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Abstract

In this paper, we estimate epidemiological data of the COVID-19 pandemic in Hungary using
only the daily number of hospitalized patients, and applying well-known techniques from systems
and control theory. We use a previously published and validated compartmental model for the
description of epidemic spread. Exploiting the fact that an important subsystem of the model is
linear, first we compute the number of latent infected persons in time. Then an estimate can be
given for the number of people in other compartments. From these data, it is possible to track the
time dependent reproduction numbers via a recursive least squares estimate. The credibility of the
obtained results is discussed using available data from the literature.

1 Introduction

Since the spring of 2020, the COVID-19 pandemic has put an enormous burden on the societies,
economies and healthcare systems of most countries. It is of fundamental importance to track the
evolution of the epidemic process in order to prepare healthcare capacities, or to design efficient
measures and vaccination policies against the disease spread. It is well-known that only a fraction of
the actually infected persons get registered into the official databases. This ratio varies widely between
countries depending on the testing activity and related policies. E.g., as of Apr. 28., 2021, the official
data for the cumulative numbers of infected in Czechia and Hungary are 1.626.033 [1] and 774.399 [2],
respectively. Considering the similarities between these two countries in terms of geographic location,
area, population size, the stringency of interventions, the organization of healthcare, and the number
of reported COVID-deaths, it is highly unlikely that there could be such a huge difference in the
true numbers. There exist several attempts in the literature for the reconstruction of real epidemic
data. In [3] a robust statistical estimate with uncertainty analysis was given for the detection rate
in several countries. It turns out from the published results that during the 2020 spring wave of the
pandemics, the detection rate could be as small or even lower than 10% for e.g., Sweden, Italy, Spain,
or may have reached 40-50% in the case of Australia and South Korea, where huge effort was put
into immediate contact tracing and testing. Somewhat tighter upper bounds were computed for the
possible total number of cases in several European countries in [4] using a data-driven estimator from
the distributions of daily cases and deaths. It is clear from the above that the recorded number of
infected people alone is generally not a reliable source for the tracking of the epidemics. Moreover,
it is also visible from the Hungarian data that recoveries were not followed and recorded precisely in
the second wave of the pandemic until the middle of December, 2020 (see, e.g. at [5]). Therefore, the
epidemic curve showing the active cases cannot reflect the real situation even in a qualitative way.
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After the spring wave of COVID-19, a representative serological test was designed and carried out in
Hungary which estimated that exposure was approximately 0.68% among the total population by the
middle of May, 2020 [6]. However, no similar study has been done since the summer of 2020, although
it would certainly have huge significance in exploring the current situation and refining our models.

There is a huge literature on epidemic modeling and recently on the modeling of the COVID-19
pandemic for different purposes such as identification, control, or prediction [7]. E.g., in [8], a hybrid
machine learning approach is proposed to predict the number of infected individuals and the mortality
rates of the first wave of the COVID-19 outbreak in Hungary. In [9] the authors show that epidemic
outbreak prediction can be efficiently supported by integrating machine learning and SEIR models.

In systems and control theory, it is a common practice to estimate unknown quantities (e.g.,
states or parameters) from measurement data using dynamical models of the observed phenomena
[10, 11]. Population-level deterministic epidemic models are most often written in a nonnegative
compartmental form with polynomial nonlinearities representing the infection mechanism and linear
subsystems describing the transitions between certain compartments [12]. We will use a control
oriented ODE model of the pandemics in Hungary which was proposed and used in [13], and was
derived from the more detailed model in [14].

Based on the above, the purpose of this paper is to propose a model-based computation approach
to study the second and third waves of the COVID-19 pandemic in Hungary. Due to the previously
mentioned unreliability of other data sources, we only use the number of hospitalized people available
from [15] as input data, assuming that testing is wide-spread and quick enough in hospitals.

