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Abstract

We introduce a minimalist outbreak forecasting model that combines data-driven param-
eter estimation with variational data assimilation. By focusing on the fundamental com-
ponents of nonlinear disease transmission and representing data in a domain where model
stochasticity simplifies into a process with independent increments, we design an approach
that only requires four parameters to be estimated. We illustrate this novel methodology on
COVID-19 forecasts. Results include case count and deaths predictions for the US and all of
its 50 states, the District of Columbia, and Puerto Rico. The method is computationally ef-
ficient and is not disease- or location-specific. It may therefore be applied to other outbreaks
or other countries, provided case counts and/or deaths data are available.

An increasingly common application of epidemiological modeling is outbreak forecasting,
as exemplified by a variety of recent “challenges” aiming to predict the burden caused by the
flu on the US healthcare system [1, 2, 3], or case counts of dengue [4], chikungunya [5], and
neuroinvasive West Nile virus disease [6]. It is no longer rare to see government officials relying
on model predictions to guide public health decisions [7] and a future in which the general
public is knowledgeable about and routinely refers to epidemiological forecasts may not be too
distant. Improving the reliability and the speed at which such forecasts are created is therefore
an important aspect of mathematical modeling.

The COVID-19 pandemic [8, 9] has brought epidemiological modeling to the forefront of
scientific research. Compartmental models of different levels of complexity (see for instance
[10, 11] for a discussion of the fundamental principles of epidemiological modeling) applied to the
general population or to different age groups have been used to explore disease risk and assess the
effectiveness of a variety of mitigation scenarios [12, 13, 14, 15, 16]. Metapopulation approaches,
combined with mobility data, have informed the spread of contagion between different regions
or countries and documented the effectiveness of travel restriction measures [17, 18, 19, 15, 20].
Other efforts have emphasized statistical analyses [21, 22] and, at a more local level, agent-based
modeling [23, 24]. For mechanistic models, an important trade-off in the case of new, emerging
diseases, is to balance model complexity with limited information on parameter values: on
the one hand, too simple a model is likely to miss essential aspects of disease dynamics; on
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the other hand, lack of knowledge about sensitive parameters may lead to forecasts with so
much uncertainty that they become uninformative [25]. Because different methodologies lead
to forecasts that perform optimally under different conditions, it is now common to develop
ensemble models that combine predictions from different approaches into a single forecast [26, 3].
Such ensembles have consistently been shown to be overall more reliable than any individual
model used to create them [26, 2, 3, 27, 28].

A minimalist forecaster for disease-related case counts and deaths

We have developed a novel and computationally efficient forecasting methodology that relies on
a small number of parameters. Our approach combines two key elements: ICC curves and vari-
ational data assimilation (VDA). ICC curves [29, 30] are representations of outbreak dynamics
in the incidence vs. cumulative-cases (ICC) plane. Remarkably, empirical observation reveals
that when represented in this fashion, incidence data fluctuate about a mean ICC curve asso-
ciated with the deterministic SIR (susceptible, infected, removed; [31]) compartmental model.
Such a curve has only 4 parameters and encompasses the entire deterministic SIR dynamics in
a single equation [30]. Although there is currently no mathematical proof that this behavior is
universal, it has been observed for a variety of diseases, spreading under different circumstances
[29, 30, 32]. Moreover, a first theoretical justification was provided in [32]: in the limit of large
populations, the trajectory in the ICC plane of a stochastic, network-based SIR model results
from a Gaussian process with independent increments, of mean given by the deterministic ICC
curve. Consequently, the first element of our modeling approach is the assumption that the time
dynamics of a generic outbreak follows an iterative process dictated by a local SIR ICC curve,
with additive noise. The VDA [33, 34] step uses incidence data to estimate the 4 parameters
of the local ICC curve by balancing two constraints: the parameters should (i) define an ICC
curve that is as close as possible to the observed incidence data and (ii) be compatible with
pre-established prior distributions. Each parameter estimation obtained in this manner leads to
one forecasted trajectory for future case counts. Probabilistic forecasts are obtained by repeat-
ing the VDA step after perturbing the reported epidemiological data and priors with suitably
chosen noise, and by assimilating data on windows of pre-specified lengths (3, 5, and 14 days in
the case of COVID-19). This adds modeling flexibility to capture the effects of recent trends,
such as changes in social distancing attitudes. The Forecasting Methodology section of the Sup-
plementary Information provides details on ICC curves, their use to find prior distributions, the
VDA implementation, and the obtention of probabilistic case count forecasts.

This procedure of combining ICC curves with VDA leads to a core case counts forecaster,
which involves a minimal number of tunable parameters (four) and has minimal computational
burden. Deaths forecasts are obtained by adding a linear regression layer to the model, which
provides an estimate of future deaths as a fraction of delayed case counts. As detailed in the
Supplementary Information, the linear coefficient and the delay are estimated from data and
are time- and location-dependent.

Although our methodology can be transported to other diseases or locations, the present
model, EpiCovDA, was created to forecast COVID-19 case counts and deaths in the US, its 50
states, the District of Columbia, and Puerto Rico. Its predictions have been regularly submit-
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ted to the University of Massachusetts Amherst COVID-19 repository [35] and are displayed,
together with forecasts from other groups and an ensemble model, on the COVID-19 Forecast
Hub [36] and on the CDC COVID-19 forecasting page [37].

Forecasting performance for COVID-19 in the US

For the analysis presented here, and for each US state, D.C., and Puerto Rico, a single data
stream, downloaded from the COVID Tracking Project [38] on 11/16/2020, provides both the
input data used by EpiCovDA to make its forecasts (only data prior to each forecast date are
used), and the truth to which forecasts are compared weekly, for a period of 4 weeks after the
forecast date. The reader is referred to the Supplementary Information for further description
of data sources. These 52 locations will be more simply referred to as “state”-level.

Figure 1 shows EpiCovDA forecasts for cumulative case counts (top) and cumulative deaths
(bottom) in the US, over 20 weeks from mid-May to mid-October 2020. These probabilistic
forecasts, obtained by combining state-level predictions, are displayed in the form of 50% and
95% central prediction intervals (colored “fans”); the point forecast corresponds to the median of
the forcasted sample, shown as a solid colored curve for each 4-week forecasting period. Similar
plots for the state-level forecasts are provided in the Supplementary Information. As detailed
below, predictions capture the truth with good accuracy, although steep increases in cumulative
numbers are often associated with under-predictions (for case counts; see top panel of Figure 1)
or over-predictions (in the case of deaths; see bottom panel).

