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ABSTRACT

COVID-19 clinical presentation and prognosis are highly variable, ranging from asymptomatic and paucisymptomatic cases to
acute respiratory distress syndrome and multi-organ involvement. We developed a hybrid machine learning/deep learning
model to classify patients in two outcome categories, non-ICU and ICU (intensive care admission or death), using 558 patients
admitted in a northern Italy hospital in February/May of 2020. A fully 3D patient-level CNN classifier on baseline CT images
is used as feature extractor. Features extracted, alongside with laboratory and clinical data, are fed for selection in a Boruta
algorithm with SHAP game theoretical values. A classifier is built on the reduced feature space using CatBoost gradient boosting
algorithm and reaching a probabilistic AUC of 0.949 on holdout test set. The model aims to provide clinical decision support
to medical doctors, with the probability score of belonging to an outcome class and with case-based SHAP interpretation of
features importance.

Introduction
To date (May 2021), more than one hundred millions of individuals have been reported as affected by COVID-19. More than two
millions deaths have been ascribed to the infection. All over the world, the sheer numbers of the pandemic pose a heavy burden
on emergency departments, hospitals, intensive care units and local medical assistance. From the beginning of the infection, it
was apparent that COVID-19 encompasses a wide spectrum of both clinical presentations and consequent prognosis, with cases
of sudden, unexpected evolution (and worsening) of the clinical and radiological picture1. Such elements of variability and
instability are still not fully explained, with an important role advocated for a multiplicity of pathophysiological processes2–4.
In this context, it would be natural to try to exploit techniques of artificial intelligence, fueled by the availability of large data
amounts, to support clinicians. Indeed, a large number of efforts in this sense has already been done, headed on different tasks,
in particular diagnosis and prognosis5. We focused on the latter, taking into account in particular clinical usability. We defined
as our goal to build an hybrid machine learning/deep learning severity predictive model that can act as an auxiliary tool for
patient risk assessing in clinical practice. In order to accomplish the objective, we considered essential the combination of
imaging and non-imaging data. We chose to exploit a Convolutional Neural Network (CNN) as feature extractor, and CatBoost,
a last generation gradient boosting model, as classifier of tabular data6, 7. The proposed model is represented graphically in
Fig. 1. The output of the model is both the percentage score of the outcome and the SHAP (SHapley Additive exPlanations)
evaluation of feature importance in the individual prediction8, 9. In this way, both synthetic and analytic information are
provided to the judgement of the clinician.

Methods
Patients and dataset
The dataset for this retrospective study consists of patients admitted to Fondazione Poliambulanza Istituto
Ospedaliero (Brescia, Italy) between February 20, 2020 and May 6, 2020 with confirmed diagnosis of COVID-19. The
hospital was at the forefront of fighting the disease outbreak in northern Italy in the first months of 2020. Diagnosis was made
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Figure 1. A graphical representation of the proposed model.

via nasopharyngeal swab analyzed through the Reverse Transcriptase-Polymerase Chain Reaction, RT-PCR. Patients with
baseline thoracic CT images, arterial blood gas analysis data, total blood counts and Lactate Dehydrogenase test (LDH) were
considered for this study. This last has been chosen as inclusion criterion due to his effectivess as inflammatory biomarker for
COVID-1910, 11. We chose a binary outcome in two severity classes, evaluated at dimission, defined as follows:

1. ICU class: death or intensive care unit admission;

2. Non-ICU class: patients discharged as healed or transferred to non-COVID wards for further care.

We excluded patients for which outcome reconstruction was uncertain (e.g. due to early transferral to other hospitals or care
structures). A total of 558 patients met these criteria. Fig. 2 shows the flowchart of patients selection. Variables missing in
more than 20% of cases were excluded, even if their predictive efficacy has been advocated, e.g. D-dimer12, Interleuchin-613.
Variables obviously redundant were merged (e.g. differential white cells count in percent and absolute values). The 40 variables
selected are shown in Table 1. Fig. 3 shows the respective distribution of LDH and PaO2/FiO2 for both outcome classes.
Deviations from normality are apparent for both classes.
The study has been approved by the ethical committee of Brescia (protocol number NP 4274 STUDIO GBDLCovid, session of
06/04/2021). All methods were carried out in accordance with relevant guidelines and regulations. Informed consent collection
or its waiving where not possible were conducted in agreement with the aforementioned protocol.