2 The applied compartmental model

2.1 Model description

To describe the transmission dynamics of the disease, we use a compartmental model describing the
spreading characteristics of COVID-19. We divide the population of N individuals into eight classes,
representing the different stages of the illness, discussed in detail in [13]. The compartments used stand
for the following: the susceptibles (S) are those individuals, who can be infected by the disease (i.e.,
neither have been infected nor yet obtained immunity by, eg., vaccination). Latents (L) are infected
people in the very first stage, lacking any symptoms and also incapable to transmit the pathogen. This
is followed by the pre-symptomatic (P) stage, including individuals already infectious, but still without
symptoms. As a significant part of the infected show no characteristic symptoms, and thus they being
infected is often not confirmed, we handle the asymptomatic (A) and symptomatic infected (I) classes
differently. Members of A always recover (R) after a certain time, but for some part of I hospitalization
is needed. Hospitalized patients (H) may recover or decease (D). The possible transitions between
the compartments are illustrated in Fig. 1 and their dynamics is described formally by the ODEs
below.

Ṡ(t) = −β [P(t) + I(t) + δA(t)]S(t)/N, (1a)

L̇(t) = β [P(t) + I(t) + δA(t)]S(t)/N − αL(t), (1b)

Ṗ(t) = αL(t)− pP(t), (1c)

İ(t) = qpP(t)− ρII(t), (1d)

Ȧ(t) = (1− q)pP(t)− ρAA(t), (1e)

Ḣ(t) = ρIηI(t)− hH(t), (1f)

Ṙ(t) = ρI(1− η)I(t) + ρAA(t) + (1− µ)hH(t), (1g)

Ḋ(t) = µhH(t). (1h)

From now on, we suppress the time arguments in the state variables as it is commonly done in the
literature.

2



S
 

 

L P

A

I

R

DH

Figure 1: Transition diagram of the disease spreading model. Circles represent compartments and
arrows represent transitions between these compartments.

2.2 Model parameters

We set the model parameters according to the estimates published in related literature. We used
the following model parameters for (1) which had been determined by updating the parameter set
published in [13] with newer Hungary-specific data. The population of Hungary is N = 9.8 · 106

people. The latent period (α−1) is 2.5 days on average, whereas, the pre-symptomatic period (p−1) is
generally 3 days. The infectious period of both the symptomatic (ρI) and asymptomatic (ρA) classes
is approximately 4 days. The average length of hospitalization (h−1) before recovery or death is 10
days. The hospitalization probability of the symptomatic (η) is 0.076. The probability of developing
symptoms (q = 0.6) and the relative infectiousness of the asymptomatic (δ = 0.75) are based on CDC
estimates. The death ratio among hospitalized is µ = 0.185.

The basic reproduction number, expressing the average number of new infections generated by a
single infected individual in a fully susceptible population, is given as

R0 = β

(
1

p
+

q

ρI
+
δ(1− q)
ρA

)
. (2)

Using R0 = 2.2 estimated from early Hungarian data, and the already determined parameters, a
nominal value of β = 1/3 can be derived, but note that this parameter largely depends on the actual
restrictions and conditions, therefore, it will be estimated as a time-varying parameter. The time-
dependent reproduction number for our model taking into account the change of β and the decrease
of the susceptible population is given by

Rc(t) = β(t)

(
1

p
+

q

ρI
+
δ(1− q)
ρA

)
S(t)

N
. (3)

3 Computation methodology

3.1 Data processing

Dynamic inversion is known to be sensitive to the abrupt changes in the derivatives of measured signals
caused by fluctuations and noise. Therefore, we applied the following preprocessing to smoothen the
input data.

Let y̌k denote the number of hospitalized patients on day k collected from [15], k = 1, . . . , T . As
the starting date (k = 1), we considered the 20th of August, 2020. The available data was collected
up till the 28th of April, 2021.

Generally, at weekends the healthcare system has a decreased capacity to perform tests and docu-
ment the confirmed cases. Therefore, as it is commonly done in the literature and engineering practice,
we apply a 7-day long moving average filter to the officially published hospitalization data record. For-
mally, we consider the following smoothed time series of the numbers of hospitalized patients:

ȳk = 1
7

∑3
i=−3 y̌k+i, if k = 4, . . . , T − 3. (4)
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Obviously, at the two ends of the time series, the sliding window has to be truncated as follows:

ȳk = 1
min(3,T−k)+min(3,k)+1

∑min(3,T−k)
i=−min(3,k) y̌k+i. (5)