For each state and target type (case counts or deaths, forecasted 1 to 4 weeks ahead of
time), we report the absolute error (AE) as a measure of point forecast performance, which is
a consistent scoring function for the median [39]. Figure 2 displays the AE on case counts per
100,000 population for each of the state-level forecasts and for the US (bottom row), for each
week of the 4-week forecasting period. The color range shows a typical error of less than 25 cases
per 100,000 population in the first week, increasing to a few hundred per 100,000 population
after 4 weeks. The AE at the US level (bottom row) is much lower due to the averaging effect of
combining state results, and does not exceed 300 cases per 100,000 population. Similar results for
death forecasts (Figure 3) show typical AE values of less than 5 deaths per 100,000 population
after one week, and no more than 25 deaths per 100,000 population after 4 weeks, with few
exceptions. At the US level, the AE does not exceed 5 deaths per 100,000 population over the
4-week forecasting period.

To evaluate the forecasted probability distribution function, we use an interval scoring
method [40, 41] that penalizes central prediction intervals that are too wide, or fail to capture
the truth (see details in the Supplementary Information). A perfect score of zero would corre-
spond to a highly confident forecast (with zero variance) exactly on target. Heat maps showing
the 95% interval scores for case counts and deaths forecasts are displayed in the Supplementary
Information. The scores per 100,000 population increase as forecast targets go further into the
future, and their values are higher than the corresponding AE, as expected. Scores for the entire
US are significantly lower (and thus better) than for individual states, as was the case for the
AE (Figures 2 and 3).

Perhaps more intuitive than interval scores, capture rates of central prediction intervals are
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Figure 1: EpiCovDA weekly US forecasts. Probabilistic forecasts are shown in the form of the
median (solid colored line) and the 50% and 95% central prediction intervals. The truth is the
black solid line in each figure. Top: cumulative case count forecast. Bottom: cumulative deaths
forecast. COVID-19 case data provided by The COVID Tracking Project at The Atlantic under
a CC BY 4.0 license [38].
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Figure 2: Absolute error for case count forecasts, one through four weeks ahead of the forecast
date. Each state corresponds to a row and each rectangle is a forecast week. The color scale
ranges from less than 1 to more than 500 cases per 100,000 population.
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Figure 3: Absolute error for deaths forecasts, one through four weeks ahead of the forecast
date. Each state corresponds to a row and each rectangle is a forecast week. The color scale
ranges from less than 0.5 to more than 25 deaths per 100,000 population.

displayed in Figures 4 and 5 for both case counts and deaths. For each value x on the horizontal
axis of each panel, the y coordinate measures the proportion of times the truth falls within the
x% central prediction interval. The expectation is that y should be close to x since on average a
random number drawn according to a given probability distribution function should fall 10% of
the times in the associated 10% central prediction interval, 50% of the time in the 50% central
prediction interval, etc. An over-confident forecast would typically result in y < x, and an
under-confident forecast would correspond to y > x, although the latter condition would also
be satisfied by a forecast that is always on target since, in such a case, all central prediction
intervals would capture the truth 100% of the time. Both figures show that EpiCovDA case
counts and deaths forecasts are well calibrated.

As a final benchmark, we compare EpiCovDA point forecasts for cumulative deaths to those
of the COVIDhub Ensemble [27, 28]. The ensemble model uses the Johns Hopkins University
(JHU) data [42] as truth, whereas EpiCovDA is based on The COVID Tracking Project (CTP)
data [38]. Although the two data streams are similar, small differences can nevertheless sig-
nificantly affect absolute error estimates, as illustrated in Table 1. The first two rows display
the mean absolute error per 100,000 (MAE) and median absolute error per 100,000 (MedAE)
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Figure 4: Case count forecasts calibration. Each panel shows prediction interval capture rates
for each forecast type, evaluated over all state forecasts (dots) and for the US forecast (triangles).

of a specific model, calculated over all forecasts (20 weeks and all locations); the next 8 rows
show similar results for each target type (1 through 4 weeks ahead). Column 1 summarizes
the performance of the version of EpiCovDA presented in this article, with CTP data used to
run and score the model. Column 2 shows similar results when JHU data are used instead of
CTP data. Although median errors are comparable with those listed in Column 1, an increase
in mean AE is observed. Since the hyperparameters were selected using CTP data, this dis-
crepancy reinforces the concept that the same data sources should be used to train and run
any data-driven model. Column 3 shows the performance of EpiCovDA when weekly incidence
forecasts (created using CTP data) are added (“aligned”) to the JHU truth and scored against
JHU data. In this case, the performance is comparable to that of Column 1, both for the MAE
and MedAE. The last two columns summarize the performance of the COVIDhub ensemble
model when scored against JHU data (Column 4) or against the CTP data after alignment to
this data source (Column 5). Column 3 is akin to the EpiCovDA forecasts that are actually
submitted to the COVID-19 Forecast Hub. Comparing Columns 4 and 5 to Column 1 shows
that the COVIDhub ensemble has better overall performance, clearly outperforming EpiCovDA
on the 3- and 4-week ahead forecasts, has comparable performance to EpiCovDA on the 2-week
ahead forecasts, but under-performs EpiCovDA for the 1-week ahead forecasts. In all cases,
mean and median absolute errors are less than 3 deaths per 100,000 people. When aggregated
nationally, the mean number of deaths over the 1-wk ahead forecasting period was about 1.79
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Figure 5: Death forecasts calibration. Each panel shows prediction interval capture rates for
each forecast type, evaluated over all state forecasts (dots) and for the US forecast (triangles).

(median 1.71) per 100,000; over the 4-wk ahead period the mean was 7.12 (median 7.06) per
100,000.

A recent article by Cramer et al. [28] provides a comparative analysis of models submitted
to the COVID-19 Forecast Hub for the COVIDhub ensemble, including EpiCovDA. The scores
presented in [28] apply to slightly different versions of the model than discussed here (see the
Supplementary Information for how these versions evolved) and the JHU data are used as truth.
Nevertheless, as of 02/05/2021, EpiCovDA’s performance appears to be similar to that of MOBS-
GLEAM COVID [17] and the IHME-SEIR models [43], which are more complex in nature and
use a broader range of input data [28].

A versatile forecaster for emerging diseases

EpiCovDA is a minimalist mechanistic epidemiological model that provides short-term fore-
casts of case counts (as primary output) or deaths (as secondary output). It has four tunable
parameters and fewer than 20 hyperparameters (reviewed in the Supplementary Information).
If necessary, decisions to change hyperparameter selections from their default values may be
guided by direct comparison between forecasts and observed data. The use of data assimilation
combined with a simple method for identifying priors directly from existing case reports (as de-
scribed in the Supplementary Information) imply that independent knowledge of epidemiological
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Table 1: Comparison of death point forecasts generated with different data sources.

