

Let the tuple P = (𝑝1, 𝑝2, ..., 𝑝𝑛) defined over space partitioning

V indicate the likelihood of cells 𝑣1, · · · 𝑣𝑛 becoming alert cells.

Furthermore, suppose that the function 𝑓 (𝑙1, 𝑙2, ..., 𝑙𝑛) returns the
average symbol length with no minimization, and 𝑓𝑀 (𝑙1, 𝑙2, ..., 𝑙𝑛)

returns the average reduction in number of bits in the mini-

mization process. Given the tuple of cells and probabilities, the

objective of a minimal encoding is to generate a prefix code

C(P) = (𝑐1, 𝑐2, ..., 𝑐𝑛) as follows:

minimize 𝐿(C(P)) =
𝑛∑︁
𝑖=1

𝑝 (𝑣𝑖) × 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑖)

subject to 𝐿(C(P)) ≤ 𝐿(T (P)) for any code T (P)

Note that 𝑓𝑀 , which indicates the amount of minimization,

is not necessarily a function. For example, a previously used

minimization approach based on Karnaugh maps [14] does not

always result in a unique output. The NP-hardness of the above

problem based on fixed-length codes is shown in [23].

The most well-known prefix code is the Huffman encoding,
widely used in communication systems as it results in optimal

decodable average code length. The main idea behind Huffman

codes is that more common symbols are represented with fewer

bits compared with the less common symbols. In grid encoding,

it is desirable to encode symbols that have higher probabilities

of being in alert zones with fewer bits than the less likely ones.

Given the tuple of cells and probabilities, the objective of Huffman

encoding is to generate a prefix code that minimizes the average

length of codewords:

minimize 𝑓 (𝑙1, 𝑙2, ..., 𝑙𝑛) − 𝑓𝑀 (𝑙1, 𝑙2, ..., 𝑙𝑛)

subject to

𝑛∑︁
𝑖=1

1

2
𝑙𝑖
− 1 ≤ 0

𝑙𝑖 > 0, ∀𝑖 = 1, .., 𝑛

(6)

Prefix Trees. An intuitive way to discover whether the prefix

property holds for a code is to draw its associated binary tree,

called prefix tree. The prefix tree is constructed by assigning an

empty character to the root and descending through the tree. At

each branching point, we either choose to go left by adding a

zero character or move to the right child by adding a character

’1’ to the root string. We call the tree’s depth reference length (RL).
This number also indicates the maximum length of a prefix code.

Moreover, the subtree roots are referred to as interior nodes of the
prefix tree, and the leaf nodes are the prefix codes. Fig. 4b, shows
a prefix tree with an RL of three. As an example, the prefix code

’001’ is generated by traversing nodes 𝑟4, 𝑟2, and 𝑟1.

3.2 Proposed Coding Scheme
The focus of prior work on secure alert zones [14, 23] has been on

fixed-length codes. Such codes are indeed a special case of prefix

codes, in which the tree is balanced, and no assigned code can

start with another. Next, we show how variable-length codes can

be used in conjunction with HVE. An overview of the proposed

approach is presented in Fig. 3. Based on a given prefix code, the

TA generates grid indexes where each index is a unique identifier

of a cell in the grid. In addition to grid indexes, a coding tree

is generated for the purpose of token minimization. Given the

set of indexes associated with the alert cells, the TA applies the

proposed minimization algorithm and transmits the encrypted

tokens to the SP. Fig. 4 serves as a running example.

Our approach consists of four steps:

I. Generation of Probabilities: Our coding scheme relies on a set

of probabilities for each cell of the location domain to be part of

an alert zone. This step is a prerequisite to our approach, and thus

performed independently of the encoding. Such probabilities are

application dependent, and can be generated based on a trained

Figure 3: Overview of HVE with variable-length codes.
machine learning model. In the example of Fig. 4a, we have five

cellsV = (𝑣1, 𝑣2, 𝑣3 𝑣4, 𝑣5) with alert probabilities of

P=(𝑝 (𝑣1)=0.1, 𝑝 (𝑣2)=0.2, 𝑝 (𝑣3)=0.5, 𝑝 (𝑣4)=0.4, 𝑝 (𝑣5)=0.6).
For grids entailing a high correlation between alert probabili-

ties of cells, the setting in [23] or deep learning models such as [2]

can be used to find the stationary distribution of probabilities,

leading to a more accurate probabilistic model.

II. Prefix tree : An arbitrary prefix code defined over alphabet

Σ = {0, 1} can be represented by a binary tree with the prefix

codes located on the leaves of the tree. We are not just interested

in the generated prefix codes, but also in the codes associated

with the internal nodes of the tree. Therefore, internal nodes are

also stored as well as the generated prefix codes.

The topology of the tree is stored by recording five attributes

of each node: left child (leftChild), right child (rightChild), parent

node (parentNode), weight, and the associated code. The weight

of a node represents its frequency. The leaf nodes have a fre-

quency equal to their probability, and the weight of a parent

node is found by the addition of its immediate children’s weights

(i.e., Huffman mechanism). The prefix tree is not used directly in

the prefix coding scheme, but two sets of codes are generated

based on the prefix tree; one is used for identifying grid cells

referred to as cell indexes, and another is used by the TA to per-

form token minimization. Once the base codes are assigned for

each node of the tree, two sets of padding are conducted, one

for indexes assigned to the cells, and one used as a guideline for

the token generation. The padding leads to a length of RL (i.e.,

equal length) for all codewords and indexes. Recall that equal

ciphertext lengths is a requirement for security. However, the

variable-length codes affect the ciphetexts and token contents

in a way that allows fast processing. Furthermore, the padding

prevents an adversary from distinguishing among ciphertexts.

III. Grid indexes: the prefix codes (leaves on the prefix tree)

are padded from the right-hand side with zeros if they have a

length less than RL. In our example, the generated prefix codes

are {𝑣1 : 001, 𝑣2 : 000, 𝑣3 : 10, 𝑣4 : 01, 𝑣5 : 11} which are trans-

formed to {𝑣1 : 001, 𝑣2 : 000, 𝑣3 : 100, 𝑣4 : 010, 𝑣5 : 110} after
padding with zeros. We refer to zero-padded prefix codes as in-
dexes. Once codes are created, they are assigned to corresponding
cells identified by their probabilities. The assigned indexes to the

sample grid are shown in Fig 4c. These are the indexes utilized

by users to identify the cell they are enclosed by.