Next, we used a cubic spline interpolation technique, ensuring the result being twice continuously
differentiable. We divided the data series into n = 15 equally long segments, the endpoints being at
ti = i · (T/n), t = 0, 1, . . . , n in time. As these time points (expressed in days) are not necessarily
integers, we used a linear interpolation to calculate yti from ybi·(T/n)c and ybi·(T/n)c+1. The spline was
fitted on data points (ti, yti), i = 0, 1, . . . , n using not-a-knot conditions for the slope endpoints. Let
the spline interpolated hospitalization data be denoted by yt, t ∈ [1, T ]. The original measurement
(y̌) and the results (ȳ and y) of the smoothing process can be seen in Fig. 2. Additionally, Fig. 3
illustrates that the data preprocessing steps make it possible to compute the first three derivatives of
y relatively noise-free. Henceforth, in all computations, we use y as the single available information
about the time evolution of the epidemic spread.

3.2 Input computation by inversion

Consider the (P, I,H) subsystem of (1) in the following continuous-time linear time-invariant (LTI)
state-space form:

ΣPIH :

{
ẋ = Ax+Bu,

y = Cx,
where x =

(
P
I
H

)
, u = L, (6)

A =

(
−p 0 0
pq −ρI 0
0 ηρI −h

)
, B =

(
α
0
0

)
, C = (0 0 1). (7)

The input of ΣPIH is the daily number of people in the latent phase (u = L), whereas, the output is
(the filtered time series of) the daily number of hospitalized patients (y = H). The continuous-time
transfer function of ΣPIH is the following:

G(s) =
0.00152

s3 + 0.6833s2 + 0.1417s+ 0.008333
, (8)

from which we can see that the analytical inverse of the system is non-causal.
To compute the unknown input of ΣPIH, we consider the discrete-time (DT) model of ΣPIH with

Ts = 1 (day) sampling period. Using zero order hold, the transfer function of the discretized model is
the following:

W (z) =
b2z

2 + b1z + b0
z3 + a2z2 + a1z + a0

, (9)

where a0 = −0.5049, a1 = 1.911, a2 = −2.4, b0 = 1.52 · 10−4, b1 = 7.225 · 10−4, b2 = 2.139 · 10−4. The
corresponding DT input-output model can be written as follows:

yk+3+a2yk+2+a1yk+1+a0yk=b2uk+2+b1uk+1+b0uk. (10)

First, we compute the input from the output using a standard least squares deconvolution. Using the
available filtered time series of yk=1,...,T , the input-output difference equation (10) can be written in
the following matrix-vector format:

May = Mbu, where (11)

Ma=

(
a0 a1 a2 1 0 ... ...
0 a0 a1 a2 1 0 ...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

... ... 0 a0 a1 a2 1

)
,Mb=

(
b0 b1 b2 0 0 ...
0 b0 b1 b2 0 0
. . .

. . .
. . .

. . .
. . .

. . .

... ... 0 b0 b1 b2

)
, (12)

y = (y1 . . . yT )>, u = (u1 . . . uT−1)
>. (13)
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The system of linear equations in (11) is under-determined in u, since Ma ∈ R(T−3)×T and Mb ∈
R(T−3)×(T−1). The least-squares solution for u can be computed by considering the Moore–Penrose
right pseudo-inverse M ‡b = M>b (MbM

>
b )−1 of the row-shaped matrix Mb, namely:

ǔls = M ‡bMay. (14)

After computation, we filtered the time series ǔls with a 7-day moving average filter, which resulted
in uls,k, k = 1, . . . , T−1. Having an estimate of the input of the system ΣPIH, we can apply a standard
linear state observer to estimate the population in the non-measured compartments (P, I,A,R). An
estimate for D can be computed from (1h), where the official governmental data can be used as well.
However, we do not use the published data on COVID deaths for inversion, and the dynamics of the
other compartments do not depend on D.