CT acquisition protocols
Chest CT were acquired using two 64 slices scanners Optima CT 660 (GE Medical Systems, Milwaukee, USA). All patients
were examined in supine position. Four different acquisition protocols were used (see Table 2). For all protocols, tube
voltage was 120 kVp and automatic current modulation was used. The reconstruction algorithm were mixed filtered back
projections-iterative (ASIR), usually with different proportions for the same acquisition (e.g. lung, bone and parenchyma
optimized).

Image preprocessing
All CT scans were transformed with bicubic interpolation to a common spatial resolution of 1.625 mm × 1.625 mm × 2.5
mm. A rigid registration to a single CT picked as representative was performed in order to minimize small patient positioning
differences. A lung mask was created on the basis of non-rigid method registration of a known CT with lung mask to the target
CT14, 15. Once masked images were produced, a volume of size 160×160×240 was obtained with zero-padding. At this point,
different reconstructions for the same CT scans were merged (mean values were used), obtaining one single baseline volumetric
image for each patient. The images were then z-normalized (subtracting means and dividing by standard deviation).
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Table 1. Summary of clinical and laboratory variables used.

Binary
Variable Total Non-ICU ICU
Sex F=166 M=392 F=121 M=259 F=45 M=133
Diabetes Y=131 N=427 Y=80 N=300 Y=51 N=127
Hypertension Y=255 N=303 Y=165 N=215 Y=90 N=88
Cardiovascular Disease Y=263 N=295 Y=164 N=216 Y=99 N=79
Oncological (last 5 yrs) Y=41 N=517 Y=33 N=347 Y=8 N=170

Numerical
Variable Measure Unit Median Median: Non-ICU Median: ICU Reference range
Age yrs 66 64 69
Body Mass Index (BMI) 26 25.9 26
Body Temperature °C 37.5 37.4 37.7 < 37
Heart Rate (HR) bpm 92 92 90 60-100
Diastolic Blood Pressure (DBP) mmHg 76 77 75 60-80
Systolic Blood Pressure (SBP) mmHg 127 127 127 90-120
Arterial Blood Gas Analysis
pCO2 mmHg 36 35 39 35-48
HCO3 mmol/L 25.4 25.4 25.4 21-28
PaO2/FiO2 mmHg 255 277 134 ≥ 300
Lactate (LAC) mmol/L 1.1 1.0 1.3 0.5-1.6
SO2 % 94 94.5 91.8 95-99
Complete Blood Count
White Blood Cell Count (WBC) ·109/L 7 6.6 8.3 4.5-10
Red Blood Cell Count (RBC) ·1012/L 4.3 4.4 4.3 4.2-6.3
Hemoglobin (Hb) g/dL 13.1 13.2 13 14-18
Hematocrit (HCT) % 39.8 39.8 39.6 40-52
Red Blood Cell Distribution Width (RDW) % 12.3 12.1 12.6 10.6-13.8
Granulocyte Neutrophils % % 78 75 84.7 41-70
Granulocyte Eosinophils % % 0.2 0.2 0.2 1-5
Granulocyte Basophils % % 0.2 0.3 0.2 0.1-2
Monocytes % % 6.5 7.4 5 1-12
Lymphocytes % % 14.2 16.6 9.4 20-50
Platelets (PLT) ·109/L 189 198 176 130-450
Additional Blood / Laboratory Analysis
Erythrocyte Sedimentation Rate (ESR) mm/hour 5.5 5.4 5.6 variable
C-reactive Protein (CRP) mg/L 92 71 151 < 5
Albumin g/dL 3.2 3.3 3.2 3.1-5.2
Prothrombin Time International Normalized Ratio (PT INR) 1 1 1.1 0.8-1.2
Aspartate Aminotransferase (AST) U/L 46 43 55 < 60
Alanine Aminotransferase (ALT) U/L 34 33 35 < 35
Total Bilirubin mg/dL 0.7 0.6 0.7 < 1.2
Creatine kinase (CK) U/L 102 86 163 30-200
Lactic Acid Dehydrogenase (LDH) U/L 388 343 505 125-220
Sodium mmol/L 140 140 140 136-145
Potassium mmol/L 4.1 4.1 4.1 3.3-5.1
Creatinine mg/dL 0.84 0.8 0.96 0.72-1.18
Urea mg/dL 38 34 47 18-55
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Figure 2. Flowchart of patients inclusion/exclusion.