Model with Data Source
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MAE, overall 1.38 1.58 1.46 1.07 1.12
MedAE, overall 0.62 0.67 0.64 0.52 0.51

MAE, 1 wk 0.42 0.50 0.45 0.46 0.59
MedAE, 1 wk 0.23 0.24 0.24 0.24 0.25

MAE, 2 wk 0.86 1.02 0.92 0.82 0.90
MedAE, 2 wk 0.52 0.52 0.52 0.46 0.45

MAE, 3 wk 1.54 1.78 1.65 1.25 1.28
MedAE, 3 wk 0.90 0.96 0.94 0.69 0.68

MAE, 4 wk 2.70 3.01 2.82 1.74 1.73
MedAE, 4 wk 1.55 1.63 1.62 0.92 0.91

Absolute errors in deaths are calculated per 100,000 population. The mean absolute error
(MAE) and median absolute error (MedAE) are calculated over all 53 locations and forecast

dates. (CTP) and (JHU) refer to the data sources used for forecasting and scoring, either The
COVID Tracking Project [38] or Johns Hopkins CSSE [42], respectively. “For alignment”

indicates that, after generation, the forecasts were aligned to the cumulative value from and
scored by the indicated data source.
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parameters is not required. Even if sufficient data are not available at first, rough estimates of
the contact rate of the disease and of its basic reproduction number may be used to create an
initial set of priors, which can then be refined as more epidemiological reports are published.
Similarly, priors may be later revised to account for the presence of more transmissible variants.
Additionally, EpiCovDA input data are of the same nature as its output; in particular, case
counts are predicted solely from case counts. Such structural simplicity is an advantage when
faced with an emerging disease, since the model can be set up quickly from initial epidemiological
reports.

By construction, the model produces forecasts that are consistent, both in magnitude and
trends with its input data. The use of short-term (3 and 5 days) and longer-term (14 days) data
assimilation windows allows EpiCovDA to react to mitigation efforts, as long as their effect is
reflected in epidemiological reports. It is however implicitly assumed that current trends will
continue for the duration of the forecasting period and, as a consequence, forecasts need to be
run frequently, as soon as new data become available, so that they can evolve with, and adapt
to, changes in the dynamics of the disease. Nevertheless, because of the simplicity of the model,
forecasts are not computationally onerous. For instance, predictions for the US and 52 “states”
run in about 5 minutes on a MacBook Pro (2.3 GHz i5 processor, 16 GB RAM).

The goal of the model is not to estimate the actual number of people infected, but to provide
a probabilistic forecast of future counts, given recent incidence reports. As a consequence, the
model cannot be used to assess the future prevalence of a disease unless essentially all existing
cases are being reported. In addition, EpiCovDA provides short-term predictions, as opposed to
long-term scenarios. The former may be used to guide public health decisions such as ordering
personal protective equipment, staffing hospitals and clinics, deciding where to run vaccine trials,
or whether curfews or strong control measures should be put in place to prevent forecasted
surges. The latter often provide a rationale for longer-term policy decisions, such as shutting
down businesses and schools for long periods of time, in order to “flatten the curve.”

EpiCovDA consists of a core forecaster for case counts, supplemented by a linear regression
module with delay that estimates deaths. It is a local model which, in the case of COVID-19,
works well at the state level. With large numbers of county-level cases, we also expect the model
to provide valuable forecasts at that smaller level of granularity. EpiCovDA’s layered structure
lends itself to the inclusion of additional modules (e.g. for hospitalizations), and to the coupling
of single forecasting units into a global network, for instance to revise local forecasts on the basis
of global mobility or policy data. This may be accomplished by appropriately training a graph
neural network and is work currently in progress by our team.

Because of its simplicity and minimal data requirements, EpiCovDA may easily be adapted
to forecast the unfolding of other outbreaks, and be transported to other locations. The method-
ology presented in this article is thus particularly well suited for emerging diseases in countries
where data often used in more complex models, such as cell phone mobility and contact infor-
mation, are not available. Additionally, once the priors and hyperparameters have been chosen,
the model does not require significant post-forecast human adjustments and can therefore be
run on a large scale with limited personnel resources.
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Supplementary Information

Forecasting Methodology

Data sources

Minimal requirements for data sources include daily or weekly recordings of cumulative confirmed
cases. For forecasts of disease-related deaths, corresponding cumulative data are also required.
Here, we use data provided by The COVID Tracking Project at The Atlantic [38]. For each
state, the historical data of the cumulative number of confirmed (either clinical or laboratory
diagnosis) cases, the daily incidence of cases, the cumulative number of COVID-19-attributed
deaths, and the daily incidence of deaths were downloaded through the publicly available API
[38].

Many data sources of COVID-19 cases are available online, including the well publicized
Johns Hopkins University (JHU) dashboard [42]. When we started this work, the COVID
Tracking Project included early case and death counts in all of the US States which at the time
were not available from JHU. Since then, the two datasets have become more comparable and
consistent. It should be noted that public health data are inherently variable due to irregu-
lar reporting patterns (for instance case counts go down over the weekend), backfill (revised
counts for past reports), and revised numbers without specified dates (which therefore cannot
be retroactively backfilled). Although different repositories have different ways of handling such
corrections, the overall trends are the same.

ICC curves

The EpiCovDA model relies on ICC (incidence vs. cumulative-cases) curves [30], which provide a
novel description of disease dynamics. They differ from traditional epidemiological (EPI) curves
via a nonlinear transformation of the horizontal axis, in which the time variable is replaced
by a monotonic function thereof, specifically the cumulative number of cases. Figure 6 shows
the effect of such a transformation in the case of the SIR (susceptible, infected, removed; [31])
compartmental model.

In the left panel, the EPI curve represents incidence I as a function of time; in the right
panel, incidence is plotted as a function of C, the cumulative number of cases. Advantages of
the latter representation over the EPI curve shown in the left panel include: (i) the concavity
has constant sign before the outbreak peaks, (ii) the time variable is no longer explicitly present,
and (iii) in the case of the SIR model for a disease spreading in a population of known size, there
is a unique set of parameters that minimizes the root mean square error between epidemiological
data points in the (I, C) plane and the ICC curve [30]. Moreover, the time course of a simulated
outbreak may be directly obtained from the ICC curve by successive iterations, as illustrated
by the saw-tooth curve in the right panel of Figure 6: given a value of C, the corresponding
incidence may be read off the ICC curve and added to C in order to estimate the cumulative
number of cases after one additional unit of time. Repeating this process leads to a time series
of cumulative cases that simulates an outbreak.
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Figure 6: Left: Epidemiological curve (incidence as a function of time) for a trajectory of the
SIR model with β = 0.5 and R0 = 2. Right: The ICC curve corresponds to the same trajectory,
but in the (I, C) plane.

Reporting noise may be included for instance by replacing each estimate of I(C) by a Poisson
random variable of mean I(C). Noise due to the stochasticity of disease spread should also be
taken into account. In the case of the SIR model, it was shown in [32] that in the limit of
large population size N , the scaled incidence Î/N observed when C cumulative cases have been
reported is normally distributed with mean I(C)/N given by (1) below with κ = 1, and variance
equal to

1

N
β2
(
− 1

R0
ln

(
1− C

N

)
+

1

R2
0

C/N

1− C/N

)(
1− C

N

)2

,

where β is the contact rate of the disease, N is the size of the population involved in the outbreak
(N > C), and R0 is the basic reproductive number.