3.3 Unknown-input state estimation

As another possible solution, in this subsection we present an unknown input observer approach for
system inversion and state estimation. It can be seen from the transfer function model (8) that the
LTI subsystem ΣPIH of (1) has relative degree 3, i.e., the input signal does appear only in the third
(and higher order) derivatives of the output equation:

ẏ = CAx+ CBu = CAx, (CB = 0) (15)

ÿ = CA2x+ CABu = CA2x, (CAB = 0) (16)
...
y = CA3x+ CA2Bu. (17)

We can check that ΣPIH in itself does not satisfy the necessary criteria of [16, Lemma 3.1] or [17,
Criterion 2] for the existence of an unknown-input observer which may seem contradictory knowing
the result of the previous subsection.

Observe that, if we consider (15) and (16) as two additional outputs of ΣPIH, then the augmented
state-space model {

ẋ = Ax+Bu,

Y = O3 x,
where Y =

(
y
ẏ
ÿ

)
, O3 =

(
C
CA
CA2

)
(18)

is unknown-input observable. Furthermore, (17) allows us to algebraically express the unknown input
from the third derivative of signal y.

Following the ideas of [16, Section 3.2.1], we construct the following unknown-input observer for
(18): 

ż = Fz +KY,
xuio = z +HY,
uuio = (CA2B)−1

(...
y − CA3xuio

)
.

(19)

The coefficient matrices of (19) are:

K = K1 +K2, H = B(O3B)†,

F = A−HO3A−K1O3, K2 = FH,
(20)

where (O3B)† =
(
(O3B)>(O3B)

)−1
(O3B)> constitutes the Moore–Penrose left pseudo-inverse of

matrix O3B, and K1 is selected such that F is a stability matrix.
To summarize, the non-measured state variables (P, I) of ΣPIH can be reconstructed using the

first two derivatives of y, whereas, the input reconstruction requires also the third derivative of y.
The remaining state variables (A,R,D) of (1) can be reconstructed by considering the estimated
trajectories of (P, I) and the measured trajectory of y. Finally, using the fact that the whole population
is conserved in our compartmental model, the number of susceptibles can be estimated simply as

S = N − (L + P + I + A + H + R + D + V), (21)

where V denotes the cumulative number of people how have become immune due to vaccination.
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Remark 1 In the computation, we considered a simple vaccination model taking into consideration
the documented efficacy of vaccines applied in Hungary. Based on this, we assumed that 85% of
vaccinated people do not take part in the infection process any more from 21 days after administering
the first dose. The time series of the number of vaccinated people were collected from the official
website [18] of the Government of Hungary.

3.4 Estimation of the reproduction numbers

It is visible from Eqs. (2) and (3) that the parameter β is needed to compute estimates for the
reproduction numbers. The right hand side of Eq. (1a) depends linearly on β, therefore, a recursive
least squares (RLS) algorithm with exponential forgetting can be applied [11]. For this, we discretize
(1b) using a simple forward-Euler scheme with sampling time Ts which can be written in linear
regression form as

Lk+1 + (αTs − 1)Lk︸ ︷︷ ︸
πk

= βk Ts(Pk + Ik + δAk)Sk/N︸ ︷︷ ︸
ϕk

. (22)

Then, the RLS algorithm for estimating β can be written as

β̂k+1 = β̂k + Pkϕk(πk − ϕkβ̂k) (23)

Pk+1 = (λ · P−1k + ϕ2
k)
−1 (24)

where β̂k is the estimate for β, Pk is the auxiliary variable, and λ = 0.9 is the forgetting factor. The
estimates for the reproduction numbers R0 and Rc are given by substituting β̂ into Eqs. (2) and (3).
We note that the computation of Rc uses the simple vaccination model presented in Remark 1.

4 Results and Discussion

The studied period is from August 20, 2020 to April 28, 2021. We considered this time independently
of the drastically and successfully suppressed first wave of the epidemic in the spring of 2020. During
the first half of August, the main infection indicators (daily new infections, test positivity, number of
hospitalized people) were so low that the zero initial condition assumption for the transfer function
representation is acceptable. (We remark that the correct convergence of the state estimates would
be ensured even in the case of non-zero initial conditions after a transient period, since the subsystem
(6) is asymptotically stable and observable.)