Algorithm 1 Coding Scheme

Input: Root;V;

1: //Root traversal to generate codes

2: function Traverse(Root)
3: if Root has no children then
4: return True

5: else
6: Root.leftChild = Root.code + ’0’

7: Root.rightChild = Root.code + ’1’

8: Traverse(leftChild)

9: Traverse(rightChild)

10:

11: 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 (𝑅𝑜𝑜𝑡)
12: //Generate indexes assigned to cells

13: 𝑅𝐿 ← depth of tree

14: for all leaf nodes do
15: 𝑖𝑛𝑑𝑒𝑥 = 𝑛𝑜𝑑𝑒 .code

16: while 𝑙𝑒𝑛(𝑛𝑜𝑑𝑒.code) < 𝑅𝐿 do
17: 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 +′ 0′
18: Assign index to 𝑣𝑖 that has 𝑝 (𝑣𝑖) = 𝑛𝑜𝑑𝑒.weight
19:

20: //Generate coding tree

21: for all nodes do
22: while 𝑙𝑒𝑛(𝑛𝑜𝑑𝑒.code) < 𝑅𝐿 do
23: 𝑛𝑜𝑑𝑒 .code = 𝑛𝑜𝑑𝑒 .code + ’*’

24: //codingTree is the set of all nodes, alternatively Root can be

returned

25: return codingTree

IV. Coding tree: the coding tree is used by the trusted authority
to generate tokens. The coding tree is constructed by adding star

bits on the right side of the prefix codes as well as the internal

nodes on the prefix tree if they have a length less than RL. The

padding for the sample grid is shown in Fig. 4d. The codes on

the coding tree are referred to as codewords.

Algorithm 1 formally presents how indexes and the coding tree

are generated for a given prefix tree. The inputs to the algorithm

are the tree root, grid cells, and their probabilities. The tree root

is sufficient for reconstructing the tree as children and parents

are presumed to be recorded. The algorithm traverses through

nodes to generate the prefix tree. Next, indexes of the grid are

generated and assigned to the grid cells, and finally, the coding

tree is completed and returned as the output of the algorithm.

Algorithm 2 presents how the Huffman tree is generated. The

algorithm starts by creating a node (leaf node) for each cell of

the grid, sorting them in ascending order based on their weights,

and placing them in a priority queue. Recall that the weights of

the leaf nodes are the probability of cells becoming alerted. Next,

while the length of the queue is greater than one, the algorithm

extracts two nodes with the minimum weights and creates a new

internal node (newNode) with a weight equal to the addition

of two extracted nodes. The new node is assigned as the parent

of extracted nodes, and the extracted nodes are assigned as left

and right children of the parent node. The new node’s weight

is inserted in the queue, and the process continues until only

a single weight remains in the queue. The last node is the root

of the tree and the output of the algorithm. The root node is

used as input to Algorithm 1 to generate the coding tree and grid

Algorithm 2 Huffman Tree

Input: V; P
1: //Generate tree nodes

2: for 𝑣𝑖 ∈ V do
3: Create a newNode(leftChild=None, rightChild = None,

4: parent = None, weight = 𝑝 (𝑣𝑖), code = ’ ’)

5: Insert nodes into priority queue 𝑄

6: while len(𝑄)>1 do
7: Sort 𝑄 in ascending order of weights

8: (𝑛𝑜𝑑𝑒1, 𝑛𝑜𝑑𝑒2) ← Extract first two nodes in 𝑄

9: Create a newNode(leftChild= 𝑛𝑜𝑑𝑒1, rightChild = 𝑛𝑜𝑑𝑒2,

10: parent = None,

11: weight = 𝑛1 .𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑛2 .𝑤𝑒𝑖𝑔ℎ𝑡 , code = ’ ’)

12: 𝑛1.parent, 𝑛2.parent= newNode

13: Insert newNode into 𝑄

14: //The last nodes in 𝑄 is the tree root

15: return root

indexes. The algorithm is executed with the time complexity of

O(𝑛(log
2
𝑛)).

The following steps illustrate the generation of Huffman tree

for the example presented in Fig. 4.

1. One node is generated for each cell (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) and
their probabilities are inserted in a priority queue

𝑄=(𝑝 (𝑣1)=0.2, 𝑝 (𝑣2)=0.1, 𝑝 (𝑣3)=0.5, 𝑝 (𝑣4)=0.4, 𝑝 (𝑣5)=0.6) .
2. The queue is sorted in an ascending order:

𝑄=(𝑝 (𝑣2)=0.1, 𝑝 (𝑣1)=0.2, 𝑝 (𝑣4)=0.4, 𝑝 (𝑣3)=0.5, 𝑝 (𝑣5)=0.6)
3. The two nodes with the minimum weights (𝑣1 and 𝑣2) are

extracted from the queue and a new parent node 𝑟1 is generated

with the weight of 𝑝 (𝑣2) + 𝑝 (𝑣1) = 0.3 and inserted into the

queue:

𝑄=(𝑝 (𝑟1)=0.3, 𝑝 (𝑣4)=0.4, 𝑝 (𝑣3)=0.5, 𝑝 (𝑣5)=0.6)
4. Similarly 𝑟2, 𝑟3, and 𝑟4 are generated as

𝑄=(𝑝 (𝑟2)=0.7, 𝑝 (𝑣3)=0.5, 𝑝 (𝑣5)=0.6),
𝑄=(𝑝 (𝑟2)=0.7, 𝑝 (𝑟3)=1.1),
𝑄=(𝑝 (𝑟4)=1.8) .