Table 2. CT acquisition protocols

Protocol #1 #2 #3 #4
% of cases 70 % 20 % 7 % 3 %
Transverse resolution (mm) 0.765 0.765 0.765 0.765
Slice width (mm) 2.5 1.25 2.5 2.5
Slice spacing (mm) 2.5 1.25 0.625 1.1
Pitch 1.375 0.969 1.375 0.984

Tabular missing data
Non-imaging missing data have been replaced with median imputation. In order to avoid knowledge leakage, median imputation
was always performed after test/ validation/ training split.

Model overview
The proposed model is composed as follows:

• a fully 3D CNN patient-level classifier on CT images;

• feature extraction from the last Fully Connected Layer of the CNN;

• a dimensionality reduction procedure including Principal Component Analysis (PCA) on extracted image features, a
preliminary CatBoost model and the Boruta algorithm with the SHAP feature importance as metric (BorutaSHAP,16);

• a CatBoost classifier on the reduced feature space.

The dataset was split in train/validation and test (holdout) subsets, in a 0.8:0.2 proportion (Ntrain/valid=451, ICU=147, non-
ICU=304 and Ntest=107, ICU=31, non-ICU=76, respectively; see Supplementary Table S1 for demographic data of the split).
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Figure 3. Distributions of Lactic Acid Dehydrogenase and PaO2/FiO2 for patients in Non-ICU (gray) and ICU (red) severity
classes. Yellow area is normal value range. Mean and median values are also indicated.
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Figure 4. A representation of the CNN architecture used. Actual model is volumetric, i.e. three spatial dimensions plus a
channels dimension. Green arrows represent convolution operations with stride of 1. A ReLU nonlinear activation is applied
after convolutions, and then a 2x2x2 max pooling in order to reduce spatial dimensions. Red arrow represents flattening. Blue
arrows are full connections (with a 0.25 dropout), purple arrow stands for the final classifier with Log SoftMax and Cross
Entropy loss function.

Ten fold stratified cross validation was applied in the train/validation set. The best model was then retrained on the joined train-
ing and validation sets and applied to the test set. Overall validation strategy is not trivial, due to feature extraction and feature
selection steps. In brief, for each fold the validation set is first used for CNN hyperparameters choice and PCA analysis. Once
image feature are extracted, we step back to the training set for the BorutaShap feature selection and a reduction of the CatBoost
hyperparameter space to be searched. Validation set is again used to pick the best hyperparameter choice for the fold. The out-
put of the model is the percentage score of the classification and the SHAP feature importance values at patient level (see Fig. 6).

Volumetric convolutional neural network
The first block of the proposed model is a patient-level 3D CNN classifier, with six convolutional layers with ReLU activation
followed by max pooling, and three fully connected layers with a 0.25 dropout, plus a final classification layer. Group
normalization is used, due to its better efficacy with small batches17. The loss function is CrossEntropy. The CNN block is
shown in Figure 4.

CNN training and data augmentation
Data augmentation was performed in each fold on the fly, only for each training set, in the ten cross validation folds. Data
augmentation techniques used were:

• Affine deformation. During every epoch, there was a 50% of probability to apply a random affine deformation with
rotation between 0 to 10 degrees and a size variation up to 10%.

• Elastic deformation. A random displacement was attributed to a grid of 7×7×7 control points assigned to every images,
with a maximum displacement equals to 10 voxels in each direction along cartesian axes. The displacement at every
voxel was interpolated using a cubic B-spline function.

All the techniques were implemented using the framework Torchio18. Training was performed with the Stochastic Gradient
Descent (SGD) optimizer and a fixed learning rate of 3×10−5. The number of epochs was chosen for each training/validation
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fold on the basis of AUC result on the validation set (the best in a fixed number of 50). For each fold, features at the input of the
final classification layer were extracted (40 features).