4.1 Evaluation of the inversion

In Fig. 4, we illustrate the least squares solution ǔls for the unknown input, its 14-day long moving
average filtered data uls, and the dynamically reconstructed input uuio. In Fig. 5, the solid lines
illustrate the simulated state variables of the (P, I,H,A) subsystem of (1) driven by the filtered least
squares solution ǔls. Whereas, the dashed lines of Fig. 5, constitute the observed state variables of
ΣPIH and (1e), and the reconstructed unknown input uuio in the approximative knowledge of the daily
number of hospitalized patients (y) and its first three derivatives.

To evaluate the reliability of the state observations, we simulate ΣPIH with the computed (and
linearly interpolated) unknown input functions ǔls, uls, and uuio. Then, the reconstructed hospital-
ization data, denoted by y̌ls, yls, and yuio, respectively, are compared to the actual and the filtered
measurements y̌, ȳ, and y. Fig. 6 illustrates that the shape of y, yls, and yuio are qualitatively the
same.

To quantify the difference between the measured and the reconstructed signals, (instead of the
standard squared error model) we use the following relative squared error formula:

dr(y, ŷ)=
‖y−ŷ‖2
‖y‖2

=

(
T−3∑
k=1

|yk−ŷk|2
)1

2
(
T−3∑
k=1

|yk|2
)− 1

2

. (25)
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Figure 2: Smoothed time series (solid black)
compared to the officially published hospital-
ization data (thick yellow) and the 7-day long
moving average filtered data (dashed black).

Figure 3: The first three derivatives of the
cubic spline interpolated measurement data.

Figure 4: Computed estimate for the num-
ber of people in the latent phase using a least
squares solution and a dynamical input recon-
struction.

Figure 5: Estimated state variables obtained
through the least squares solution uls (solid)
and by the unknown-input observer (dashed).

Figure 6: Measured and filtered hospitaliza-
tion data and its reconstruction using both the
least squares solution uls and the dynamically
computed uuio.

Figure 7: Computed number of new infections
per day.
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Figure 8: Computed number of all infected
people (sum of L, P, A, I, and H).

Figure 9: Time evolution of the estimated re-
production number.

Figure 10: Number of vaccinated and esti-
mated number of truly immune people.

Figure 11: Estimated number of recovered or
immune people.

Figure 12: Estimated number of recovered
people. The shaded blue area illustrates the
standard deviation of the simulated trajecto-
ries. The light blue dashed lines show the sim-
ulated minimum/maximum number of recov-
ered people.
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Table 1: Relative distance of the reconstructed hospitalization data to the actual and filtered data.
dr(↓,→) y̌ls yls yuio

y̌ 0.02764 0.02941 0.02541
ȳ 0.01476 0.01579 0.01064
y 0.01111 0.0128 0.00167

Practically, (25) is the relative distance between the two series obtained from their absolute `2 distance
‖y − ŷ‖2 and divided by the `2 norm ‖y‖2 of the reference sequence y. It is worth mentioning that
the relative distance between y and the identically zero function is 1. Furthermore, note that the last
three values of the least squares solution ǔls cannot be considered, since (9) is a third -order DT-LTI
model and thus the summation in (25) is performed only up to T − 3.

In Table 1, we present the (pairwise) relative `2 distance between the measurement y̌, ȳ, y and the
reconstructed hospitalization data y̌ls, yls, yuio. The results show a slightly smaller relative error when
an unknown-input observer is applied. However, it is worth remarking that the preliminary filtering
steps of Section 3.1 are essential when the derivative-based observer filter (19) is applied.