Another prefix tree evaluated in the experiments is called

balanced tree. This prefix tree is used as a baseline to understand

the improvement made by the Huffman tree. The balanced tree is

a complete binary tree constructed in 𝑙𝑜𝑔2 (𝑛) steps. Given a tuple
of probabilities corresponding to grid cells, they are sorted in

ascending order and placed in a priority queue, i.e., 𝑄 . In the 𝑗th

step, nodes𝑄 [2𝑖] and𝑄 [2𝑖+1] are paired for 𝑖 = 0, 1, ...,
⌊
𝑛/2𝑗

⌋
−1,

and each pair is replaced with a parent node in the queue. The

weight of a parent is the addition of its immediate children’s

weights. The final remaining node in the queue is the tree’s root.

3.3 Token Generation and Minimization
Prior work [14, 23] showed how the process of token generation

for an alert zone can considerably improve the computation over-

head, if the process of token aggregation is performed. Specifically,

the binary codes corresponding to different regions of an alert

zone can be aggregated to yield tokenswith few non-star symbols,

which in turn reduces the HVE overhead. Binary minimization on

fixed-length codes is used for this purpose. For instance, suppose

that the alert zone contains cells 0000, 0010, 0110, 0100,. Instead

of separately encrypting the cell indexes and generating four

(a) Sample grid.

(b) Coding tree generated based on Huffman encoding.

(c) Assigned grid indexes.

(d) Coding tree.

Figure 4: Sample variable-length coding scheme

tokens, the TA uses binary minimization to generate a single

token 0 ∗ ∗0, and the cost is reduced from twelve HVE operations

to two. Binary minimization works when there are many cells

in the alert zone, and when the placement of these cells permits

code minimization. This approach is suitable when the number

of alert cells is significant; however, in practice, alert zones may

have cell configurations that do not permit efficient aggregation.

We propose a different token generation approach, where

instead of performing binary minimization on fixed-length codes,

we control the configuration of tokens based on the assignment

of variable-length codes to cells. Algorithm 3 summarizes this

process. Inputs to the algorithm are a set of alert cells and the

coding tree. In the initialization phase, the algorithm defines:

• a dictionary of parent nodes (parentDict) with the number

of leaf nodes in the corresponding subtree. This is done by

traversing through children of parent nodes and counting

the number of leaves located in that subtree. For the sample

example, we have the dictionary as

[00∗ : 2, 0∗∗ : 3, 1∗∗ : 2, ∗∗∗ : 5]
• a list of leaf nodes denoted by leaves, ordered as they

appear on the tree while traversing; no two edges of the

tree cross path. Such a list for the sample tree is:

[𝑣2 : 000, 𝑣1 : 001, 𝑣4 : 01∗, 𝑣3 : 10∗, 𝑣5 : 11∗] .
The algorithm continues by converting alert cell indexes to

codewords on the tree and recoding their associated codeword

and the corresponding index in leaves. By default, the mapping

process splits codewords into clusters that are located consec-

utively in leaves. It is important to note that mapping of alert

cell indexes to codewords is unique, as demonstrated in Theo-

rem 2. The theorem proves a bijective mapping between grid

indexes and coding tree codewords. For instance, if the alert

cells are [001, 100, 110], then the mapping would result in leaves

[001, 10∗, 11∗] for the sample example. Next, the minimization

process based on the coding scheme is conducted. The minimiza-

tion’s main idea is to find the common subtree roots that have

maximum depths and use them as tokens. All leaves under a com-

mon subtree root must be alerted; otherwise, if a user is located

in such a leaf node it will be falsely notified to be in an alert zone.

Continuing with the example and alert cells [001, 10∗, 11∗], the
algorithm generates two clusters [10∗, 11∗] and [001], and aims

to identify the common subtree roots with the maximum depths

in each cluster. This is done heuristically in lines 23- 37. Suppose

that a cluster’s length is 𝐿, the common left-hand side code in all

𝐿 codewords is calculated and padded with ’*’ bits to ensure that

the codeword length is RL. If the common codeword exists in

the dictionary and the number of its children is 𝐿, the codeword

is chosen as representative of its descendent leaves; otherwise,

𝐿 is decremented by one, and now the first 𝐿 − 1 members are

checked to see if there exists a common root associated with them.

The process continues until the first subtree root is found. For

the remaining codewords in the cluster, the algorithm is applied

again until all tokens representing codewords in the cluster are

selected. A similar approach is repeated for all clusters.

Theorem 2. There exists a bijective function between grid in-
dexes and the leaf nodes of the coding tree.

Proof. We start by proving that for each index on the grid

there exists a unique leaf node (codeword) on the tree. Let𝑥1𝑥2 ...𝑥𝑙
denote an arbitrary index on the map. There exists at least one

leaf on the tree with the codeword 𝑦1𝑦2 ...𝑦𝑟1 ∗ ...∗ such that

𝑥1𝑥2 ...𝑥𝑟1 = 𝑦1𝑦2 ...𝑦𝑟1 , as indexes have been generated from leaf

nodes of the prefix tree. Suppose that there exist at least two leaf

nodes with the codewords𝑦1𝑦2 ...𝑦𝑟1 ∗ ...∗ and 𝑧1𝑧2 ...𝑧𝑟2 ∗ ...∗ cor-
responding to the index 𝑥1𝑥2 ...𝑥𝑙 . Hence, we have the following

relationship between the index and codewords on the tree.

𝑥1𝑥2 ...𝑥𝑟1 = 𝑦1𝑦2 ...𝑦𝑟1 (7)

𝑥1𝑥2 ...𝑥𝑟2 = 𝑧1𝑧2 ...𝑧𝑟2 (8)

Without loss of generality, assume that 𝑟2 ≥ 𝑟1. Hence, equa-
tions 7 and 8 result in

𝑦1𝑦2 ...𝑦𝑟1 = 𝑧1𝑧2 ...𝑧𝑟1 . (9)

However, this contradicts the prefix property of the codes. Hence,

there is a unique leaf node corresponding to each cell index. As

Algorithm 3 Deterministic Minimization

Input: alertCells; codingTree;
1: parentDict = {}
2: for node ∈ codingTree do
3: parentDict[node.code] = # descendent leaves

4: indexHolder, codewordHolder = []