Dimensionality reduction
A dimensionality reduction procedure was applied, articulated as follows:

• Principal Component Analysis (PCA) of image extracted features (reduction of 40 extracted features to 5 principal
components).

• Training and hyperparameter optimization of a preliminary CatBoost classifier, with 40 non-imaging features and the 5
imaging features from PCA.

• A majority voting multi BorutaSHAP feature selection procedure.

All these steps were learned by the training subset, and then applied to validation (and test) subsets. The usage of PCA to
provide an out of the box, unsupervised, dimensionality reduction for CNN extracted features has been already proven effective
in hybrid approaches19. In this work we applied PCA only to CNN extracted image features, that can be considered natively
agnostic, while the subsequent feature selection preserves interpretability. The Boruta algorithm is an all relevant feature
selection method, i.e. it tries to select all the features relevant for a given ensemble model. Relevance is evaluated against
shadow features, that is dummy features created from real ones with random reordering of values20. In the BorutaSHAP
Python implementation, features and shadow features are compared by means of their SHAP importance values, producing
therefore a result more consistent than other metrics21, 22. The level of feature elimination can be tuned via a (percentile
based) multiplicative factor on maximum shadow feature. The ensemble model used was a preliminary CatBoost classifier, in
which we fixed number of trees at 700 and learning rate at double of automatic CatBoost suggestion (so to to reach a quicker
convergence). For other hyperparameters, Bayesian optimization was performed with the automatic optimization framework
Optuna 2.3.023, with 300 trials (0.8:0.2 calculation/evaluation split).
In our dataset, SHAP feature importance tends to have a slowly degrading distribution, except for the two most important
features (CT first principal component and PaO2/FiO2; see Figure 5). Such a feature importance distribution can show
some dependence on random picking of data sample. Therefore, in order to increase the robustness of feature selection, we
implemented a nested majority voting feature elimination strategy.
The training subsample was divided in a 7:1 inner training and inner validation sets (with shuffling). A weak BorutaSHAP
(85 percentile) feature selector with the preliminary CatBoost model was applied in each fold. Each time, feature importance
was evaluated in the inner validation subset. Eight feature choices resulted. A feature absent in six over eight choices was
eliminated. This procedure was applied to each of the ten training/validation folds (Figure 6).

Figure 5. A representative BorutaSHAP importance plot. Green are features to keep in the model for this fold. Blue are
maximum, mean, median and minimum shadow features.
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CatBoost model
We built a CatBoost classifier on the reduced feature set, using a two steps procedure for hyperparameters optimization:

• Selection of a reduced number of hyperparameter combinations (the best performing on the training set), with the aid of
Bayesian optimization, at fixed learning rate and number of trees.

• The selected combinations were compared on the validation set, with a fixed learning rate and a number of trees optimized
by the overfitting detector.

The best model was chosen by AUC on its validation subset. It was then retrained on the joined training and validation subset,
with a 120% number of trees in order to keep in account the larger training size. Such final model was evaluated on the
test/holdout dataset. A graphical resume of the cross validation and testing procedure is shown in Fig. 6. The rationale of the
procedure is to control the computational burden of hyperparameter search, and at the same time to fully exploit the potential of
the overfitting detector for number of trees selection by means of early stopping. In the first step, Bayesian optimization in the
training set was performed with the Optuna optimizer, with parameters as in the previous subsection. For the first step, learning
rate was fixed at the values automatically calculated by CatBoost on the basis of the number of instances and features. Models
with AUC ≥ 0.96 were selected for validation testing (an empirically chosen threshold value). In the second step, learning rate
was fixed at a constant value of 0.008 (at the lower end of the range of values for the first step). The number of trees was picked
with the CatBoost overfitting detector as the best performing on the validation subset, starting with a very large value, 20000. In
this way, almost complete freedom is left to the overfitting detector to stop at the best iteration. In practice the final model
has fixed learning rate, a Bayesian-optimized combination of hyperparameters, and a number of trees found by the overfitting
detector. Hyperparameters of the final CatBoost model are reported in Supplementary Table S2.