EpiGro

A parabolic approximation of the ICC curve led to the forecasting model EpiGro [29], which won
the 2014-15 DARPA Chikungunya Challenge [5]. In this case, since I = dC/dt is a quadratic
function of C, the cumulative number of cases C follows logistic dynamics, an approach that
had been independently identified as a useful forecasting tool [44, 45].

Version 2.0 of EpiGro uses the exact formulation of the ICC curve for the SIR model given
in [30]:

I(C) = β

(
C +

N

R0
ln

(
1− C

N

)
− N

R0
ln(κ)

)(
1− C

N

)
, (1)

where β, N , and R0 are defined above, and κ represents initial conditions. There is a complete
equivalence between trajectories of the SIR model and of the differential equation dC/dt = I(C),
in the sense that knowledge of one implies knowledge of the other, and vice versa [30]. Moreover,
as previously stated, a unique vector of parameters (β, γ = β/R0, κ) minimizes the `2 norm
between the ICC curve of the SIR model and given epidemiological data points, for N known.
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If N is unknown, for instance due to the existence of transmission clusters, or because of under-
reporting, a range of values of N is considered, leading to a range of possible parameter values.
Figure 7 illustrates the output of EpiGro v.2.0. The left panel shows the ICC curve that best fits
the May 17 COVID-19 epidemiological data for the state of Arizona. The right panel displays
the distribution of R0 values associated with values of N near optimum.

Figure 7: Left: Epidemiological data and optimal ICC curve for COVID-19 in Arizona through
May 17, 2020. Right: Estimated distribution of the basic reproductive number R0. COVID-19
case data provided by The COVID Tracking Project at The Atlantic under a CC BY 4.0 license
[38].

In the case of an epidemic with more than one wave, or in the presence of social distancing or
other mitigation efforts, the resulting ICC curve typically no longer resembles the simple shape
shown in the right panel of Figure 6. However, even in such a situation, different ICC curves
can still be locally fitted to the data: for a specified set of consecutive data points, the optimal
parameters (β, γ,N, κ) are found by minimizing the `2 norm between the ICC curve and the
selected data points, while keeping R0 bounded (for COVID-19, we set max(R0) = 4). The
result of such a procedure is illustrated in Figure 8 for the state of Arizona. The final sizes of
the two ICC curves plotted on this figure differ by an order of magnitude, consistent with the
significant increase in the number of cases after social-distancing measures were relaxed.

Because the larger ICC curve is shifted along the C axis, it crosses the C = 0 axis at a
negative value of I, which corresponds to a value of κ larger than 1 in (1). Because ICC curves
can be fitted to incidence data locally, they can also be used to produce short-term forecasts of
the course of an outbreak: baring significant changes in mitigation efforts, future incidence is
expected to oscillate about the ICC curve that best fits recent data. In what follows, we use
variational data assimilation to identify parameters and quantify forecast uncertainty.

Estimation of prior distributions

Priors on parameters used in the variational data assimilation step of EpiCovDA are identified
with EpiGro v.2.0 as follows. For any US state that had more than 1000 cases on April 1,
2020, we compute an optimal set of parameters (β, γ, κ) for a range of values of N , according
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Figure 8: COVID-19 incidence data (dots) as of June 5, 2020, plotted as a function of cumulative
cases for the state of Arizona, together with two ICC curves. The smaller ICC curve fits the
reported data for 50 days preceding May 5, 2020. The larger ICC curve fits the reported data
for 14 days preceding June 5, 2020. COVID-19 case data provided by The COVID Tracking
Project at The Atlantic under a CC BY 4.0 license [38].

to the formulas provided in [30]. We then select the value of N that minimizes the `2 error
between the ICC curve and the corresponding data points. This defines a set So of optimal
values {βo, γo, κo, No}. The prior on the parameters β and γ is chosen to be a bivariate normal

distribution of mean vector µ0 =
(
〈βo〉, 〈γo〉

)T
and covariance matrix B0 = Cov(βo, γo). This

distribution is shown in the left panel of Figure 9, together with the normalized two-dimensional
histogram of the points (βo, γo) ∈ So. The corresponding histograms, estimated marginal dis-
tributions of βo and γo, and quantile-quantile (QQ) plots are also shown, together with the
histogram, QQ plot, and estimated Gaussian distribution of R0. Linear regression between βo
and γo gives an overall estimation of R0 for the initial phase of the COVID-19 outbreak in the
US equal to 1.685.

Variational data assimilation

Often called “4D-Var” from its origins in numerical weather prediction, variational data assimi-
lation (VDA)[46, 47] uses a Kalman Filter-like loss function [48, 33, 34] that includes consecutive
time observations and penalizes differences between model and observations, as well as param-
eter departure from prior estimations. In this section, we adapt the general methodology of
Bayesian data assimilation [33, 34] to the context of disease outbreaks. The ICC perspective
introduced above makes it possible to describe the dynamics in terms of a discrete, determin-
istic dynamical system with additive noise. We keep the discussion as general as possible by
including two sources of noise, model noise and observation noise. Specific assumptions related
to our model are introduced at the end of this section.
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Figure 9: Prior distribution for β and γ used in the variational data assimilation step. Left:
joint histogram of the optimal parameters βo and γo for the US and all of the US states with
more than 1000 cases on April 1, 2020. The bivariate normal distribution of mean vector
µ0 =

(
〈βo〉, 〈γo〉

)
and covariance matrix B0 = Cov(βo, γo) is shown for comparison. Right, top

row: corresponding histograms of βo, γo, and R0 = βo/γo. The solid curve shown in each panel
is a normal distribution of mean and variance equal to the sample mean and sample variance
respectively. Right, bottom row: quantile-quantile plots for βo, γo, and R0.
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For a given location, we consider the discrete dynamics of the cumulative number of cases
Ck, where k ∈ K is an index that measures time in days and K is a window of fixed length. We
assume that the indices in K correspond to consecutive days and write for k, k + 1 ∈ K,

Ck+1 = Ck + F (Ck, θ) + ξk, (2)

where θ = (β, γ,N, κ), and {ξk, k ∈ K} are independent identically distributed realizations of a
mean zero and variance σ2ξ normal random variable that accounts for model errors. The map
from Ck to Ck+1 is defined by the ICC curve introduced in the EpiGro Section. We thus write
F (C, θ) = I(C), where I(C) is given by (1) with parameters β, R0 = β/γ, N , and κ. If the
disease followed the SIR model exactly, then each ξk would be zero and the dynamics of C would
be fully deterministic. Later on we make this assumption to simplify the data assimilation step.