5: leaves← list of leaf codewords

6: for 𝑖 ∈ alertCells do
7: memCodeword←Map 𝑖 to a codeword in leaves
8: codewordHolder = codewordHolder ∪{𝑚𝑒𝑚𝐶𝑜𝑑𝑒𝑤𝑜𝑟𝑑}
9: memIndex← index of memCodeword in leaves
10: indexHolder = indexHolder ∪{𝑚𝑒𝑚𝐼𝑛𝑑𝑒𝑥}
11: // Generate a two dimensional list of clusters

12: Clusters, c = []

13: 𝑐 = 𝑐 ∪ 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐻𝑜𝑙𝑑𝑒𝑟 [0]
14: for 𝑖 ∈ [1 : 𝑙𝑒𝑛(𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐻𝑜𝑙𝑑𝑒𝑟)] do
15: if 𝑖𝑛𝑑𝑒𝑥𝐻𝑜𝑙𝑑𝑒𝑟 [𝑖] = 𝑖𝑛𝑑𝑒𝑥𝐻𝑜𝑙𝑑𝑒𝑟 [𝑖 − 1] + 1 then
16: 𝑐 = 𝑐 ∪ 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐻𝑜𝑙𝑑𝑒𝑟 [𝑖]
17: else
18: clusters = clusters ∪ 𝑐
19: 𝑐 = []

20: 𝑐 = 𝑐 ∪ 𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝐻𝑜𝑙𝑑𝑒𝑟 [𝑖]
21: tokens = []

22: 𝑅𝐿 ← depth of tree

23: for cluster ∈ clusters do
24: 𝐿 = 𝑙𝑒𝑛(𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
25: while 𝐿 > 1 do
26: 𝑐𝑜𝑑𝑒 ← common bits in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 [1 : 𝐿]
27: if 𝑙𝑒𝑛(𝑐𝑜𝑑𝑒) < 𝑅𝐿 then
28: Pad with 𝑅𝐿 − 𝑙𝑒𝑛(𝑐𝑜𝑑𝑒) star bits
29: if 𝑐𝑜𝑑𝑒 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝐷𝑖𝑐𝑡 & 𝑝𝑎𝑟𝑒𝑛𝑡𝐷𝑖𝑐𝑡 [𝑐𝑜𝑑𝑒] = 𝐿 then
30: 𝑡𝑜𝑘𝑒𝑛𝑠 = 𝑡𝑜𝑘𝑒𝑛𝑠 ∪ 𝑐𝑜𝑑𝑒
31: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 [𝐿 : 𝑙𝑒𝑛(𝑐𝑙𝑢𝑠𝑡𝑒𝑟)]
32: 𝐿 = 𝑙𝑒𝑛(𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
33: else
34: 𝐿 = 𝐿 − 1
35: if 𝐿 = 1 then
36: 𝑡𝑜𝑘𝑒𝑛𝑠 = 𝑡𝑜𝑘𝑒𝑛𝑠 ∪ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 [𝐿]
37: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 [𝐿 : 𝑙𝑒𝑛(𝑐𝑙𝑢𝑠𝑡𝑒𝑟)]
38: return tokens

there are an equal number of indexes and codewords, there exists

a bijective mapping between indexes and codewords. □

4 EXTENSION TO NON-BINARY CODES
So far, we considered the alphabet of HVE operations to be limited

to Σ = {0, 1} and the extended alphabet as Σ∗ = Σ∪{∗}. This is an
intuitive way of looking at indexes as they are a series of zeros and

ones. However, by extending the alphabet to Σ = {0, 1, ..., 𝐵 − 1}
for an arbitrary integer 𝐵 ∈ {2, ..., 𝑛 − 1}, we could obtain more

compact representations. The special character is also added as

Σ∗ = Σ∪{∗}. We re-visit the operations from the previous section

for the extended alphabet with 𝐵 symbols.

1. Prefix tree: We incorporate an extension of Huffman coding

referred to as 𝐵-ary Huffman to generate the prefix tree. The

main idea is to group 𝐵 least probable symbols (instead of 2) at

each substitution stage of the algorithm. The construction of the

prefix tree for our running example grid is shown in Fig. 6a in

which a 3-ary or Huffman code is used. Initially, the algorithm

(a) (b)

Figure 5: Expansion process.
starts by combining nodes 𝑣2, 𝑣1, and 𝑣4, as they correspond to a

group of three nodes with the minimum total weight, generating

the node 𝑟1. Next, the nodes 𝑟1, 𝑣3, and 𝑣5 are combined, and the

root node 𝑟2 is generated. The weights and other characteristics

of the nodes are stored and calculated in the same way as the

binary Huffman tree. The codes associated with the tree are

generated by assigning an empty character to the root node and

then traversing the tree. At each branching node, when following

the 𝑖th child edge, character 𝑖 − 1 is added to the root string. As

an example, prefix code ’02’ is generated by adding character ’0’

at 𝑟1, and character ’2’ by moving to node 𝑣4. As in the case of

the binary case, we are interested in codes assigned to internal

nodes as well as the prefix codes generated at the leaves.

2. Coding tree: The generation of the coding tree requires an

additional step compared to the binary Huffman tree. In the first

step, codes are padded with star characters until they reach the

same length as the RL. The padded prefix tree for our running

example is shown in Fig. 6b. Next, we expand each character

to an array of 𝐵 bits. The character 𝑖 ∈ Σ is converted to 𝐵 bits

with the (𝑖+1)-th bit set to 1 and star bits otherwise. The only

exception is the star character, which will be mapped to a string

of length 𝐵 with all bits set to ’*’. As an example, the expansion

of 2∗ is shown in Fig. 5a.

Each original character essentially works as a placeholder for

the expanded representation. The final coding tree generated for

our example is shown in Fig. 6c.

3. Indexes:We generate indexes by padding the leaves in the

prefix tree by zeros, and then expanding the codes. An interesting

case occurs that gives the TA the opportunity to increase the

grid’s granularity further if desired. Consider the prefix code

’2’, which will be zero-padded to generate ’20’. The expansion

process requires two steps: (i) zeros generated by the padding

process are mapped to 𝐵 bits; (ii) each character 𝑖 ∈ Σ is expanded

to 𝐵 bits with the (𝑖+1)-th bit set to 1, and star bits otherwise. The

expansion of ’20’ is demonstrated in Fig. 5b.

The additional star bits in the index are converted to zeros.