Figure 6. A sketch of the cross validation procedure with dimensionality reduction. Both Optuna hyperparameter optimization
and BorutaSHAP feature selection were computed with inner cross validation in the training set, not represented here.

Implementation and code availability
The overall model implementation has been made in
Python 3.7 with open source libraries. In particular the framework PyTorch 1.724 has been used for the CNN block. The PC
utilized for the training is equipped with a Intel® CoreTM i7-8700 CPU (6 cores, 12 threads, 3.2 GHz) and a NVIDIA® GeForce®

RTX 2080 Ti GPU (11 GB memory). The code is available at
https://github.com/matteochieregato/GradientboostingCovid19.
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Results

CNN results
Results of the CNN classifier in terms of AUC is shown in Figure 7 for the ten validation subsets. The third validation fold
has the best AUC score, 0.889 (mean AUC in the ten folds is 0.806). Non-imaging feature selected by our procedure were
consistent between folds. Variation in CNN results are likely to be imputed to the number of patients used for the training, not
so large for deep learning.
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Figure 7. Cross validation of the CatBoost and CNN classifiers. A roughly common trend can be discerned, however the
highest score is reached at different folds (3rd for the CNN and 10th for the CatBoost classifier).

CatBoost predictive power
Classification results of CatBoost in terms of AUC is shown in Fig. 7 for each of the ten validation subsets (mean AUC = 0.915).
The final best model reaches AUC = 0.949 in the test set, with a 95% confidence interval of 0.899-0.986. The confidence
interval is calculated with the bootstrap method with 10000 folds resampling of the test set. Fig. 8 shows the confusion
matrix for the test set (Sensitivity = 83.9%, Specificity = 93.4%). Since the model is intended as probabilistic classifier, it is
optimized on probabilistic AUC, not on sensitivity and specificity. Setting the threshold for ICU prediction at 0.25 instead of
0.5, sensitivity becomes 90.3% with a specificity of 89.5%.
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Figure 8. Confusion matrix obtained with the best model on the test set (0 : non-ICU patients and 1 : ICU patients).

Feature selection and global level feature importance
Figure 9 shows the 22 features selected by our procedure in the best model, along with SHAP global feature importance in
prediction over the test set. The first CT principal component and the PaO2/FiO2 stand out.
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Figure 10. Force plot of SHAP values for single patient. Less important features are omitted for the sake of visualization.
0.83 is the probability of ICU outcome. Features in red contribute positively to such probability, features in blue contribute
negatively. More details are in Subsection Model introspection.

Patient level feature importance
Figure 10 shows the SHAP output in terms of feature importance for a single prediction9. Features are divided in colors and
sides corresponding to the outcome to which they pull the prediction to (ICU is red and non-ICU is blue), bar size is which
percentage score corresponds to the respective feature. The case shown is correctly predicted as ICU with an 83% score. From
the plot it is possible to see that CT features (1 and 4) and most of parameters contribute to the ICU outcome prediction, despite
a PaO2/FiO2 ratio higher than most ICU cases (corresponding to mild Acute Respiratory Distress Syndrome,25).

Model introspection
We analyzed on a case-by-case basis the patients for which the final model gave a wrong prediction, in particular ICU outcomes
misclassified as non-ICU. It turned out that for 2 out of such 5 patients in the test set, there were meaningful additional
information not taken in account by the model. In one case, there was a full scale D-dimer value (well known as indicator
of poor outcome12). In the other, the patient is insulin-dependent type 1 diabetic. Diabetes comorbidity was eliminated by
the feature selection procedure. Indeed, in our dataset a specific type 1 effect could have been hidden by the overwhelming
majority of type 2 diabetic patients. Such cases highlight the supporting role for which the proposed model is rightly intended
for. Note that if these two cases were to be excluded, sensitivity would be 89.7%.
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Discussion