Let Xk = (Ck, θ) be a multidimensional state variable that includes the quantity to be
modeled and parameter values. We assume that for k ∈ K, the parameters θ are unknown but
constant, i.e. that the period of time over which the data is assimilated is short enough for any
changes in mitigation efforts to be negligible. We may therefore define a map F between Xk

and Xk+1 as

Xk+1 = F(Xk) + Ξk, Ξk = (ξk, 0),

F(Xk) = (Ck + F (Ck, θ), θ).

Because Xk+1 only depends on Xk and Ξk, where Ξk is independent of the dynamics of {Xj}kj=1,
the process {Xj}j≥1 has Markovian structure. As such, the probability density function for the
collection

X = (Xkm−1, Xkm , · · · , XkM ),

where km = minK and kM = maxK, is given at X = x by

p(x) = p(xkm−1, xkm , ..., xkM ) =

 kM∏
k=km

p(xk|xk−1)

 p(xkm−1),

where we assume
p(xkm−1) = π(θ|ckm−1) p(ckm−1) = π(θ) p(ckm−1).

The final assertion that θ is independent of Ckm−1 reflects the assumption that data from
sufficiently far in the past may be governed by a different parameter vector θ′ which may not
actually provide information on the value of θ. In the last equation, π(θ) represents a prior on
model parameters θ = (β, γ,N, κ). We assert a prior of the form

π(β, γ,N, κ) = π1(β, γ)π2(N,κ)

where π1 is a multivariate N (µ0, B0) density. This assumes independence between (β, γ) and
(N,κ). The particular choice of π1 is discussed in the previous section and the choice of π2 will
be discussed later.
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Moreover, because Xk+1 is the sum of two independent random variables F(Xk) and Ξk, we
may write

p (xk+1|xk) ∝ exp

(
− 1

2σ2ξ
(ck+1 − ck − I(ck))

2

)
.

The goal of the variational data assimilation is to estimate the posterior mode of θ for use in
prediction.

Epidemiological reports typically provide consecutive observations of Cj and/or equivalently
of Ij = Cj − Cj−1 for j = 1, 2, · · · . A reported measurement Gk of Ik results from adding
observation noise ηk to the first coordinate of Xk −Xk−1,

Gk = Ik + ηk.

For simplicity, we assume that the ηk are independent and normally distributed with mean zero
and variance σ2k, ηk ∼ N (0, σ2k). We therefore write the conditional density of G|X at g|x

p(g|x) =

kM∏
k=km

p(gk|x) =

kM∏
k=km

p(gk|ck − ck−1)

∝
kM∏
k=km

exp

(
− 1

2σ2k
(gk − ck + ck−1)

2

)
,

where G = (Gkm , · · · , GkM ). Although we allow the variance σ2k, k ∈ K to vary, we still assume
independence of η from X at any point in time. With Bayes’ theorem, we may now compute
the posterior of θ given the observations G = g:

p(θ|g) =

∫
p(θ, c|g)dc =

∫
p(x|g)dc ∝

∫
p(g|x)p(x)dc

∝
∫

exp
(
− 1

2
L(θ|g, c)

)
π2(N,κ) p(ckm−1)dc,

where c = (ckm−1, ckm , ..., ckM ),

L(θ|g, c) =

kM∑
k=km

(gk − ck + ck−1)
2/σ2k +

1

σ2ξ

kM∑
k=km

(ck − ck−1 − I(ck−1))
2

+
(
β − 〈βo〉, γ − 〈γo〉

)
B−10

(
β − 〈βo〉, γ − 〈γo〉

)T ≥ 0,

and B0 is the covariance matrix of the parameters β and γ estimated in the previous section.
When π2 is chosen to be uniform over a region a× b, the posterior mode of θ is given by

θ̂(G) = arg max
θ
p(θ|G) = arg max

θ

∫
exp

(
− 1

2
L(θ|G, c)

)
p(ckm−1)dc,
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assuming uniqueness of the maximizer. Additionally, if we neglect model noise (ξk = 0 in (2)),
then ck − ck−1 = I(ck−1), making c a function of θ and of the initial condition ckm−1 . As a
consequence, the posterior mode reduces to

θ̂(G) = arg max
θ
p(θ|G) = arg min

θ

(
LK(θ|G)

)
,

where we have assumed that p(ckm−1) = δ(ckm−1 −Ckm−1), i.e. ckm−1 is known, and

LK(θ|g) =

kM∑
k=km

(gk − I(ck−1))
2/σ2k

+
(
β − 〈βo〉, γ − 〈γo〉

)
B−10

(
β − 〈βo〉, γ − 〈γo〉

)T ≥ 0.

In the above expression for LK(θ|g), the ck−1 should be computed from θ and Ckm−1 by iterating
the map F , i.e.

ck−1 = Ckm−1 +

k−1∑
j=km

I(cj−1).

However, approximating the value of ck−1 with

Ck−1 = Ckm−1 +

k−1∑
j=km

Gj

was seen to be more efficient and yield comparable or improved forecasts. Because the ICC
map I is nonlinear, the landscape defined by LK(θ|G) is likely to be intricate. In practice, we
compute a local minimizer of

LK(θ|G) =

kM∑
k=km

(Gk − I(Ck−1))
2/σ2k

+
(
β − 〈βo〉, γ − 〈γo〉

)
B−10

(
β − 〈βo〉, γ − 〈γo〉

)T ≥ 0

found with the MATLAB function fminsearch initialized at the parameter values (β0, γ0) =
(〈βo〉, 〈γo〉), N0 as 1/3 of the state population, and κ0 = 1 + 100/N0. We do not impose any
bounds on the range a×b where the distribution π2 is supported, although we enforce N ≥ CkM ,
β > 0, γ > 0, and R0 ≤ 20.

The resulting assimilated vector of parameters, θ̂ is then used to create a single prediction for
the trajectory of the outbreak through numerical integration of (1) with a pre-specified initial
condition, for example CkM . This numerical integration yields C(t) for t ≥ kM . To obtain the
forecasted incidence I(t) we use

I(t) = I(C(t− 1)),

where if we want the daily forecasted incidence for approximately the next month, we would use
t = kM + 1, kM + 2, kM + 3, . . . , kM + 31.
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Pseudo-Observations

The Bayesian approach described in the previous section provides a construction of the pdf of
θ|G, namely

π(θ|G) ∝ exp(−LK(θ|G)/2).

However, due to nonlinearities in the expression of LK(θ|G), specifically because of terms of the
form I(Ck−1) where I applies (1) with parameters given by θ, sampling this distribution would
require a computationally expensive procedure. Instead, we generate pseudo-observations, {Gi}i,
Gi = (G̃ik)k∈K, and repeat the VDA steps with perturbed values of 〈βo〉 and 〈γo〉 [49, 50, 51] to
obtain an ensemble of assimilated vectors of parameters {θ̂i}i.