The advantage of the approach is revealed when we increase

the granularity of a grid cell in a later stage in time. This can

be done by exploiting the star bits generated in the last step

without violating the structure of the grid or the coding tree.

Consider the index ’20’ corresponding to cell 𝑣5 one more time.

This string was first converted to ’**1000’ and then to ’001000’.

Suppose, later on, the TA decides to increase the granularity of

𝑣5 to four cells. This can simply be done by using four indexes

’001000’, ’011000’, ’101000’, ’111000’ generated based on star bits

with all of them lying under character ’2’. The coding tree is

also updated accordingly via placeholders for the character ’2’

without violating the tree’s prefix property.

5 ENCRYPTION OVERHEAD
Employing variable-length codes into HVE can significantly im-

prove the computation complexity at the SP, but there is a a trade-

off with respect to increased encryption time. When variable-

length encoding is used, all ciphertexts submitted by the mobile

users to the SP must have the maximum length of any existing

code. Otherwise, the length of the ciphertext would enable the

SP to pinpoint the location of the submitting user to one of the

cells that are assigned a code with bit length equal to the one

submitted. To thwart such attacks, all codes are padded before en-

cryption to the maximum possible length, i.e. RL. In this section,

we analyze this additional encryption overhead, and we show

that it is not significant, especially compared to the savings at the

SP. Furthermore, the additional computational load is spread over

the user population, since each user encrypts its own location

independently, and no bottleneck is created (as opposed to the

alert matching overhead which is centrally incurred at the SP).

In our analysis, we make use of the following result:

Theorem 3. The depth of a B-ary Huffman tree (RL) with 𝑛

leaves is less than or equal to ⌈𝑛 − 1
𝐵 − 1 ⌉.

Proof. The theorem can be proved by counting the number

of internal nodes in a B-ary Huffman tree. Consider a tree with

𝑛 leaves generated by the Huffman mechanism. At every run of

the algorithm, 𝐵 less likely remaining nodes in the priority queue

are combined, and a new internal node is inserted. Suppose that

the Huffman mechanism is conducted 𝑥 times over the priority

queue until a single node, i.e. root node, is left in the queue. The

maximum value of integer 𝑥 can be derived as:

𝑚𝑎𝑥
𝑥
{𝑛 − 𝑥 (𝐵 − 1) ≥ 1} → 𝑥 = ⌈𝑛 − 1

𝐵 − 1 ⌉ (10)

Therefore, the maximum possible depth of a B-ary Huffman tree

is ⌈𝑛 − 1
𝐵 − 1 ⌉. □

Let 𝐿𝐸 denote the difference between the RL of an encoding

grid with 𝑛 cells generated by Huffman coding and fixed-length

codes. We start by deriving an upper bound for 𝐿𝐸 when Σ∗ =
{0, 1} ∪ {∗}, and then extend the upper bound for an arbitrary

size alphabet. Without loss of generality, consider that RL in the

binary Huffman tree is 𝑙𝑛 . The minimum possible value for 𝑙𝑛 is

(a) Ternary Huffman coding tree. (b) Placeholders. (c) Coding tree.

Figure 6: Sample coding tree for extended framework.

Figure 7: Upper bound of 𝐿𝐸 for Binary Huffman codes.
⌈log

2
𝑛⌉. Based on Theorem 3, 𝐿𝐸 can be written as:

𝐿𝐸 (𝐵 = 2, 𝑛) = 𝑙𝑛−⌈log2 𝑛⌉ ≤ ⌈
𝑛 − 1
2 − 1 ⌉−⌈log2 𝑛⌉ = 𝑛−1−⌈log2 𝑛⌉

(11)

A tighter upper-bound for RL in a binary Huffman tree can be

derived based on the following theorem proven in [6] (we omit

the proof for brevity):

Theorem 4. Let 𝑝𝑛 and 𝑙𝑛 denote the minimum probability and
its corresponding length existing on the Huffman tree. Then,

𝑙𝑛 ≤ 𝑙𝑜𝑔𝜙
1

𝑝𝑛
(12)

where 𝜙 denotes the golden ratio, i.e., 𝜙 = (1 +
√
5)/2.

Therefore, a tighter upper-bound for 𝐿𝐸 can be written as

𝐿𝐸 (𝐵 = 2, 𝑛) ≤ 𝑙𝑜𝑔𝜙
1

𝑝𝑛
− ⌈log

2
𝑛⌉ (13)

The numerical and analytical values of 𝐿𝐸 are verified
1
for

binary Huffman coding in Fig. 7.

Now let us extend the approach for B-ary Huffman codes

generated with the alphabet Σ∗ = {0, 1, ..., 𝐵 − 1} ∪ {∗}. Based
on information theory, the minimum length of RL corresponding

to fixed-length codes is derived as ⌈log𝐵 𝑛⌉. Therefore, the upper-
bound for 𝐿𝐸 can be computed as:

𝐿𝐸 (𝐵, 𝑛) = 𝐵(𝑙𝑛 − ⌈log𝐵 𝑛⌉) ≤ 𝐵(⌈
𝑛 − 1
𝐵 − 1 ⌉ − ⌈log𝐵 𝑛⌉) (14)

≤ 𝐵(𝑛 − 1
𝐵 − 1 + 1 − ⌈log𝐵 𝑛⌉) (15)

The multiplier 𝐵 is required to map the alphabet to 0s and 1s,

used in the encryption.

𝐸 [𝐿𝐸 (𝑛)] ≤
1

𝑛 − 1 (
𝑛∑︁
𝑖=2

𝑖 (𝑛 − 1)
𝑖 − 1 +

𝑛∑︁
𝑖=2

𝑖 −
𝑛∑︁
𝑖=2

𝑖 ⌈log𝑖 𝑛⌉) (16)

The first and second summation in the upper-bound of𝐸 [𝐿𝐸 (𝑛)]
can be further simplified as

𝑛∑︁
𝑖=2

𝑖 (𝑛 − 1)
𝑖 − 1 =(𝑛 − 1) × (𝑛 − 1 +

𝑛∑︁
𝑖=2

1

𝑖 − 1) (17)

≈ (𝑛 − 1) × (𝑛 − 2 + ln(𝑛 − 1) + 1

2(𝑛 − 1) + 𝛾)

(18)

and,

𝑛∑︁
𝑖=2

𝑖 =
𝑛2 + 𝑛 − 1

2

(19)

1
Grid probabilities are generated with the parameters of sigmoid function set to

𝑎 = 0.95 and 𝑏 = 20. Please refer to Section 6 for details.

where 𝛾 ≈ 0.577 is the Euler-Mascheroni constant. The approx-
imation for the 𝑛th Harmonic can be derived by its asymptotic

expansion in the Hurwitz zeta function [8].