Imaging and non-imaging data combination

Complex tasks in clinic need integration of radiological information with laboratory and clinical information. Machine learning
methods are starting to be employed for such a purpose. Besides COVID-19 prognosis, examples can be Alzheimer disease
classification and progress26 or the individuation of immunotherapy responders27.
Radiological information is native as imaging data, while laboratory and clinical information comes in tabular form. Up to now,
there is still no consensus on the best way to combine these two types of data in machine learning models. In particular, CNN
are showing "unreasonable effectiveness" in image related task28, 29 in the last years. However, the same is simply not true for
tabular data30, where ensemble models, and especially gradient boosting variations (XGBoost,31, LightGBM,32, CatBoost,6),
have the edge (33).
In principle, an integration of imaging and non-imaging information that harnesses the power of neural network in a combined
model can be reached in a number of ways. Leaving apart simple CNN usage for segmentation34, they essentially boil down to
three methods. First, combination of results of fully separated models35. Second, injection of non-imaging data, either as they
are or after one or more fully connected layer, at some point of the CNN architecture, with a fully connected layer being the
obvious choice36–39. Third, CNN as image feature extractor and a different machine learning model on the top to operate on
both image extracted and non image features on equal footing (e.g.40).
The first method is somewhat hampered by the fact that it can not keep in account any interaction between imaging and non
imaging features. The second method has the advantage of being end-to-end differentiable, and therefore trainable. As such,
it is also more elegant to validate. The third method can exploit a state-of-art model for heterogeneous data (e.g. gradient
boosting,41,42,43 for extracted CNN features in XGBoost classifiers). The underlying machine learning architecture is less
prone to data-starving, it is naturally integrable with advanced feature selection algorithms, and more readily explainable
once agnostic features for images are accepted as such, since its symmetrical elaboration of non-imaging and image extracted
features.
Our dataset consists of few hundred of patients, a small number for CNN applications. Prognosis is a patient-level task, and
as such we believe that number of patients, not of CT slices, is the fundamental number of instances. Furthermore, there is
a perceived need for explainability of artificial intelligence applications, especially in the clinics (see below). Therefore, we
chose to sacrifice full differentiability and opted for the third method. As far as we know, this the first time that such a method
to combine CNN-extracted and non imaging data in a gradient boosting machine is used in a medical application.

Model building and training

For COVID-19 prognosis, global features are likely to be more effective than spatially localized features (that could be more
useful for diagnosis in initial phases). Therefore a fully 3D patient-level architecture is the more appropriate choice for the
task. A CNN classifier allows to pick the high level representation features relevant to the task. At the end of the network, a
multiple fully connected layer structure allowed us a gradual reduction of the number of features before their extraction, so
to balance it with non-imaging features. CatBoost was used as the machine learning classifier for the final model. CatBoost
is becoming increasingly applied in complex datasets44. It implements Ordered Boosting, a permutation driven version of
boosting algorithm, and Oblivious Decision Trees, a particular type of decision trees (as well as other features we do not treat
here). Both should be especially effective in avoiding overfitting. Hancock and Khoshgoftaar44 pointed out that CatBoost
performance is likely sensitive to hyperparameters choice. We especially picked by hand some hyperparameters (Ordered
Boosting as boosting type and Bayesian bootstrap type) so to select the solution less prone to overfitting, using Bayesian
optimization for most of the others. The most influential hyperparameters are the learning rate and the number of trees.
For these, CatBoost provides very powerful tuning methods, respectively with the automatic learning rate estimate and the
overfitting detector, and we made use of both. The feature selection in our model is based on the combination of the Boruta
algorithm with the SHAP metric, as implemented by Keany et al.16. The Boruta algorithm tries to find all relevant features
for the task (and the model), not a compact subset that minimize information loss for the classifier20. The use of the SHAP
metric naturally keeps in account feature interactions and cooperative effects. We implemented a majority voting procedure in
order to exploit the strengths of BorutaSHAP, at the same time minimizing the risk of information loss and the dependence of
subsampling randomness (Subsection CatBoost model). Since validation set is used as such both for CNN feature extractor and
CatBoost hyperparameter choice, we can not completely exclude that some knowledge leaks from the feature extraction along
our dimensionality reduction procedure up to the hyperparameter choice. We believe that our selected procedure, in particular
the restriction of feature selection and Bayesian hyperparameter optimization on the training set should minimize the impact of
knowledge leakage (and therefore the risk of overfitting). In any case no leakage on the test set was possible, due to holdout
from the start.
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Model interpretability
There is a general debate about the need of interpretability of machine learning models for decision making45. Notably,
European Union legislation assesses the right to have an explanation of a decision made after automated data processing
(GDPR16,46). We believe that an even stronger push for model explainability comes from clinical needs. In particular, an
explainable model is not only more acceptable for doctors and patients, but becomes much more integrable with additional,
out-of-the-model information (see Subsection Model introspection). In the proposed model, interpretability at global level and
especially as single prediction level is given by the SHAP analysis. CT features, being extracted from the CNN classifier and
the PCA reduction, are agnostic. However, one can still use them to appraise the overall weight of CT both in general and
single case predictions. In particular, the first principal component is much more significant than the others, so it can be used as
a proxy.