To generate the pseudo-observations, we first smooth the reported incidence data by twice
averaging over a 7-day moving window, as described at the end of the Supplementary text. The
resulting incidence Sk is assumed to be close to the true state of the system on day k, and thus
close to the true ICC curve. As a consequence, the smoothed incidence values may be used
to estimate the initial condition Ckm−1 =

∑km−1
j=1 Sj . Then, for each k ∈ K, we generate a

pseudo-observation of Gk as
G̃k = Sk + ηk

where ηk is sampled from N (0, Sk), so that {G̃k}k∈K is comparable to the set {Gk}k∈K from

the VDA section. We thus obtain a new set of “observations,” G1 = (G̃1
km , G̃

1
km+1, . . . , G̃1

kM )
which, when combined with the VDA methodology, leads to a new assimilated vector of param-
eters θ̂1. Repeating this process many times yields a collection of pseudo-observations {Gi}i and
assimilated parameter vectors {θ̂i}i. It is assumed that the distribution of the {θ̂i}i provides an
approximation of the true parameter distribution π(θ|G).

Ensemble Generation

Each assimilated state θ̂i creates an incidence forecast as described at the end of the VDA
section, using the specific initial condition

CkM =

kM∑
j=1

Sj .

We repeat this sampling and forecasting process for three choices of K: last 3 days, last 5 days,
and last 14 days. The use of recent data points allows adjustment for changes in mitigation
efforts and reporting to be quickly reflected in the estimate of θ.

The resulting ensemble {Ii(t)}Nens
i=1 of predicted incidence values is used to create a proba-

bilistic forecast described, for example, by a histogram or quantiles for each future t.

COVID-19 case counts forecasts

For each discrete time t, we augment the ensemble of incidence forecasts {Ii(t)}Nens
i=1 with an equal

number of samples from a normal distribution centered at µ̂t with variance σ̂2(t) = ζ·max{µ̂t, vt},
where

µ̂t =
1

Nens

Nens∑
i=1

Ii(t), vt =
1

Nens − 1

Nens∑
i=1

(Ii(t)− µ̂t)2,
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and ζ is an inflation parameter that can be tuned for calibration. Here, ζ is forecast-specific
and defined as

ζ = max {qt0/vt0 , 1} (3)

where t0 refers to the first day of the forecast and

qt0 = Var({Sk −Gk : k = t0 − 10, t0 − 9, ..., t0 − 1}). (4)

Our choice to augment the day-ahead forecast ensemble was motivated by 1) a desire to add sup-
port in the histogram of {Ii(t)}Nens

i=1 around the ensemble mean, and 2) a desire to augment with
a normal distribution with the same or greater variation as the original ensemble. For ζ = 1, the
expression for σ̂2(t) reflects the belief that the observed incidence is likely to be Poisson(µ̂t), and
when µ̂t is large, N (µ̂t, µ̂t) is a good continuous approximation for the Poisson(µ̂t) distribution.
We allow for ζ > 1 when the variance of the recent reported data is large compared to the
variance of the forecast ensemble. This reduces over-confidence in forecasts when the data are
highly variable. Sampling from the N (µ̂t, vt) distribution may result in negative “observations”
of incidence, so we adjust for this by setting the negative sample to 0. In most cases, this
adjustment is unnecessary due to the size of µ̂t and vt.

After augmentation, we have an ensemble of 2Nens day-ahead point forecasts for the entire
duration of the forecasting period. These values are combined into probabilistic day-ahead case
forecasts, described by 23 quantiles, qα for α ∈ {0.01, 0.025, 0.05, 0.1, 0.15, . . . , 0.85, 0.9,0.95,
0.975, 0.99}. Each quantile, qα, is smoothed using a moving average across a 5 day window and
rounded to the nearest integer. As a final check to correct for the possibility that smoothing
might remove the monotonicity of {qα} at a given day, we reorder the quantiles so they are
monotonically increasing.

COVID-19 deaths forecasts

In the case of COVID-19 in the US, a striking relationship in early outbreak data is observed
between daily case counts and reported deaths. Specifically, for each state, we are able find a
value of τ in days such that the relationship between D(t+ τ) and C(t) is almost linear, where
D(t) and C(t) are the cumulative number of deaths and the cumulative number of cases on day
t, respectively. Figure 10 shows the resulting plots for the entire US, as well as for states that
had more than 500 cases and 10 deaths by May 17th, 2020. In each case, τ is chosen to optimize
the correlation (minimum RMSE) between D(t+ τ) and C(t). The value of τ varies from state
to state, between 3 and 12 days. The right panel of Figure 10 shows a normalized histogram
of the slopes a of the linear regressions D(t + τ) = aC(t), and suggests an initial case-fatality
ratio of about 5%.

As a consequence of the strong correlations observed in these data, forecasts for deaths are
made as a proportion of delayed case counts forecasts, D(t) = aC(t − τ). Location and date
specific delays and regression slopes a are calculated to account for differences in reporting
and testing over time and region. Specifically, a linear regression is performed at each location
between the sum of delayed and smoothed case incidence values and the sum of smoothed
death incidence values over the most recent period of Nc days for which data are available.
The default Nc is set at 10 days. Exceptions are made in the cases of AK (Nc = 20), HI
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Figure 10: Left: Number of cumulative COVID-19 deaths reported on day t+ τ as a function
of the cumulative case counts on day t for the entire US and all of the states that had registered
more than 500 cases and at least 10 deaths by 5/17/2020, based on data from the COVID
Tracking Project. The inset is an enlargement of the region near the origin. Right: Histogram
of the slopes of the linear regressions between D(t+ τ) and C(t) for the data shown in the left
panel. COVID-19 case data provided by The COVID Tracking Project at The Atlantic under a
CC BY 4.0 license [38].
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(Nc = 20), VT (Nc = 50), and if more than five of the last 10 days had 0 deaths reported
(Nc = 20). We optimize these regressions on the delay τ , which takes values between 0 and 21
days. Larger values of τ relate to lengthier illness before death, potentially due to improvement
in treatment of hospitalized patients. For death predictions that occur within τ days of the
forecast date, for which the value of C(t− τ) can be calculated from the data, we use a normal
distribution N (D(t), D(t)), centered at the proportion of the appropriate smoothed delayed
cases D(t) = aC(t− τ).

Model development and evolution

We began developing EpiCovDA as COVID-19 started to spread worldwide, and the model has
been continuously evolving since then. For each version, hyperparameters were tuned first to
achieve minimization of the overall MAE calculated from available data, followed by improve-
ment on calibration. Three main versions were considered, which mostly differed in the definition
of the prior for the parameters. Version 1 used κ = 1 and a Gaussian prior on β, γ, and N .
Version 2 used R0 and βN as parameters. This choice was motivated by the form of (1), in
which I can be written as a function of C/N with parameters βN and R0. It did not lead to
any improvement, probably due to the uncertainty on N . Version 3 is the current version of the
model, with a Gaussian prior on β and γ, and a uniform prior on N and κ. We also discovered
by trial and error that using all of the data available, including irregular weekend reports, led to
better predictions. Finally, we found that initializing the parameter search at N0 equal to 1/3
of the state population and κ0 = 1 + 100/N0, allowed the optimizer to explore a wide range of
values and led to realistic optimal parameter choices, with values away from the selected initial
conditions.