6 SECURITY DISCUSSION
Our proposed technique uses as building block HVE primitives

as introduced in [5], and hence inherits the security properties

of HVE, namely IND-CCA under the bilinear Diffie-Hellman

assumption. In terms of ciphertext processing semantics, the

security achieved by our technique is similar to existing work

in the area of secure computation, namely the only leakage that

occurs as part of ciphertext matching is the evaluation outcome.

Specifically, the SP learns only whether the user is included in

the alert zone (which is a necessary condition for correctness),

and no other information. The SP does not learn where exactly

the user is located within the alert zone, if the match is successful;

conversely, if the match is not successful, the SP learns only that

the user is not inside the alert zone, but cannot further narrow

down the user within the data domain.

Furthermore, our technique is guided by statistical information

that is derived solely from public data. Namely, the heuristic on

how to encode cells does not use any user location data, but

strictly likelihood scores that are assigned to grid cells, based

on public knowledge regarding the alert zone properties, such as

site popularity, etc. No private information regarding any system

user is included in the encoding process (not even aggregate data,

such as user distribution, etc).

Finally, the encryption strength achieved by HVE depends on

the underlying bilinear pairing curve used [5]. Modern elliptic-

curve pairing-based cryptography can easily provide 128-bit se-

curity, which is on par with commercial database applications

such as banking, or heathcare data security standards.

7 EXPERIMENTAL EVALUATION
We conduct our experiments on a 3.40GHz core-i7 Intel proces-

sor with 8GB RAM running 64-bit Windows 7 OS. The code is

implemented in Python. We evaluate our methods on both real

and synthetic datasets, as follows:

• Chicago Crime Dataset. This dataset is provided by the

Chicago Police Department’s CLEAR (Citizen Law En-

forcement Analysis and Reporting) system [1]. The dataset

consists of reported incidents of crime that occurred in

the city of Chicago in 2015. We consider four categories of

crime: homicide, sexual assault, sex offense, and kidnap-

ping. Fig. 8 shows data statistics. A 32× 32 grid is overlaid
on top of the dataset, and a logistic regression model is

trained with the crime data from January to November

2015, and tested on the December data. The accuracy of

the model is 92.9% and the generated likelihood scores

based on the model are used as input to our techniques.

• Synthetic data. We generate the likelihood of grid cells to

be part of an alert zone using a sigmoid activation function

S(𝑋 = 𝑥) = 1/(1+ exp−𝑏 (𝑥−𝑎)), where 𝑎 and 𝑏 are param-

eters controlling the function shape. For each data point

(i.e., cell) 𝑥 , a uniformly random number between zero and

one is generated, i.e., 𝑥 ∈ 𝑋 ∼ uniform(0, 1). Then, the
number is fed into the sigmoid activation function. The

output is a value between zero and one indicating the like-

lihood of the cell to be inside an alert zone. The sigmoid

function is a frequent model used in machine learning, and

Figure 8: Chicago crime dataset statistics.

(a) (b)

Figure 9: Evaluation on Chicago crime dataset.
we choose it because we expect that, in practice, the prob-

ability of individual cells becoming part of an alert zone

can be computed using such a model built on a regions’

map of features (e.g., type of terrain, building designation,

etc.). Parameter 𝑎 of the sigmoid controls the inflection
point of the curve, whereas 𝑏 controls the gradient.

We compare our proposed variable-length encoding scheme

with the state-of-the-art fixed-length approach scaled gray opti-

mizer (SGO) from [23], which uses graph embedding to reflect

cell probabilities in the way cell codes are chosen. We also con-

sider as a second benchmark an approach that uses balanced

trees, as opposed to Huffman trees.

We use as performance metric the number of HVE bilinear

map pairing operations incurred by each technique (which are

the most expensive component of the overhead). We present both

absolute counts, as well the percentage of improvement compared

to the original fixed-length encoding HVE approach introduced

in [14] (which assumes all cells are equally likely to be alerted).

7.1 Evaluation on Real Dataset
Fig. 9 shows the performance results obtained on the real dataset.

The 𝑥-axis in each graph indicates the size of the alert zone

(expressed as radius). For low radii values, the SGO algorithm fails

to provide significant improvement, due to the fact that the binary

minimization process used by fixed-length encoding approaches

is unable to aggregate tokens. In contrast, the proposed variable-

length technique using Huffman encoding is able to provide gains

of up to 15% compared to the baseline. In practice, we expect

alert zones to be relatively compact compared to the data domain,

hence this case is frequently occurring in practice. Furthermore,

the results show the superiority of the Huffman code compared to

generic variable-length encodings, as the balanced-tree approach

benchmark does not produce any improvement.

As the size of alert zone increases, SGO improves, whereas

the gain of Huffman encoding decreases. This is expected, since

with very large alert zones, it is easy to aggregate tokens, by

grouping together cells with low Hamming distance between

their codes. However, such an improvement can only be reached

when the alert zones are very large, which is not a realistic sce-

nario in practice. In general, the size of alert zones is expected

to be small, and their distribution in the data domain sparse,

which would further diminish the potential of SGO (and other

binary minimization approaches) to produce performance gains,

as aggregation requires clustered cells with similar binary codes.

7.2 Evaluation on Synthetic Dataset
Performance evaluation results for synthetic data are summarized

in Fig. 10. We use two inflection points for the sigmoid function

𝑎 = 0.90, 0.99, as well as three gradient values 𝑏 = 10, 𝑏 = 100

and 𝑏 = 200. A similar trend to the real dataset is observed. The

Huffman tree approach achieves significantly better performance

when the alert zones are compact, which is the expected case in

practice.