Limitations
There are limitations to the proposed model. First, the dataset comes from a single center, in a localized period of time, with
consequent trade-off between data homogeneity and generalization power. Second, the number of our patients is limited in
comparison to the usual numbers in deep learning classification tasks. Larger datasets naturally tend to reduce model variance.
To reduce the influence of these two limitations, we took particular care in trying to avoid overfitting.
Finally, any endpoint for COVID-19 related task can be potentially influenced by the pressure posed to hospitals by the large
numbers of patients e.g. mortality rate and/or choice of admission to intensive care units can change. We considered an ICU
admission severity outcome to be more applicable in clinical context than a mortality prediction. However, we are aware that
such an outcome definition is calibrated on our center (i.e. a different center can have different admission criteria to intensive
care unit). We believe that the choice of an interpretable, probabilistic output can reduce the bias due to outcome choice.

Conclusion
We built a COVID-19 prognostic hybrid machine-learning/deep learning model intended to be usable as a tool that can support
clinical decision making. The proposed model fully integrates imaging and non-imaging data. A 3D CNN classifier extracts
patient level features from baseline CT scans. A CatBoost classifier is applied on extracted features and laboratory and clinical
data. Feature selection in the model is performed via the Boruta algorithm combined with the SHAP feature importance. Such
architecture blends state-of-art machine learning for tabular data with the efficacy of a 3D CNN in building and selecting
patient-level complex image features. The tool is interpretable at global and at single patient level, with the SHAP importance
of features in obtaining the percentage score of classification. Such analytical result is susceptible to be integrated by ulterior
information that the clinician may have. We think that at the present state of things, this is the correct clinical usage of machine
learning for COVID-19 prognostic tasks. There are a handful of COVID-19 prognostic models that make use of radiological
and clinical data with deep learning techniques, most of them either using deep learning only for segmentation34, 47, 48 or
keeping as a variable the resulting classification35. At odds with them, and more in line with36 and40 (despite a much different
architecture), the proposed method joins heterogeneous data at a lower representation level. As such, it allows models to
take into account feature interactions. In particular an high degree of interaction between heterogeneous features is expected
for COVID-19 prognosis task, due to complex relations between anatomical and functional lung involvement and systemic
inflammatory response.
The proposed model was trained on a limited size dataset, without image segmentation from the radiologists. It would be
therefore easily retrainable from scratch in order to adapt it to the mutable landscape of the pandemic, due to different variants of
the virus, differences in the affected population demographics and effects of vaccine campaigns. Efforts in artificial intelligence
triggered by the pandemic are likely to pave the way to future applications in different clinical contexts. We believe that the
integration of heterogeneous data and the interpretability of models will be keypoints for any clinical application involving
complex tasks.

Data availability
The dataset analyzed during the current study can be made available from the corresponding author on reasonable requests
upon ethical comittee approval.
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Supplementary Tables

Table S1. Non imaging variables in the train/validation and test datasets

Binary
Variable Train/validation Test
Sex F=134 M=317 F=32 M=75
Diabetes Y=107 N=344 Y=24 N=83
Hypertension Y=199 N=252 Y=56 N=51
Cardiovascular Disease Y=222 N=229 Y=41 N=66
Oncological (last 5 yrs) Y=34 N=417 Y=7 N=100