Model hyperparameters

EpiCovDA has a small number of hyperparameters, whose values play an important role in the
performance of the model. They are listed below.

• The values used to initialize the parameter search. Currently, (β0, γ0) = (〈βo〉, 〈γo〉), N0 is
1/3 of the state population, and κ0 = 1 + 100/N0.

• The range (3, 5, or 14 days) of K = [km, kM ] ∩ N and the number ni of different intervals
K used to build the ensemble forecast. Currently ni = 3.

• The region a×b that defines admissible values of N and κ. As mentioned above, the only
current restriction is that N ≥ CkM .

• The number no of pseudo-observations used to make a forecast. Currently no = 50 for
each interval K.

• The parameters used in the smoothing procedure, currently a 7-day moving window applied
twice, used to estimate Sk.

• The value of Ckm−1 , currently set at Ckm−1 =
∑km−1

j=1 Sj .
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• The variance σ2k of the noise added to Sk to generate pseudo-observations; currently σ2k =
Sk.

• The initial condition CkM =
∑kM

j=1 Sj used to make the forecasts.

• The parameters used in the augmentation procedure: the values µ̂t for the mean and
σ̂2(t) = ζ · max{µ̂t, vt} for the variance, the value of ζ, and the number of forecasts nf

added to the ensemble in this augmentation step. Currently µ̂t = 1
Nf

∑Nf

i=1 Ii(t), vt =

1
Nf−1

∑Nf

i=1(Ii(t)− µ̂t)2, ζ is as defined by (3) and (4), and nf = Nf = ni · no.

• The number Nc of data points used in the linear regression between case counts and deaths.
Currently, the default is Nc = 10.

• The bounds on the delay τ between case counts and deaths, currently set at 0 and 21 days.

The following guiding principles were used when selecting these parameters. First, simplicity:
the best choice is often the most natural one; second, computational effectiveness: samples that
are too large increase computational time without significant improvement in accuracy; third,
performance: when the previous two criteria did not obviously lead to specific parameter values,
the latter were chosen as to improve the overall accuracy of the forecast.

Parameters whose selection was guided by forecast accuracy are likely to depend on the
quality of the input data stream. For instance, re-running case count and death forecasts using
the JHU data as input and truth leads to a drop in performance (compare Columns 1 and 2 of
Table 1 of the main manuscript), likely due to differences in which weekend data are reported
by JHU in comparison to the COVID Tracking Project. We initially used the COVID Tracking
Project data because it provided early case counts for all states when we started working on
this project. Because different public dashboards use different data sources, are updated at
different times, and potentially handle backfill in different ways, it is important to (i) identify
hyperparameter values that lead to optimal performance once sufficient data are available, and
(ii) indicate which data stream is considered as the “truth” for a particular instance of the
model.

Scoring Methodology

We evaluate EpiCovDA forecasts across Nw = 20 weeks. Every week, forecasts are made with
data released for Sunday, to predict 1-,2-,3-, and 4-wk ahead case and death cumulative numbers,
where the target week day is always Saturday. This was chosen to make forecasts comparable
to those displayed and submitted to the COVID-19 Forecast Hub. The results presented in this
article were obtained retroactively, by running the present model on actual case count COVID-
19 data reported each week in 2020 before 09/14/2020. Specifically, data were downloaded from
the COVID Tracking Project [38] on November 16, 2020 and used for both forecasting and
measuring the truth. We provide two different scoring metrics, defined in the sections below:
absolute error for point forecasts and interval scoring at the α = 0.05 level for probabilistic
forecasts.
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Performance for EpiCovDA is compared to the COVID-19 Forecast Hub Ensemble (COVID-
hub) model [27]. As an ensemble model, the COVIDhub is expected to have more consistently
accurate performance compared to individual model forecasts [26, 2, 3, 27, 28]. Thus, a model
that is comparable or better than COVIDhub should be considered as well-performing.

Point Forecast Scoring

We define the point forecast for a given target to be the median of the corresponding probabilistic
forecast described in the case and death forecasting sections. Consequently, we use the absolute
error to evaluate these forecasts, since such a scoring function is consistent for the median [39].
Moreover, this also guarantees that the resulting scoring rule is proper. The absolute error for
a location-specific target T of a forecast made on day M is

Err(M,T ) = |m(M,T )− y(T )|,

where m(M,T ) is the median of the forecast made on day M and y(T ) is the truth value of
the target T according to The COVID Tracking Project [38]. We report Err(M,T ) per 100,000
people. Absolute errors (per 100,000 people) are summarized by calculating the mean (MAE)
and median (MedAE) over Nw weeks and the 53 forecasted locations.

Probabilistic Forecast Scoring

We use the interval scoring method described in [40, 41]. Specifically, the interval score of the
(1− α)× 100% prediction interval is defined to be

ISα(M,T ) = (u− l) +
2

α
× (l − y)× 1(y < l) +

2

α
× (y − u)× 1(y > u),

where l and u are the lower and upper bounds, respectively of the central (1 − α) × 100%
prediction interval for the forecast made on day M for target T and y is the corresponding truth
for target T . Interval scores are also reported per 100,000 people.

Calibration

We furthermore report the forecast calibration as measured by interval coverage. Specifically, for
the 10%, 20%,. . . , 90%, 95%, 98% central prediction intervals as given by the forecast quantiles,
we calculate the proportion of times the corresponding interval captured the truth. A forecast
can be considered well-calibrated when the coverage rate is close to the interval size, e.g., when
the 95% prediction interval captures the truth about 95% of the time. A perfectly accurate
forecast will always have 100% coverage; an over-confident forecast will have lower than nominal
coverage; and an under-confident forecast will have above nominal coverage.

Data Smoothing

This section details the smoothing introduced in the Pseudo-Observations section. This smooth-
ing procedure was previously described in [52]. Suppose that incidence data are available from
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day 1 through day M , and let Gk be the true reported incidence on day k. Assuming M ≥ 12,
the smoothed data on day k, Sk, is calculated as follows.
For k = 1, 2, 3 :

Sk =
1

3 + k

k+3∑
j=1

(
1

3 + j

j+3∑
i=1

Gi

)
,

and for k = 4, 5, 6 :

Sk =
1

7

 3∑
j=k−3

(
1

3 + j

j+3∑
i=1

Gi

)+
1

7

k+3∑
j=4

1

7

j+3∑
i=j−3

Gi

 .