Two other trends can be observed with respect to the param-

eters of the sigmoid function. First, a higher inflection point

setting results in a more skewed distribution probability on the

grid, and leads to a higher performance gain for Huffman en-

coding compared to competitor approaches. The performance

gain can be as high as 50%. This is a positive aspect, since in real

life one expects alert cell probabilities to be quite skewed, where

more popular areas are visited by more individuals, hence there is

more potential for alert events (e.g., public-safety alerts, or visits

of a COVID-infected patient to points of interest). Second, an

increase in the gradient of initial probabilities (𝑏) also improves

the performance gain of Huffman encoding.

We also conducted an experiment under mixed-workload con-

ditions. We consider several mixes between short-radius (20 me-

ters) and long-radius (300 meters) alert zones:W1 (90% short-10%

long); W2 (75% short-25% long); W3 (25% short-75% long); and

W4 (10% short-90% long). Results are summarized in Fig. 11. Our

proposed technique outperforms SGO for all considered cases.

For mostly-compact alert zones (W1), the improvement is much

higher than that of SGO, with absolute values of up to 40%.

On the synthetic data, we are also able to perform more in-

depth tests where we vary the parameter settings of our proposed

approach. In Fig. 12, we vary the grid granularity. The results are

obtained for 𝑎 = 0.95 and 𝑏 = 20. The results show that higher

grid granularities lead to higher performance overhead, which

is expected, since more cells need to be encoded and encrypted,

and thus code lengths increase. We also observe an interesting

trend: the improvement for a low number of alert cells decreases

at higher granularity levels. As the number of grid cells grow, and

considering the same sigmoid activation function parameters,

there will be more cells with low probabilities of becoming an

alert cell. Therefore, the Huffman tree tends to have higher depths.

This can be observed more accurately in Fig. 13, where we show

the ratio of average length to themaximum length of the Huffman

tree for various grid sizes. Hence, the improvement achieved by

deterministic minimization lags behind the logic minimization

approach, leading to a smaller improvement percentage.

Finally, we present the run time required to generate indexes

and the coding tree in Fig. 14. Note that, this is a one-time setup

cost, as the process is only run when initializing the system, and

has no effect on run-time performance. In the worst case, the

process takes minutes for larger-granularity grids.

8 RELATEDWORK
Location Privacy. Early works on location data privacy piv-

oted around the 𝑘-anonymity [25] model. The main idea is to

hide users’ location among at least k-1 other users to protect

user privacy. A preliminary approach to achieve 𝑘-anonymity

(a) a=0.9, b=10 (b) a=0.9, b=10 (c) a=0.9, b=100 (d) a=0.9, b=100

(e) a=0.9, b=200 (f) a=0.9, b=200 (g) a=0.99, b=10 (h) a=0.99, b=10

(i) a=0.99, b=100 (j) a=0.99, b=100 (k) a=0.99, b=200 (l) a=0.99, b=200

Figure 10: Performance evaluation on synthetic dataset.

(a) a=0.9, b=100 (b) a=0.99, b=100

Figure 11: Mixed workloads, synthetic dataset.

(a) (b)

Figure 12: Varying grid granularity, synthetic dataset.

was focused on the generation dummy (fake) locations for data

points [18]. Unfortunately, dummy generation algorithms are

shown to be susceptible to inference attacks [22].

An alternative proposed method to achieve 𝑘-anonymity has

been focused on the concept of Cloaking Regions (CRs) [15].
Most approaches in this category take advantage of a trusted

anonymizer to generate a cluster of𝑘 user locations and query the

Figure 13: Average-to-maximum code length ratio.

Figure 14: System Initialization Time

area locations are enclosed by, achieving𝑘-anonymity [13, 17, 20].

Approaches based on CRs are effective in a single snapshot [17];

however, once users are considered in trajectories, requiring con-

tinuous queries, privacy concerns are posed on the system by

inference attacks. Moreover, large CRs are needed in trajectories,

significantly reducing the utility of data [9] as well as posing

privacy risks due to inference attacks. The authors in [12, 16]

aim at providing privacy by distinguishing between sensitive and

non-sensitive locations based on user preferences.

Searchable Encryption The main motivation behind search-

able encryption techniques is outsourcing the data management

to a third party, such as cloud providers without the third party

learning about data or queried information by users. The use of a

searchable encryption was initially proposed in [24] for a secure

cryptographic search of keywords. The approach supports com-

parison queries [4] as well as subset queries and conjunctions

of equality [5]. The concept of HVE used in this paper was first

proposed in [5] and later extended in [3]. The authors in [14]

proposed the use of HVE to guarantee user privacy in location-

based alert systems. Despite promising results of the approach,

a major challenge is reducing the computation complexity of

HVE at the server where the matching process is conducted. The

work in [23] represents the current state-of-the art in location-

based alerts with searchable encryption, and it takes into account

probabilities of cells being part of an alert zone. A graph embed-

ding technique is used to assign codes to cells in a manner that

is aware of their likelihood of becoming alerted. The approach

achieves significant improvement in performance compared to

[14]. However, as our experimental evaluation shows, such im-

provements are reached only when a relatively large number of

alert cells are part of an alert zone. For alert zones with few cells,

our approach clearly outperforms that of [23].

9 CONCLUSIONS AND FUTUREWORK
We proposed a technique for secure location-based alerts that

uses searchable encryption in conjunction with variable-length

location encoding. Specifically, usingHuffman compression codes,

we showed that it is possible to significantly reduce the overhead

of searchable encryption for cases where alert zones are compact

and sparse, which is the case we believe to be most likely in prac-

tice. Extensive analytical and empirical evaluation results prove

that our proposed approach significantly outperforms existing

fixed-length encoding techniques, with only a small overhead in

terms of additional encryption time.

In some cases, our approach may be limited by the lack of a

systematic way of obtaining the probability values for various

data domain regions. While having accurate probabilities is a

plus, we do not require high accuracy in the actual values. In fact,

in our design it is often the relative ordering of the probabilities

that matters, and not necessarily the exact values. In practice,

one can produce a relatively stable and representative ordering of

types of features based on their popularity. Even without precise

probability values, one can still obtain significant gains.