Numerical
Variable Measure Unit Median (10th-90th PCTL): Train/validation Median (10th-90th PCTL): Test Reference range
Age yrs 66 (50-80) 64 (46.2-76.8)
Body Mass Index (BMI) 25.7 (21.7-32.1) 27.2 (23.4-33.3)
Body Temperature °C 37.5 (36.4-38.9) 37.5 (36.3-38.8) < 37
Heart Rate (HR) bpm 92 (68-116) 91 (74-118) 60-100
Diastolic Blood Pressure (DBP) mmHg 76 (63-88) 76 (64-89) 60-80
Systolic Blood Pressure (SBP) mmHg 127 (107-158) 129 (106-155) 90-120
Arterial Blood Gas Analysis
pCO2 mmHg 36 (29-48) 36 (31-43) 35-48
HCO3 mmol/L 25.4 (20.8-29.7) 25.5 (22.2-29.1) 21-28
PaO2/FiO2 mmHg 254 (89-356) 260 (86-378) ≥ 300
Lactate (LAC) mmol/L 1.1 (0.6-2.2) 1.0 (0.6-2.1) 0.5-1.6
SO2 % 94.1 (82.5-98.1) 93.5 (80.7-98) 95-99
Complete Blood Count
White Blood Cell Count (WBC) ·109/L 7 (3.6-13.8) 7.17 (3.8-12.8) 4.5-10
Red Blood Cell Count (RBC) ·1012/L 4.3 (3.6-5) 4.4 (3.8-5) 4.2-6.3
Hemoglobin (Hb) g/dL 13 (10.8-14.8) 13.3 (11.2-14.7) 14-18
Hematocrit (HCT) % 39.7 (33.5-45.4) 39.9 (34.3-45.6) 40-52
Red Blood Cell Distribution Width (RDW) % 12.3 (11.5-14) 12.0 (11.2-13.5) 10.6-13.8
Granulocyte Neutrophils % % 78 (57.4-90.3) 77.5 (54.6-89.3) 41-70
Granulocyte Eosinophils % % 0.2 (0.1-1.6) 0.2 (0.1-1.5) 1-5
Granulocyte Basophils % % 0.2 (0-0.9) 0.2 (0-0.9) 0.1-2
Monocytes % % 6.4 (2.8-11.5) 6.7 (3.5-11.9) 1-12
Lymphocytes % % 14.1 (5.4-30.4) 14.2 (5.8-31.8) 20-50
Platelets (PLT) ·109/L 181 (107-335) 204 (126-309) 130-450
Additional Blood / Laboratory Analysis
Erythrocyte Sedimentation Rate (ESR) mm/hour 5.5 (1.9-8.1) 5.4 (1.9-8) variable
C-reactive Protein (CRP) mg/L 94.3 (17-246.9) 82.7 (19.1-229) < 5
Albumin g/dL 3.2 (2.7-3.7) 3.2 (2.8-3.6) 3.1-5.2
Prothrombin Time International Normalized Ratio (PT INR) 1.02 (0.92-1.27) 1 (0.93-1.19) 0.8-1.2
Aspartate Aminotransferase (AST) U/L 46 (25-101) 48 (23-103) < 60
Alanine Aminotransferase (ALT) U/L 33 (13-92) 38 (14-107) < 35
Total Bilirubin mg/dL 0.7 (0.5-1.3) 0.6 (0.4-1.2) < 1.2
Creatine kinase (CK) U/L 102 (33-498) 100 (36-363) 30-200
Lactic Acid Dehydrogenase (LDH) U/L 391 (229-699) 375 (242-699) 125-220
Sodium mmol/L 140 (135-144) 140 (136-145) 136-145
Potassium mmol/L 4.1 (3.4-4.9) 4 (3.5-4.9) 3.3-5.1
Creatinine mg/dL 0.85 (0.64-1.6) 0.83 (0.68-1.6) 0.72-1.18
Urea mg/dL 38 (21-82) 38 (24-90) 18-55
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Table S2. CatBoost main hyperparameters in the final trained model

Hyperparameter Value
Loss function LogLoss
Iterations/number of trees 12483
Learning rate 0.008
L2 leaf regularization term 4.136
Boosting type Ordered
Bootstrap type Bayesian
random subspace method 0.076
Bagging temperature 3.102
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