For k = 7, 8, . . . ,M − 5:

Sk =
1

7

k+3∑
j=k−3

1

7

j+3∑
i=j−3

Gi

 =
1

49

k+3∑
j=k−3

(7 + j − k)Gj .

For k = M − 5,M − 4,M − 3:

Sk =

1

7

M−3∑
j=k−3

1

7

j+3∑
i=j−3

Gi

+

1

7

k+3∑
j=M−2

 1

M − j + 4

M∑
i=j−3

Gi

 .

For k = M − 2,M − 1,M :

Sk =
1

36

M∑
j=M−5

(
M∑

i=M−5
Gi

)
.
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Cumulative cases in GA, observed and forecasted
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Cumulative cases in HI, observed and forecasted
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Cumulative cases in ID, observed and forecasted
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Cumulative cases in IL, observed and forecasted
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Cumulative cases in IA, observed and forecasted
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Cumulative cases in KS, observed and forecasted
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Cumulative cases in KY, observed and forecasted
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Cumulative cases in LA, observed and forecasted
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Cumulative cases in ME, observed and forecasted
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Cumulative cases in MD, observed and forecasted
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Cumulative cases in MA, observed and forecasted
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Cumulative cases in MI, observed and forecasted
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Cumulative cases in MN, observed and forecasted
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Cumulative cases in MS, observed and forecasted
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Cumulative cases in MO, observed and forecasted
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Cumulative cases in MT, observed and forecasted
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Cumulative cases in NE, observed and forecasted
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Cumulative cases in NV, observed and forecasted
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Cumulative cases in NH, observed and forecasted
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Cumulative cases in NJ, observed and forecasted
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Cumulative cases in NY, observed and forecasted
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Cumulative cases in NC, observed and forecasted
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Cumulative cases in ND, observed and forecasted
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Cumulative cases in OH, observed and forecasted
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Cumulative cases in OK, observed and forecasted
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Cumulative cases in OR, observed and forecasted
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Cumulative cases in PA, observed and forecasted
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Cumulative cases in PR, observed and forecasted
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Cumulative cases in RI, observed and forecasted
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Cumulative cases in SD, observed and forecasted
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Cumulative cases in TN, observed and forecasted
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Cumulative cases in TX, observed and forecasted
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Cumulative cases in UT, observed and forecasted
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Cumulative cases in VT, observed and forecasted
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Cumulative cases in VA, observed and forecasted
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Cumulative cases in WA, observed and forecasted
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Cumulative cases in WV, observed and forecasted
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Cumulative cases in WI, observed and forecasted
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Cumulative cases in WY, observed and forecasted
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Cumulative cases in US, observed and forecasted

Figure 11: Cumulative case forecasts for each of the 50 states, D.C., and Puerto Rico. The black
curves indicate the true values as reported by the COVID Tracking Project [38]. The widest
shaded regions correspond to the central 95% prediction intervals. The smaller shaded regions
correspond to the central 50% prediction intervals. The darker colored curves in shaded regions
are the median forecasts. COVID-19 data provided by The COVID Tracking Project at The
Atlantic under a CC BY 4.0 license.
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Cumulative deaths in AK, observed and forecasted
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Cumulative deaths in AZ, observed and forecasted
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Cumulative deaths in AR, observed and forecasted
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Cumulative deaths in CO, observed and forecasted
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Cumulative deaths in CT, observed and forecasted
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Cumulative deaths in DE, observed and forecasted
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Cumulative deaths in DC, observed and forecasted
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Cumulative deaths in FL, observed and forecasted
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Cumulative deaths in GA, observed and forecasted
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Cumulative deaths in HI, observed and forecasted
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Cumulative deaths in ID, observed and forecasted
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Cumulative deaths in IL, observed and forecasted

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

● ●
●

● ● ●
● ● ● ●

● ● ●
●

● ●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

500

1000

1500

Jun Jul Aug Sep Oct
Date

cu
m

ul
at

iv
e 

de
at

hs

Cumulative deaths in IA, observed and forecasted
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Cumulative deaths in KS, observed and forecasted
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Cumulative deaths in KY, observed and forecasted
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Cumulative deaths in LA, observed and forecasted
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Cumulative deaths in ME, observed and forecasted
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Cumulative deaths in MD, observed and forecasted
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Cumulative deaths in MA, observed and forecasted
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Cumulative deaths in MI, observed and forecasted
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Cumulative deaths in MN, observed and forecasted
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Cumulative deaths in MS, observed and forecasted
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Cumulative deaths in MO, observed and forecasted
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Cumulative deaths in MT, observed and forecasted
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Cumulative deaths in NE, observed and forecasted
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Cumulative deaths in NV, observed and forecasted
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Cumulative deaths in NH, observed and forecasted

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

● ●
●

● ● ●
● ● ● ●

● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

12500

15000

17500

20000

Jun Jul Aug Sep Oct
Date

cu
m

ul
at

iv
e 

de
at

hs

Cumulative deaths in NJ, observed and forecasted

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

● ●
●

● ● ●
● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

22500

25000

27500

30000

Jun Jul Aug Sep Oct
Date

cu
m

ul
at

iv
e 

de
at

hs

Cumulative deaths in NY, observed and forecasted
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Cumulative deaths in NC, observed and forecasted
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Cumulative deaths in ND, observed and forecasted
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Cumulative deaths in OH, observed and forecasted
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Cumulative deaths in OK, observed and forecasted
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Cumulative deaths in OR, observed and forecasted
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Cumulative deaths in PA, observed and forecasted
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Cumulative deaths in PR, observed and forecasted
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Cumulative deaths in RI, observed and forecasted
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Cumulative deaths in SC, observed and forecasted
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Cumulative deaths in SD, observed and forecasted
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Cumulative deaths in TN, observed and forecasted
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Cumulative deaths in TX, observed and forecasted
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Cumulative deaths in UT, observed and forecasted
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Cumulative deaths in VT, observed and forecasted
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Cumulative deaths in VA, observed and forecasted
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Figure 12: Cumulative death forecasts for each of the 50 states, D.C., and Puerto Rico. The
black curves indicate the true values as reported by the COVID Tracking Project [38]. The
widest shaded regions correspond to the central 95% prediction intervals. The smaller shaded
regions correspond to the central 50% prediction intervals. The darker colored curves in shaded
regions are the median forecasts. COVID-19 data provided by The COVID Tracking Project at
The Atlantic under a CC BY 4.0 license.
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Figure 13: Interval score (α = 0.05) for case count forecasts, one through four weeks ahead of
the forecast date. Each location corresponds to a row and each rectangle is a forecast week. The
color scale ranges from less than 5 to more than 10,000 cases per 100,000 population.
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Figure 14: Interval score (α = 0.05) for death count forecasts, one through four weeks ahead
of the forecast date. Each location corresponds to a row and each rectangle is a forecast week.
The color scale ranges from less than 1 to more than 500 deaths per 100,000 population.
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