In future work, we plan to investigate more advanced stochas-

tic models that capture correlations between cells in an alert

zone, as well as cases when the alert zone evolution over time

can be estimated by a spread model (e.g., a chemical gas leak).

Significant performance gains can be achieved in such scenarios.

One possibility is to model the space and time based on a Markov

model. For a grid with 𝑛 cells, the model would consist of 2
𝑛

states, each representing a unique subset of grid cells. Next, one

can determine a stationary distribution of probabilities over cells,

and derive the values required to reach equilibrium.

Finally, while ourwork focuses on location data, our design can

be extended to benefit other types of data as well. Our assumed

semantics for ciphertext processing is that of range queries, and

numerous other data types can benefit from secure range queries.

However, one has to devise specific encodings and optimizations

for each type of data, as straightforward application of HVE to

generic data types may lead to high performance overhead, as

illustrated in our earlier work [14].

Acknowledgment. This research has been funded in part by

NSF grants IIS-1910950, IIS-1909806 and CNS-2027794, the USC

Integrated Media Systems Center (IMSC), and unrestricted cash

gifts from Google and Microsoft. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of

any of the sponsors such as the NSF.

REFERENCES
[1] https://data.cityofchicago.org/public-safety/crimes-2015/vwwp-7yr9.

[2] T. Almanie, R. Mirza, and E. Lor. Crime prediction based on crime types and

using spatial and temporal criminal hotspots. arXiv preprint 1508.02050, 2015.
[3] C. Blundo, V. Iovino, and G. Persiano. Private-key hidden vector encryption

with key confidentiality. In International Conference on Cryptology and Network
Security, pages 259–277. Springer, 2009.

[4] D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor tracing with

short ciphertexts and private keys. In Intl. Conf. on the Theory and Applications
of Cryptographic Techniques, pages 573–592. Springer, 2006.

[5] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted

data. In Theory of Cryptography Conference, pages 535–554. Springer, 2007.
[6] M. Buro. On the maximum length of huffman codes. Information processing

letters, 45(5):219–223, 1993.
[7] R. Chandrasekharam, V. Vinod, and S. Subramanian. Genetic algorithm for

embedding a complete graph in a hypercube with a vlsi application. Micro-
processing and microprogramming, 40(8):537–552, 1994.

[8] C.-P. Chen and J.-X. Cheng. Ramanujan’s asymptotic expansion for the

harmonic numbers. The Ramanujan Journal, 38(1):123–128, 2015.
[9] C.-Y. Chow andM. F. Mokbel. Enabling private continuous queries for revealed

user locations. In Symp. on Spatial and Temporal Databases, page 258, 2007.
[10] T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.

[11] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmet-

ric encryption: improved definitions and efficient constructions. Journal of
Computer Security, 19(5):895–934, 2011.

[12] M. Damiani, E. Bertino, and C. Silvestri. Probe: an obfuscation system for the

protection of sensitive location information in lbs. TR2001-145, CERIAS, 2008.
[13] B. Gedik and L. Liu. Location privacy in mobile systems: A personalized

anonymization model. In 25th IEEE International Conference on Distributed
Computing Systems (ICDCS’05), pages 620–629. IEEE, 2005.

[14] G. Ghinita and R. Rughinis. An efficient privacy-preserving system for moni-

toring mobile users: making searchable encryption practical. In Proc. of ACM
Conf. on Data and application security and privacy, pages 321–332. ACM, 2014.

[15] M. Gruteser and D. Grunwald. Anonymous usage of location-based services

through spatial and temporal cloaking. In Proceedings of the 1st international
conference on Mobile systems, applications and services, pages 31–42, 2003.

[16] M. Gruteser and X. Liu. Protecting privacy, in continuous location-tracking

applications. IEEE Security & Privacy, 2(2):28–34, 2004.
[17] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preventing location-

based identity inference in anonymous spatial queries. IEEE transactions on
knowledge and data engineering, 19(12):1719–1733, 2007.

[18] H. Kido, Y. Yanagisawa, and T. Satoh. An anonymous communication tech-

nique using dummies for location-based services. In ICPS’05. Proceedings.
International Conference on Pervasive Services, 2005., pages 88–97. IEEE, 2005.

[19] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D. Mukhopadhyay, R. Steinfeld, S.-F.

Sun, D. Liu, and C. Zuo. Result pattern hiding searchable encryption for

conjunctive queries. In Proc. of ACM CCS, pages 745–762, 2018.
[20] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: Query processing

for location services without compromising privacy. In Proceedings of the 32nd
international conference on Very large data bases, pages 763–774, 2006.

[21] K. Nguyen, G. Ghinita, M. Naveed, and C. Shahabi. A privacy-preserving,

accountable and spam-resilient geo-marketplace. In Proc. of ACM SIGSPATIAL,
pages 299–308. ACM, 2019.

[22] S. Shaham, M. Ding, B. Liu, S. Dang, Z. Lin, and J. Li. Privacy preservation in

location-based services: a novel metric and attack model. IEEE Transactions
on Mobile Computing, 2020.

[23] S. Shaham, G. Ghinita, and C. Shahabi. Enhancing the performance of spatial

queries on encrypted data through graph embedding. In IFIP Annual Conference
on Data and Applications Security and Privacy, pages 289–309. Springer, 2020.

[24] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on

encrypted data. In IEEE Symposium on Security and Privacy, pages 44–55, 2000.
[25] L. Sweeney. k-anonymity: A model for protecting privacy. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–
570, 2002.

	Abstract
	1 Introduction
	2 Background
	2.1 Hidden Vector Encryption
	2.2 System Model
	2.3 Motivation and Scope

	3 Location-based Alerts with Variable-length Encoding
	3.1 Prefix and Huffman Codes
	3.2 Proposed Coding Scheme
	3.3 Token Generation and Minimization

	4 Extension to Non-Binary Codes
	5 Encryption Overhead
	6 Security Discussion
	7 Experimental Evaluation
	7.1 Evaluation on Real Dataset
	7.2 Evaluation on Synthetic Dataset

	8 Related Work
	9 Conclusions and Future Work
	References