4.2 Discussion of the obtained results

Fig. 7 shows the computed number of daily new infections, where two distinct waves (called the 2nd
and 3rd waves, respectively) can be observed. The peaks of this curve during November-December
2020 and March 2021 match the available data, and the computation suggests a roughly 4-fold ratio
between the model computed and officially detected new cases. The effect of the restrictions (closure
of restaurants and gyms, online education in secondary schools, banning of most gatherings, curfew
from 8pm to 5am, etc.) introduced in the first half of November is clearly visible. In Fig. 8, the sum of
all the infected compartments (L, P, I, A, H) is shown. The obtained numbers for October-November
are comparable to the results of a nationwide testing in Slovakia at the end of October 2020, where
about 1.06 percent of the population proved to be COVID-positive [19]. The estimated reproduction
numbers are visible in Fig. 9. In February 2021, Rc increased above 1 again which indicates the spread
of a more contagious variant (B.1.1.7) causing the large 3rd wave although the November restrictions
were not at all relaxed at that time. The ratio of the peaks of the estimated R0 in December 2020 and
late February 2021 is 1.618, which is completely in agreement with the 1.4 - 1.8 interval reported in
the UK [20]. On March 8, 2021, further measures were introduced including the closing of all schools
which clearly contributed to the decrease of the number of daily infections from the second half of
March. Fig. 11 illustrates the estimated number of recovered people. The computations suggest that
approximately 30 percent of the Hungarian population might have already gone through the disease.
This result is extended with a straightforward uncertainty analysis (illustrated in Fig. 12). For each
constant model parameter in (1a) - (1h) we assumed and uncertainty interval of ±20% around the
nominal value. 5000 simulation runs were performed with uniformly distributed random parameters
taken from the multidimensional uncertainty interval. The mean value of the sum of the estimated
number of recovered people is 4.0 times higher on April 28, 2021 than the official cumulative number
of COVID-positive cases mentioned in the Introduction. This multiplier is comparable to [4], where
the calculated ratio of probable total and detected cases is between 3.93 and 7.94 for 10 European
countries not including Hungary, with a mean of 4.85. For this comparison, we have to take into
consideration that testing intensity was significantly increased during the 2nd and 3rd waves.

5 Conclusions

The data of the COVID-19 pandemic in Hungary was studied in this paper using a systems theo-
retic approach. The approach is based on the dynamic inversion of a linear subsystem of the used
compartmental model. We have shown two possible approaches leading to similar results to track the
non-measured state variables, which then allows the estimation of the time dependent reproduction
numbers. We remark that the modeling of vaccination is not necessary to give an estimation for the
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compartments containing infected people, although it is definitely required to estimate the number of
susceptible people and the time-dependent reproduction number during the 3rd wave. The described
approach not only gives an estimate for the cumulative number of infected and recovered people but
it is also able to unravel information on the whole time-course of the epidemic process. The obtained
results fall into the ranges that have been published in the literature for different European coun-
tries. Future work will be focused on the extension of the method to take model uncertainty into
consideration in a systematic way.
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[13] T. Péni, B. Csutak, G. Szederkényi, and G. Röst, “Nonlinear model predictive control with logic
constraints for COVID-19 management,” Nonlinear Dynamics, vol. 102, no. 4, pp. 1965–1986,
Dec. 2020.

10

https://onemocneni-aktualne.mzcr.cz/covid-19
https://koronavirus.gov.hu/cikkek/3-millio-774-ezer-beoltott-1692-az-uj-fertozott-elhunyt-188-beteg
https://koronavirus.gov.hu/cikkek/3-millio-774-ezer-beoltott-1692-az-uj-fertozott-elhunyt-188-beteg
https://coronavirus.app/tracking/hungary
https://coronavirus.app/tracking/hungary
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C. Nagy, T. Tekeli et al., “Early phase of the COVID-19 outbreak in Hungary and post-lockdown
scenarios,” Viruses, vol. 12, no. 7, p. 708, 2020.

[15] “Data on hospital and ICU admission rates and current occupancy for COVID-19,”
https://www.ecdc.europa.eu/en/publications-data/download-data-hospital-and-icu-admission-
rates-and-current-occupancy-covid-19, (Accessed on 04/28/2021).

[16] J. Chen and R. Patton, Robust model-based fault diagnosis for dynamic systems. Boston, MA:
Kluwer Academic Publisher, 1999.

[17] J. Moreno, “Existence of unknown input observers and feedback passivity for linear systems,” in
Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), vol. 4,
Orlando, FL, USA, Dec. 2001, pp. 3366–3371 vol.4.

[18] Government of Hungary, “Information page on the coronavirus,” https://koronavirus.gov.hu,
(Accessed on 04/26/2021).

[19] E. Holt, “COVID-19 testing in Slovakia,” The Lancet. Infectious Diseases, vol. 21, no. 1, p. 32,
2021.

[20] E. Volz, S. Mishra, M. Chand, J. C. Barrett, R. Johnson, L. Geidelberg, W. R. Hinsley, D. J.
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